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Abstract 

Kalman filters and ARIMA models provide optimum control and evaluation tech- 
niques (in a minimum squared error sense) for clocks and precision oscillators. Typ- 
ically, before the models can be used, an analyeie of data provides estimates of the 
model parameters (e.g., the phi's and theta's for an ARIMA model). These model 
parameters are often evaluated in a batch mode on a computer after a large amount 
of data is obtained. 

An alternative approach is to devise an adaptive algorithm which Yearns" the 
important parameters while the device is being used and up-dates the parameters 
recursively. Clearly, one must give up some amount of precision if one deviates even 
slightly from the truly optimum techniques, but, as this study shows, the costs in 
performance are not large at all. If one chooses the best sampling intervals, the loss 
in precision can be negligible. 

The physical models used in this paper are baaed on the assumptiaa of a com- 
bination of white PM, white FM, random walk FM, and linear frequency drift. In 
ARIMA models, this is equivalent to an ARIMA(0,2,2) with a non-zero average sec- 
ond difference. Using simulation techniques, this paper compares real-time estimation 
techniques with the conventional batch mode. The criterion for judging perforinance 
is to compare the mean square errors of prediction between the batch mode and the 
recursive mode of parameter estimation operating on the same data sets. 

INTRODUCTION 

Before working directly on the ARIMA(0,2,2) models [I], it is of value to establish a few important 
relations. An ARIMA(1,0,0) model is often referred to as an exponential filter since its impulse 
response function is an exponential, That is: 

xfi = 4Xn-1 f an 

= for n = 1, 2, ... 

Where the input to the filter, a,, is taken to be ao = 1 and a, = 0 for n > 0 (the unit impulse). 
This filter is the digital equivalent of a simple R - C low-pass filter with 4 = exp ( - t / R C )  where 
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t is the time interval between steps in the counting index, n, and R and C are the resistance and 
capacitance values in the analog filter. In frequency domain, the filter transfer function is unity for 
low frequencies and drops off at  -6dB/octave from the cut-off frequency, fc , given by: 

f, = 1 / ( 2 ~ R c )  (2) 

Given the cut-off frequency, f,, and the sample time interval, t, the ARMA coefficient, 4, can be 
calculated with the equation: 

Thus, for a given physical system, the ARIMA parameter is dependent on the data sampling rate. 
The inverse function for the ARIMA(1,0,0) is just an ARIMA(O,O,l) which can be seen by solving 

Eq. 1 for a,. Such a filter would be constant for the low frequency end changing to an increase of 
gain by +6dB/octave above the same cut-off frequency derived above. 

The ARIMA models considered here are models for the phase of the clock comparisons (not their 
instantaneous frequencies). We can begin with a physical model of a clock with pure White FM. 
Since the ARIMA model is for phase, this first example would be given by an ARIMA(O,l,O) model, 
a random walk of phase. The power spectral density (of phase) for this noise is that of a constant 
decrease of -6dBIoctave everywhere below the Nyquist frequency, 1/(2to). 

We can add white noise modulation to this model by going to an ARIMA(O,l,l) model where the 
moving average parameter, 8, is computed from Eqs. 2 and 3, above, for T = RC. In actuality this 
is not an adequate model for many real clocks. One often encounters more low frequency divergent 
noises than the ARIMA(O,l,l) which require an additional integration: that is, one needs either an 
ARIMA(O,P,l) or an ARIMA(0,2,2). Physically, the ARIMA(O,P,l) model corresponds to a super- 
position of white FM and random walk FM. Again the transition between the two noise regimes is 
accomplished by using Eqs. 2 and 3, above. 

If one now adds white PM one must go to the ARIMA(0,2,2) model (see Fig. I ) ,  which has two 
break points corresponding to  the transitions between random walk and white FM and between white 
FM and white PM. The equations above allow one to calculate the two parameters separately, say, 
8; and 8;, for theta-values of two cascaded, MA filters. These two filters can be combined in one 
MA(2) filter whose theta-parameters must be combined as factors to realize the correct MA filter. 
This combination is obtained as follows: 

which yields 1 9 ~  = (8; + 8;) and B2 = -(8',8',) where B is the index lowering operator [I] and 8; and 
8; are calculated using Eqs. 2 and 3. A linear frequency drift can also be important. 

