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ABSTRACT 

A simple model of the m-cornered hat estimation problem is set up and solved by the 
method of maximum likelihood. The method is compared by simulation to a least- 
squares method of Barnes and is shown to be inferior to it on the basis of mean square 
error. A bootstrap method of computing estimator performance is presented. 

INTRODUCTION 

Because fluctuations of frequency sources can be measured only by pairwise comparisons, 
the estimation of the noise level of each individual source is not straightforward. In the 
m-cornered hat problem there are m sources (m 2 3); let the phase of the ith source as 
function of time t be di(t). The observations consist of the m -  1 pair-differences di(t) - dl(t) 
over some stretch of time, and it is required to estimate the Allan variances, a3 (T), i = 1 to m, 
of all the sources, for some fixed r .  

We shall set up an oversimplified model of the situation, and show (without proof) how the 
unknown corner Allan variances can be estimated by the method of maximum likelihood. 
Using simulation, we shall compare the performance of these estimators to those generated 
by a weighted least squares approach of Barnes. Finally, a method for estimating the 
variances of the estimators themselves will be given. 

- A TOY MODEL 

To attack the problem with a likelihood approach, a probabilistic model is needed. Here, 
the second phase differences of the ith source, for a fixed 7 ,  are represented by a set x;(t), 
t = 1 to n, of Gaussian random variables with mean zero and variance s; .  Thus, n is the 
number of samples of second phase difference. The crucial assumption is that all the mn 
random variables are independent. 

The main reason for the toy status is that the second differences of phase can hardly ever 
be regarded as white. One can make a rough fit of the model to a more practical situation 
by letting n be the approximate degrees of freedom of the usual estimators of pair Allan 
variance [11121139Fi*.11. This can be done in a rough way if the phase noise spectral densities 
of the sources are approximately proportional to each other in the vicinity of f = 117. 

Since there are too many "variancesn and "sigmasn in this field, the parameters si will 
henceforth be called "noise levels," a term also applied to the quantities s i j  defined below. 
The term "variance" will be reserved either for the theoretical variance of a random variable 
involved in the estimation process or for the sample variance of a finite sequence of numbers. 

THE LIKELIHOOD FUNCTION 

The observations now consist of the n-vectors xi - xl, for i = 2 to rn, and it is required to 
estimate the parameter m-vector s = (sl,.  . . ,s,). The likelihood function is the probability 
density p of the observations given the parameters, regarded as a function of the parameters. 



It is convenient to work with the object function 

whose natural domain is the set of s such that all si are nonnegative with at  most one si 
equal to zero. Thus, a point in the domain is either in the interior (all si > 0) or on the kth 
wall (sk = 0, other si > 0) for some k. Negative noise levels are not allowed. 

For i, j = 1 to m  define the observed pair noise levels by 

(Note X; - Zj = Z; - X I  - ( x j  - X I ) . )  

These correspond to practical estimates of pair Allan noise levels. Then the function L, 
with an additive constant neglected, is given by the formulas 

L = log(P/b) + W b  (in the interior) 

(on the kth wall), 

where 

It is gratifying that the likelihood function depends on the observation vectors only through 
the pair noise levels sij. Notice that the special role played by i = 1 has disappeared. Tryon 
and Jones 141 also computed the likelihood function for this model, but in a nonsyrnmetric 
form. 

MAXIMUM LIKELIHOOD SOLUTION 

It is required to find the s that minimizes L. The function L is continuous on its domain 
(interior + walls), and it can be shown that a minimum exists. The author has not been 
able to prove that the minimum is unique, nor that any interior stationary point of L is a 
minimum. Nevertheless, we shall proceed on the basis of these assumptions, which seem 
to be valid in practice. Setting the partial derivatives of L to zero, and making other 
transformations that improve iteration performance, we find that an interior point s is a 
stationary point of L if and only if it satisfies the equations 

m - 1  
s i = b i [ x % - - ~ ; b ; ] ,  j sj m-2  i = 1  t o m ,  

where 



It can be shown that the best wall point, the point s that minimizes L on the walls, is 
given by 

S; = s k r , ; ,  i = 1 to m, 

where kb is the index k that minimizes the product of ski  for i # k. (The author does not 
know what happens if two of these products are equal.) 

An algorithm for finding the maximum likelihood solution can now be given. 

1. Let s  be the best wall point. 

2. Iterate equations (1) once to obtain a new s .  

3. If s  is an interior point then 

iterate equations (1) to convergence. The resulting interior point is the solution. 

0 therwise 

the best wall point is the solution. 

