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Abstract  
A theory for fast modulation effects in cesium frequency s tandards  has been devel- 

oped and expressions derived for frequency offsets pxodtlced by Rabi and cavit,y pulling 
wi th  square-wave phase modulation. These are  compared wi th  equivalent expressions 
for sine-wave phase modulation. Ratios of the  amplitudes of the  fseqnerlcy offsets in  
t h e  two modulation schemes a re  calculated for a ruoxlo-velocity beam and  shown t o  be  
in agreement wi th  measurements performed on a commercial standard.  This analysis 
allows a more complete evaluation and comparison of different rnod~llat ion schemes 
for cesium atomic beam standards. 

INTRODUCTION 

A number of different modulation schemes are used to  implement the servo loop in cesium atomic 
clocks. They include sine-wave phase (frequency) modulation, square-wave phase modulat,ion and 
square-wave frequency modulation. The choice of modulation sctlcrrlf: is based on a numbcr of consid- 
erations, e.g., ease of irnplcmentation, optimization of ccsir~m flux usage and Allan variance, minimized 
frequency offsets. Analysis of servo loop gain has been performed for all thcsc scliernes and expres- 
sions exist t o  model the gain dependence upon loop paramelers. However, the analysis of  the effects of 
.modulation scheme on accuracy and long terrn stability are less complct,~. Sine-wave and square-wave 
frequency modulation effects have been considered['] within the cont>cxt of slow modulation[2], hut  fast 
modulation transients have not been modeled because of the lack of an atomic description of those 
atoms that  experience the step change in microwave phase or freq~~cncy.  A theory for square-wave 
phase modulation is outlined in this paper. 

In the analysis of servo loop gain, it can be assumed that  the cesium at,orr~s experience a constant, mi- 
crowave frequency and the effects of phase modulation only perturb the relative phasc of t h e  precessing 
atoms and the microwave field in the sccond arm of the Rarnscy In particular, thc t,rarisient 
effects in square-wave phase modulation can b e  safely omitted, and the coritribution neglected from 
those atoms which experience the step change in phase during their resonant interact,iori with the 
microwave field. The error incurred in the calculation of servo gain slope is only of order w,r where 
r is the interaction time and w, is the modulation frequcncy. Similarly, by neglect,jng the frequency 
variation of the microwave field, srnall errors of order Awr  are incurred in the frcqucncy modulation 
calculations. *Aw represents the depth of frequency modulation. 

Spurious servo signals are introduced by neighboring transitions (Itabi pulling) arld cavity mistuning 
(cavity pulling) and affect the performance of cesium frequency st,aridards. Differences in thc velocity 



distributions of I +m > and I -m > have the potential to generate a frequency offset by causing 
a sloping background to  the I 0 > + I  0 > transition. Both u-transitions (Am = 0) and weak ~r- 

transitions (Am = f 1) may contribute to this background. Since thc background and the servo 
gain slope have different microwave power dependencies, the resulting offset provides a means for 
transforming power changes to  frequency changes[*]. Cavity pulling can render cesium clocks sensitive 
to both microwave power level and temperature changes. Both offsets are mediated by exactly those 
contributions which could be safely neglected above. 

Apart from transient effects in frequency modulation schemes, the unwanted signals can be calculated 
by allowing tha atoms to experience a constant microwave frequency during resonance, but one that 
changes in time before succeeding atoms arrive. This preserves the conditions for standard microwave 
resonance. The transient conditions, on the other hand, require a different description. This paper 
describes an approach to  include the transient contributions to  both Rabi and cavity pulling. The 
results comparing sine-wave and square-wave phase modulation offsets are cornparcd with experiments 
performed on a commercial frequency standard. 

RABI PULLING 

First order time-dependent perturbation theory is used to calculate the background signal resulting 
from transitions which are far off-resonance. This approach can be easily applied to any modulation 
scheme because it allows the phase modulation to bc addressed by Fouricr decomposition. Writing 

for a particular I m >-t( rn' > transition leads to a general first ordcr transition probability, W ,  for a 
single velocity given by 

The notation follows [2] where 2 0  represents how far the microwave frequency is above resonance, r 
is the transit time through one arm of the Ramscy cavity, T is the transit time between arms distance 
1, apart, and D is the detector distance from the second arm. Velocity averaging has been presumed 
in order to average to zero the interferericc term between intera~t~ion regions (there are no Ramsey 
oscillations in the wings of a transition!). The sin x / x  terms arise from assuming perfect square-wave 
amplitude variation of the microwave field on passing through a cavity The expression can be 
simplified by linearizing these terms with respect to frequency over the small n,m values of interest. 
Then it can be applied to a particular modulation scheme to predict the fundamental Fourier signal 
component appropriate to narrow-band amplification and detection. 

a) Sine-wave modulation: w ( t )  = w + Aw cosw,t with C, = C J . ( ~ )  and 0 ,  = 0, 

This result has been derived previously by Dc   arc hi[^]. 



b) Square-wave modulation: cos iwt + B(t ) ]  , with B ( t )  alternating bctween 0 and 0 a t  frequency w,  
and for which 

co = ccos 812, 80 = 0/2; C, = (2c /nn)  sinO/2, i), = 8/2 for n odd. 