ADAPTIVE APPROACH TO TESTING ARIMA PARAMETERS 

There are many methods of estimating parameters - for example, just a guess is one means. Of 
importance are issues such as bias, confidence intervals, efficiency, and likelihood. While it is easy 
to present various estimating procedures that "work" it is often difficult to evaluate how well they 
perform. This section develops theoretically the effects of errors in the ARIMA parameters. 

Using simulation techniques, these errors are evaluated in "real-timen and compared to the conven- 
tional batch method, after the fact. The theoretical consequences of parameter errors are surprisingly 
mild. That is, many models are robust in regard to fairly poor estimates and they can give surprisingly 
good results. Still there are regions of operation where problems can arise. For example, taking data 



very frequently does not improve one's knowledge of basically long-term performance. Knowledge of 
the long-term performance simply requires long-term data. 

The adaptive (real-time) estimation is based on the fact that an ARIMA(O,O,l) has an autocorre- 
lation function given by: 

for n = 0 
02) for n = 1 

otherwise 

Figure 2 presents a block diagram of an adaptive algorithm which effectively servos the theta- 
estimate (denoted "#') to the "true" theta-value and also provides a current estimate of the variance 
of the residuals and a drift estimate. Basically the algorithm computes contributions to the first 
autocorrelation coefficient which in turn adjusts the estimated theta-value, effectively driving the first 
autocorrelation coefficient of the residuals to zero. The first autocorrelation coefficient of the residuals 
(given by Eq. 8, below) is proportional to the difference - (see Ref, [I]) giving both direction and 
value for the servo. Figure 3 depicts a simulation of the servo performance. Although the servo 
"works" we need to compare its performance with a conventional batch approach for estimation. 

THE ARIMA(0,2,1) MODEL 

Figure 4 is a diagram of the forecast system for an ARIMA(0,2,1) noise model. In this case, theta is 
the "real" parameter which is unknown, but is estimated with the value of phi. If phi were to equal 
theta, then the system would provide an optimal forecast of Xn. Since there will always be some error 
in the estimate of theta, it is of value to explore the consequences of such an error. The following is 
a detailed description of the estimation process and the evaluation of the errors caused by an error in 
phi. 

Following Fig. 4, the data, Xn, are the only observables from the clock comparisons and the model 
is white noise FM and random walk FM: That is, an ARIMA(O,2,1) model. I explicitly assume that 
the model is a good model, but theta is unknown. Theta can be estimated by the methods given in 
Ref. [I], or by recursive filters developed here. 

The output data, X,, are filtered with an "inverse" filter and the residuals, W,, are obtained. In 
the Box and Jenkins method, phi would be adjusted to give minimum variance to W,. This, however, 
is accomplished in a batch mode after the fact and not in real-time. Regardless of how theta is 
estimated, phi is used in the forecaster as shown in Fig. 4: Indeed, there is no other value to use. 
With W, as input to the forecaster (the switch in Fig. 4 in the "up" position), the system is allowed 
to run for a time to let all transients die out. At this point the estimated output, k;, = Xn exactly 
since the inverse filter is the exact inverse of the forecast filter. 

At some point in time, t = n + 1, W, is no longer available as input to the forecast filter and 
its input is set to zero (switch in the "downn position). For the first forecast value k,, + 1, the two 
previous values, Xn and XnI1 are available to use in the forecast as shown. The error of the forecast 
(after the fact), can be found by subtraction of the two equations: 

Xn+1 = 2Xn - Xn-1 + a,+l - Ban 
Xn+l = 2Xn- Xn-l - OWn 

61 = X ~ I - 1  -Xn+l  - - an+l - Oa, - OW, 



where Sl is the error in the first forecast. 
Following Box and Jenkins [I], W, can be expressed as an infinite series which incorporates the 

psi-weights and the uncorrelated innovations, a,: 

The psi-weights can be expressed in terms of phi, theta, and the innovations, a,, as shown below 
by requiring Wn to satisfy the equation (see Fig. 4): 

Wn - 4Wn-l = a, - 

for all n, the result is given by: 

for i = 0 
(4 -  ~ ) 4 ~ " l  for i = 1, 2, 3, .-• 

We can now evaluate the expected square of the first forecast error as: 

For phi equal to theta we obtain the classical result that the variance of the first forecast error is 
just the variance of the innovations. 