The author can prove that the condition in step 3 is sufficient for an interior minimum of 
L, but has not been able to prove its necessity. Only experience has shown that if the best 
wall point does not iterate into the interior, then the best wall point is the minimum of 
L. Usually, about 10 iterations are adequate for the interior case. Occasionally, though, 
more than 100 are needed; the author does not know whether this is intrinsic to eq.(l) or 
caused by roundoff error. 

A wall solution sk = o does not mean that we believe the kth noise level to be zero; it 
implies only that an interval of uncertainty for it goes from zero out to some positive 
value. Unfortunately, the author does not know how to generate confidence intervals for 
this method. 

THE CLASSICAL 3-CORNERED HAT 

Although it is not obvious, for m = 3 the set of equations (1) is indeed equivalent to the 
classical 3-cornered hat equations 

moreover, the maximum likelihood occurs on the kth wall if and only if (2) has a nonpositive 
solution for s k .  Thus, for m = 3 one solves the three equations (2) in the usual way. If all 
si are positive, then s  is the maximum likelihood solution. If s l ,  say, is not positive, then 
the maximum likelihood solution is sl  = 0 ,  s2 = 312,  s3 = 313 .  

A WEIGHTED LEAST-SQUARES APPROACH 

If m > 3 ,  the m(m - 1)/2 equations (2) in m unknowns are overdetermined; Barnes 151 has 
suggested that estimators for the corner noise levels s; might be obtained from a least- 
squares solution of this system. Since s;, is proportional to a chi-squared variable with n 
degrees of freedom, it is reasonable to assume that the residual of the (i, j) equation has 
a standard deviation proportional to s;, itself. In addition, the equations are treated as if 
their residuals were orthogonal, whereas in reality they are correlated in some unknown 
way. 

Under these assumptions, Barnes showed how to compute the least-squares solution by a 
Kalman filter iteration, starting from some initial estimate of the solution. Here, we use 



another solution method: the weighted system is reduced to an unweighted system simply 
by dividing each equation by sij, resulting in 

This system can be solved with an algorithm of Lawson and Hanson161 called NNLS (non- 
negative least squares), which minimizes the sum of squares of the residuals over the set 
of s with nonnegative components. This has two advantages over the Kalman method of 
solution. First, no prior estimates of the solution are required; second, the Kalman solu- 
tion (or unrestricted least squares) can produce negative 8i. A disadvantage is that NNLS 
produces no covariances for the estimators. We also point out that, even when m = 3, the 
wall solutions of NNLS are not the same as the maximum likelihood wall solutions. 

SIMULATION RESULTS 

Runs of 1000 trials of the toy model were made for various choices of true corner noise 
levels si. Here are some typical results. 

Legend: ML = maximum likelihood, 
NNLS = nonnegative least squares (weighted), 
RMSE = root mean square error 

= square root (bias2 + sample variance). 

m = 4 corners, 1000 simulation trials. 

n = 10 samples 20 samples 

ML NNLS ML NNLS 
i Truesi Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

The NNLS method has greater bias but less RMSE than the ML method. Only if the 
true si are much more unbalanced than the ones used here, say I., lo., lo., lo., does ML 
show slightly better performance than NNLS. For a larger number of samples (n = loo), the 
RMSEs of the two methods are almost equal. On this basis, then, weighted least squares 
appears to be the method of choice. 

Another example studies the effect of adding corners. One would hope that a 3-cornered 
hat estimate could be improved by adjoining another corner. This is so, at least on the 
basis of ensemble mean square error: 

True variances = I., n = 10 samples, 1000 simulation trials. RMSE averaged over m 
corners. 

ML NNLS 
m RMSE RMSE 
3 .66 .67 

In this special case at least, there appears to be little benefit in going beyond 5 corners. 
The reader is cautioned that these results are valid only for averages over many trials; for 
an individual trial, the estimates of si can get worse as corners are added. 



SECOND-MOMENT BOOTSTRAP OF ESTIMATE VARIANCES 

This method, an adaptation of Efron's bootstrap method171 to the present situation, is a 
Monte Carlo computation of the variance of an estimator of si, using nothing but a single 
set of observations. Suppose that one set of difference vectors xi - zl is collected, the pair 
noise levels s;j computed, and estimates of corner noise levels si computed by the ML or 
NNLS method. Form the matrix R = (rij, i, j = 2 to m) by 

Then R is the matrix of inner products of the n-vectors xi - zl, hence is positive definite. 
(Indeed, this is the matrix that Tryon and Jones used for expressing the likelihood function, 
so that we are returning to their nonsymmetric formulation.) Let X(t), i = 2 to  m, t = 1 to n, 
be zero-mean Gaussians such that 1) for each t,  the K(t) have covariance matrix R; 2) if 
s # t, the random vectors Y(s) and Y(t) are independent. Also, let Yl(t) = O .  Then 

This setup is called the bootstrap model. The random variables K(t) play a role similar 
to that of zi(t) - zl(t) in the original toy model. To make a trial of the bootstrap model, 
one generates m - 1 independent unit Gaussians u;, then expresses the x(t) as appropriate 
linear combinations of the ui with coefficients obtained from the Choleski decomposition 
of R. This is repeated for t = 1 to n. 