Only terms with n = 0 ,  tl contribute and 

wm sin B w + (  ) ~ { C Z S i n 2 A r ) { c o s w , l t - 2 ' j l + ~ , ~ ) ] - ~ ~ ~ ~ , j t - ~ / ~ ]  A 1 . (4) 

Aw times the phase factors in Eq.(3) may be interpreted as the instantaneous frequency in the two arms 
of the Ramsey cavity. (2w,/x) tirnes the similar phase factors in Eq.(4) are the Fourier components 
of delta function responses from atoms residing in the two interaction regiorls a t  the time when the 
step changes in phase occur. These expressions for W have to  Lc avcragcd ovt:r velocity distributions 
and summed over separate I m >--ti m' > transitions to complct,~ thc ralculation. 

These signals are nullified by a scrvo loop error signal, with the resulting offset determined by the 
servo gain slope. The gain slopes are determined for the usual rnono-velocity expressionsi3] which 
must also be separately averaged over the velocity distribution for the I 0 >--t i  0 > transition. All the 
averaging procedures have been supprcsscd for t hc sake or clarit,y in  the following expressions. The 
procedures have been discussed clscwherc['! 

% a {  ;:AT} U- K?LL-.- cos w,l.;2 cos w,  [t 17(1 / 2  -1, D / L ) ]  
(w - wc)s = 

T s i n ? c r , ~ 1 ( ~ )  cosw,jt - TI1 I ?  + D/1;)1 

with /3 = 2 - sinw,T,i2. (::I 
2w sin0 B ' c" sin2 AT 

( In( A, cos w,T ,'2 cos L;, jt - T ( l j 2  - D / L ) ]  
( 1 ~  - wc)q = 

T(?) sin2 2 c ~  sin ~ ~ ~ l ' / 2  cos w,, [ t  - - 17(1 /2  -+ L)/L)3 (6) 

In the limit of small modulation index, A w  -+ O and ( ~ v  - w,), = (w - w,),,. At finite values for 
Am, (W - w ) ~  > (W - w,) ,~.  Exact values for this ir~cquali t y will rlcpcnd upon t>hc vclocity averages 
and the specific values chosen for servo parameters. liowever, the magnitudes of the offsets will remain 
very similar. 

The perturbation expansion devclopcd for W i s  ir l  powcrs of (c !  A ) .  The ratio of second order to  first 
order terms is ( c / A ) ~ .  Noting that  c e 2.5 k l i z  and A = 20klIz, it is apparent that  the series is 
rapidly convergent. 

CAVITY PULLING 

Cavity pulling is caused by the asymmetry of the rr~icrowave spectruiri a b o u t  its unpcrturbcd frrqlicncy, 
induced by a difference between that, frrquc~ncy and ttlc rnr  it! r c w n a n t  frcqucncy. "l'he fact that  
square-wave phase modulation leaves the frequency unchang~ t i  tlurrpt dur ing t h r  stop changes in 
phase leads to  a natural modeling approach in which thc atornic rc.sor1arlc.c: is trtlat,ccl t,xart,ly before 
and after the step change, while t,he t,ransitlon itself is treated by perturbation theory. Only those 
atoms rcsiding in the separate arrns of the Ramsey cavity at  the tirlle of tile step changes are affected. 



If the transition occurs infinitely fast, i.e. in a time short compared to the precession period of the 
atoms in the microwave field, the sudden approximation can be invoked to predict that the transient 
itself will not induce any atomic response. Of course, the step change in phase will result in a servo 
signal from those atoms, which will merely be added to  the usual servo signal arising from the greater 
number of atoms in flight between the two arms of the cavity. However, the finite bandwidth of the 
microwave cavity prevents infinitely fast changes in phase from occurring and causes a breakdown of 
the sudden approximation. Now the transient frequency changes are finite. Moreover, the positive and 
negative frequency transients remain symmetric only if the microwave frequency is located at cavity 
resonance. It is this asymmetry which records the cavity offset and induces a cesium beam signal at 
the modulation frequency. This signal is derived from fast responses at the beginning and end of each 
half-cycle of the servo error signal and may be written as 

W - Wg 
cos wmT/2  cos wm[t - ~ ( 1 1 2  + D I L ) ]  ( 

When this is combined as before with the servo gain slope, the offset (w - w,) can be calculated. For 
a mono-velocity beam, it reduces to  

The similar result for sine-wave modulation['] may be written 

In the limit A w  + 0, the two expressions become equal, and cavity pulling effects are the sarne for 
sine-wave and square-wave modulation. The sine-wave frequcricy offset is reduced as Aw increases 
from zero. 