We can repeat this calculation for t = n + 2 by using the forecast value Xn+l in place of the 
(unknown) value, Xn+l. Similarly, for t = n 3- 3 and so forth. The result can be summarized in the 
following formula for the mean square time interval error for M lags in the future: 

This formula has been verified using simulation techniques. 
There are two points to make in regard to this relation: (1) for phi equal to theta the result 

is identical to the classical results as it should be, and (2) as M gets larger, the variance grows as 
M-cubed but the term proportional to (4 - 8) grows as M-squared. That is, for sufficiently large M, 
the errors of parameter estimation become unimportant. Figure 5 shows the regions of forecast errors 
(1) primarily due to conventional analyses and (2) those due primarily to an error in the estimate of 
theta, i.e., phi. 

Figure 5 shows clearly that problems develop near theta=l and near phi=l with phi and theta not 
near each other in value. The problems near theta equal to 1 can be reduced by having longer term 
data. Having more frequent data doesn't help. 

COMPARISONS BETWEEN ADAPTIVE AND 
CONVENTIONAL PARAMETER ESTIMATION 

Given an ARIMA model corresponding to a physical model we can simulate a noise sample and treat 
the data as if it were real-time data and estimate the parameters recursively. The same data can be 
treated in batch mode and find those estimates which minimize the sum of the squares of the residuals. 
Table 1 summarizes the results of the estimation process. The program generated 100 noise samples 
each of 200 data points in duration. Each sample noise was processed through the adaptive estimation 
procedure developed here and the conventional Box and Jenkins [I] treatment. Of course, the "true" 
values of the parameters are also known since this is only a simulation. 



As expected, the conventional estimates are more accurate and more precise than the adaptive 
methods developed here. Still, with reference to  Fig. 5, even fairly large errors in phi relative to 
theta are soon covered by the conventional errors. Table 1 shows that for theta = .9049, the adaptive 
method produces statistically significant biases (T-ratios of -4.63 and -6.38). 

TABLE 1 ARIMA(0,2,1) 
Theta = .9049 Sig-A = 1.1051 

ARIMA(0,2,2) NOISE ANALYSIS 

To estimate the theta-value the servo was based on the fact that an ARIMA(O,O,l) model has only 
the zeroth and first autocorrelation coefficients non-zero. An ARIMA(O,O,S) model has an additional 
non-zero coefficient a t  lag 2, which is strongly dependent on the second MA coefficient. The new 
servo has a separate loop which takes samples of the (lag n) (lag n-2) product and adjusts 4 2  to null 
the average similarly to  the loop shown in Fig. 2, for 41. 

Similarly to  Fig. 3, Figure 6 depicts the transient response of the ARIMA(0,2,2) adaptive estima- 
tion. As noted above, the important performance is that of forecast errors not the intermediate values 
of dl and 192 shown in Fig. 6. Still it does show how the parameters stabilize. 

As noted above, the means of comparing algorithms is to compare the forecast errors for similar 
data situations, The Box and Jenkins method can be used to estimate the forecast errors using the 
"psi-weights", as in equations 8 and 9, above. The model for consideration now is as ARIMA(0,2,2). 
The theoretical forecast errors for the model can be computed similarly to Eq. 11: 

Adaptive 
Method 

.8577 

.0074 
-.0471 
-6.38 

1 .I726 
.0146 

-.0674 
-4.63 

Quantity 

Phi (Actual--.9049) 
Std. dev. of mean 
Bias rel. Actual 
T-ratio 

Sig-A (actual=1.1051) 
Std. dev. of mean 
Bias rel. Actual 
T-ratio 

For the complete model, a linear frequency drift term can be added. That is, we assume that one 
has an initial data set (chosen to be 100 time differences between a pair of clocks). The number of 
data points are the same for both the adaptive servo and the batch processing. The introduction of 
a non-zero frequency drift significantly affects both the adaptive servo and the conventional Box and 
Jenkins analysis. Equation 13, below, provides the additional, independent error to the forecast errors 
of Eq. 12 due to frequency drift: 

Conventional 
Method 

,8983 
.0042 

- .0066 
-1.58 

1.1161 
.0119 
.0111 

.93 

DL = az{l+ (1 - + (e, + e,)2 ++: + (M - 2)(1- 0, - O , ) ~ ) / M ~  (13) 

This noise addition assumes that while 19~ and f12 are known exactly, the drift term is estimated 
from the mean second difference time error and its variance. Appendix A contains a derivation of Eqs. 
12 and 13. 