To use the model, one makes nb (100 to 1000, say) computer simulation trials of it, always 
with the same observed s;j. Each trial yields a bootstrap sample of the pair noise levels 
given by 

1 sij = C[x(t) - 4(t)12, 
t = l  

from which a bootstrap sample of the ML or NNLS estimate of corner noise levels si is 
computed by the algorithms given previously. The sample variance of all the nb bootstrap 
sample estimates of si is then the approximate result for the variance of the si estimate 
derived from the original sij. 

This technique substitutes raw number-crunching power for the theoretical power to com- 
pute variances of estimators that are complicated functions of the observations. Here are 
two examples of its results. Note that "Est sin is the single ML or NNLS estimate whose 
variance we wish to estimate, and "Boot an is the square root of the sample variance of 
the bootstrap s; estimates over 1000 trials of the bootstrap model. In each example, the 
original sij and estimates of si were obtained from a single trial of the toy model. 

rn = 4 corners, n = 10 samples, 1000 bootstrap trials 

Example 1 

ML NNLS 
1 True 3; Est si Boot u Est si boot U; 



Example 2 

ML NNLS 
I True si Est s; Boot u Est si Boot a 

The only difference between these two examples is the seed for the random number gen- 
erator that generated the original x i ( t )  from which the original s i j  were computed. The 
estimated si and true si differ by reasonably small multiples of boot a,  except for i = 4 of 
Example 2, which was particularly unlucky. It seems that if luck throws an estimate of s 
onto or close to one of the walls, then it is difficult to pull it away. The author does not 
know how to recognize this situation without prior knowledge of the true si. 

For larger values of n, where (with high probability) the walls do not threaten, simpler 
methods of variance estimation can be used. For example, the Kalman filter or unrestricted 
least squares algorithm yields a covariance matrix of the estimators. As n grows, the 
bootstrap trials become more onerous anyway. To check the performance of the bootstrap 
for larger n, the following example for n = 100 compares the standard deviations produced 
by a bootstrap run with those produced by a regular simulation run of the toy model. 

m = 4 corners, n = 100 samples, 1000 toy and bootstrap trials. 

ML NNLS 

1 True si Toy a Boot u Toy a Boot u 

The corresponding o values agree within 15%, which indicates that the bootstrap estimates 
of variance are compatible with the true values and hence are compatible with those 
produced by more economical methods when n is large. 

CONCLUSIONS 

We have presented two methods for estimating the noise levels (Allan variances) of m 
frequency sources whose pair noise levels are measured. In most cases, the estimators 
produced by the weighted least squares method have smaller mean-square errors than 
the maximum likelihood estimators. (Nevertheless, the author is not yet willing to reject 
the maximum likelihood method out of hand.) Estimates of variance for the noise level 
estimates produced by either method can be obtained from a conceptually simple but 
computationally expensive bootstrap method whose results are not always reasonable. 
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QUESTIONS AND ANSWERS 

Donald Percival, University of Washington: You are actually doing a constrained maximum 
likelihood, since you don't allow the negative variances. Have you done any experiments 
where you removed the constraints and did the full maximum likelihood solution? Perhaps 
that might improve the overall root mean square deviation. 

Mr. Greenhall: The unknown parameters are essentially just the variances. I don't see 
how they could be made negative. 

Mr. Percival: This problem occurs commonly in statistics in the analysis of random effects 
models. If you look at  Chaffe's (sp.) book,on the analysis of variance, he deals with it. His 
solution is to use the model if it comes out negative. It does give you some information as 
to how large the negative thing is as to the quality of the model and so on. I am wondering 
if constraining the solution to lie in that region may somehow distort the root mean square 
criterion that you have. In other words, if one of the values were negative, the other two 
values might be a lot closer than to where they are, so the root mean square might be 
considerably improved. 

Mr. Greenhall: I have not looked at the likelihood function outside of the non-negative 
region. 

Mr. Percival: Just one other question. What was the model that you used in order to do 
the bootstrapping? You had to account for the correlations somehow. 

Mr. Greenhall: You get these observed 3;'s. Then you generate the m Gaussians such 
that the expected square between the two of those is equal to the sij's. Then you make n 
independent copies of those. That is the bootstrap model. 