EXPERIMENTAL RESULTS 

Sine-wave and square-wave modulation were compared by measuring the frequency of an atomic 
standard for both modulation schemes, under as identical conditions as possible. This allows the 
differences in modulation schemes to  become apparent but does not attempt to  optimize performance. 
The square-wave modulation depth 4 was held close to 90 dcgrccs and the rnod~rlator drive signal 
was passed through a narrow band, unity gain filter and phase shifter to generate the sine-wave 
modulation. This produced a modulation index (Awlw,) of unity ant1 allowcd phasc adjustment to 
maximize the signal. The modulation frequency was close to maximizing the gain slope of the servo 
loop with wmT w T and P m 2. 

Rabi pulling was separately identified by measuring the frequency as a function of C-field at two 
microwave power levels; the optimum power maximized the average beam current, and the higher 
power was 3 dB above optimum. Figure 1 shows the resulting fractional change in frequency with 
power level for both modulation schemes. Cavity pulling was determined by measuring the frequency 
for cavity tuning on resonance and f 12 MHz off-resonance. In the data rcduction, it was assumed 
that the Rabi pulling was independent of cavity tuning, and the cavity pulling was independent of 
C-field. Three cavity settings, two power levels and two modulation schemes lead to a total of twelve 
curves of frequency versus C-field. The Rabi pulling could be reduced to a single curve at optimum 
power by the following relationships: 



( - ) = 0.94(w - w,), for both power levels, (1.1)) 

and (w - w,)(P + 3dB = 1.85(w - w, ) (P)  for both rriodulation schemes. ( I l )  

This curve is shown in Fig.2 and illustrates that Rabi pulling effects are sniall in this standard. Zero 
frequency offset may be arbitrarily chosen for the highest C-field, but is trucly zero orily at even higher 
fields. The ratio 0.94 between square-wave and sine-wave amI)Iitudes is closer to f than predicted 
from Eqs.(5) and (6). In the absence of velocity averaging, this ratio is predicted to be J1 (2) = 0.58. 
Alao, the ratio between high power and optimum power i s  predicted to be 2.5, slightly higher than  
the measured value of 1.85. It is reasonable to anticipate that velocity averaging will improve the 
agreement between theory and experiment. The approximately linear dependence on power arises 
because the off-resonance transition probabilities increase linearly with power, whereas the resonant, 
transitions are already optimized. 

Table I lists the measured offset frequencies versus cavity tuning. Systematic errors of unknown origin 
exceed the standard deviation (2 x 10- l~)  in the frequency measurcrnents. Zcro offset was arbitrarily 
chosen to be that for the sine-wave modulation case at optimum power and cavity tuncd on resonance. 
Eqs.(8) and (9) would predict a mono-velocity offset ratio 

The measured ratio, obtained by taking the difference of the offsets at f 12MIIz, is 1.3 at both power 
levels. The power dependence of the offsets is contained in the usual expression (2cr)/tan(2cr) which 
is zero for 4cr = x and rises to -1.7 as the power is raised 3 dB. Clearly, the optirrium power did not 
produce zero cavity pulling, but the increase by a factor 2.7 on raising the power 3 d R  would imply 

I that the nominal power was within 1.6 dB of that necessary for zero offset. 

CONCLUSIONS 

Our measurements ahow that sine-wave and square-wave phase modulation yield sirnilar values for 
Rabi and cavity pulling effects in cesium frequency standards. The result is consistent with the theory 
presented in this paper. It predicts that, in the limit of small freclucncy modulation depth, slne-wave 
modulation produces the same frequency offsets as square-wave modulation. At higher modulation 
depth, however, Rabi pulling tends to be larger and cavity pulling srrialler for the sine-wave modulation 
scheme. Exact predictions will require knowlcdge of specific servo paranleters and averaging over beam 
velocities. 
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TABLE I. 
Fractional frequency offsets (parts in 1012) determined from measurements 
a t  two microwave power levels for both sine-wave and square-wave modula- 
tion. The cavity was tuned to the cesium frequency Fo and to Fo z t  12MHx. 
The cavity pulling is norrrialized to the frequency for sine-wave modu- 
lation at optimum powcr (maximum dc signal) and cavity tuned to Fo. 
Standard deviation = 3 x 1 0 - l ~ .  

Fo + 12 MIIz Fo f i  - ~ ~ M H Z  
optimum power sine-wave -0.9 0 3.6 

square-wave -3.6 -1.2 2.2 
optimum + 3dB sine-wave -3.6 -0.2 8.5 

square-wave -8.2 -1.0 6.9 
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Figure 1. C-field dependence of the fractional change in 

frequency caused by a 3 dB increase in microwave power 

above optimum (maximum dc signal) for sine-wave and square- 

wave phase modulation. 

Figure 2 .  C-field dependence of Rabi pulling measured on 

a cesium frequency standard with sine-wave modulation. 

Rabi pulling is assumed to be those changes in frequency 

which depend upon C-field. 