It is important to realize that the actual errors in real applications are calculated on the basis of 
the ESTIMATED model parameters, not the "true" parameters which are unknown. This usage of 
the estimated parameters renders the computed errors a bit on the optimistic side because Eq. 12 
does not include the errors in the estimated parameters. Figure 7a shows the theoretical contributions 
of the conventional Box and Jenkins analysis and the imperfect knowledge of the drift rate for various 
theta values. Figure 7 gives graphical views of Eqs. 12 and 13. 

Figure 8a shows the theoretical forecast errors as calculated using Eqs. 12 and 13. For simulation 
purposes, the 'truen parameter values are known. Simulation techniques allow one to verify Eqs. 12 
and 13 by repeated calculation of the forecasts compared to the 'truen values after the fact. 

The bases for the data plotted in Fig. 8a, b, and c are: 

1. ARIMA (0,2,2) model 

2. Linear frequency drift 

3. Data length of 100 points (Initial randomization of filter required) 

4, Forecast 100 lags beyond the data length using estimated parameters 

5. Repeat above for independent noise samples for at least 500 individual runs. 

For Fig. 8a, the errors in the forecast for the simulated data are - 2 2  dB worse than the theoretical 
value. (This number is probably within the uncertainty limits of the experiment.) The solid line is the 
theoretical result of Eqs. 12 and 13. The small dots near the solid line are the results of simulation. 

The next step was to estimate the theta parameters using a conventional Box and Jenkins approach. 
Figure 8b indicates the impact on the forecasts using imperfect parameters. The error is now about 
1.01 dB worse than optimum after 100 lags. Theoretical errors (i,e., solid line) are identical in Figs. 
8a, 8b, and 8c, as calculated using Eqs. 12 and 13. 

The third step is to simulate the results of a "real-time" estimation procedure where the parameters 
are "learnedn during a single pass through the 100 data points. That is, the adaptive approach is used 
for the forecasts. As shown on Fig. 8c, the error after 100 lags is now 1.14 dB relative to optimal or 
.13 dB relative to the Box and Jenkins approach. It is interesting to note that, at least for the given 
parameters, the adaptive forecaster is close to the Box and Jenkins forecaster in performance. 

With the above approach, we can now evaluate the adaptive forecasting performance for various 
physical models by using different "truen values for the theta parameters, drift rate, and noise level. 
Further, we can estimate the relative performances of "perfectn parameters, Box and Jenkins estima- 
tions, and "real-timen, adaptive method. In effect, we can evaluate the costs in accuracy of using the 
much simpler adaptive approach. 

Reference 
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APPENDIX A 

PSI-WEIGHTS FOR AN ARIMA (0,2,1)  

Given an ARIMA(0, 2, 1) Model: 

Xn - 2.Xn-i + Xn-z -an +B.a,-l  = 0 

We define the Q-weights by the relation: 

43 

Xn = El; .an-l for n = 0 to m 
i=O 

In order to have both (A-1) and (A-2) valid for all n, we substitute (A-2) into (A-1) and 
group coefficients of the a, together and require the resulting coefficient to vanish, That is, 
the net coefficient of a, is just !Po - 1. The first few relations for the Q-weights are: 

The mean square forecast errors (See Box and Jenkins) are given by: 



PSI-WEIGHTS FOR AN ARIMA (0, 2 , 2 )  
! 

Given an ARIMA (0, 2, 2): 

We define the *-weights as is (A-2). The first few relations for the @-weights are: 

m(l  - - g2) + (1 + 92) for m > 0 
for rn = 0 

The mean square forecast errors become: 



APPENDIX I3 

Mean and variance of an ARIMA (0, 2 ,  2 )  

The sum of the first M values of Z, are: 

Since the a, are independent random numbers with zero mean, the mean value is obtained 
by dividing the sum, above, by M. The variance of the estimate is obtained by taking the 
expectation value of the square of (B-2). That is: 

V' = o2 (1  + (1 - 81)' + (8,  + t92)2 + (M - 2 ) ( 1  - B1 - 0 2 ) ~  + 8; )  / M ~  

B-3 

where V2 is the variance of the estimated mean of 2,. 
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QUESTIONS AND ANSWERS 

DR. GERNOT WINKLER, USNO: Since you can do your parameter estimation on the run, 
you can, of course, allow a change in the characteristics of your frequency standards with 
time. Its an adaptive method. 

DR. BARNES: That is true. It will adapt to the new value if the standard changes. I guess 
that I should point out on the last plot, I am assuming that I have 100 points of data and 
I am forecasting for the next 100 points. It is not a lot of data that I am working with. 
We are still seeing agreements to a fraction of a dB in this approach. 




