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ABSTRACT 

The computer simulation of complex systems often requires efficient recursive algo- 
rithms to generate various noise types. Flicker noise often occurs in frequency and 
time systems and long samples (a million or more lags) are needed. In June of 1971 
two papers on flicker noise simulation were published independently. ~andelbrot[ ' l  
based the simulation on the sum of several low pass filtered white, Gaussian noises. 
He showed that the noise level and the filter passband of each noise can be selected 
to provide an approximate flicker noise over a finite but arbitrary spectral range. The 
precision of fit to the fiicker spectrum can be arbitrarily good depending on the number 
of independent elements used. 

Barnes and ~ a r v i s l ~ ]  based their simulation on a cascade of lead-lag filters. Similarly, 
the extent and goodness of fit of the output noise depends only on the number of filter 
stages used. The Barnes-Jarvis procedure has an exact inverse which has advantages 
over the Mandelbrot method in some statistical applications other than noise simula- 
tion. The Barnes-Jarvis method can be expressed as an ARIMA model, but certain 
problems arise from the loss of significant digits. The significant digits problem can 
be avoided by using the ARIMA model in "factored form". 

Flicker noise is a noise whose power spectral density (PSD) varies approximately as 
the reciprocal of the Fourier frequency over a large, but finite range. Both methods 
cited can be used to simulate other power-law noises than just llf noise. Any noise 
with a PSD that varies as f a  for a in the range -2 < a < 0 can be simulated directly 
by these methods. For an extension of the range, the output of these filters can be 
integrated or differentiated to obtain any power-law desired. The Barnes-Jarvis filter 
is also called a "constant argument" filter since the output phase (45 deg.) of the filter 
is a constant relative to the input phase for a sinusoidal input a t  any frequency. A 
pure integrator has a 90 degree lag. 

THE BARNES-JARVIS FILTER 

Barnes and Jarvis cascaded a series of lead-lag filters chosen to approximate a I/ f spectrum. 
The digital equivalent of a lead-lag filter can be expressed with a recursive filterI31 in the 
form: 

where Pn is the input to the filter and Yn is the output. The coefficients, 4 and 8 ,  determine 
the poles and zeros of the filter. The frequency W = 2sf (W is used rather than w to aid in 
comparison to computer program listings) at the knee in the transfer function (see Fig.1) 



determines the value of 4 according to the relation: 

Conversely, the value of 4 can be used to find the knee frequency according to the inverse 
of (2): 

The same functional form given in (2) and 3) also apply to the 0 coefficient which forms 
the high frequency response of the lead-lag k lter. 

One next selects a ratio, R, (R > I) which determines the frequency ratios of successive 
filter stages. The closer that R is to unity the closer the filter is to an ideal 1 f spectrum; 
but, the more stages are required to fill a specific frequency range (see Fig.2 I . For flicker 
noise generation, the frequencies corresponding to successive knees (determined by the 4's) 
grow as R2 as do the frequencies corresponding to the e coefficients. In each stage, the 
frequency for the e is R times the frequency for the 4. 

The filter stage for the highest frequency filter is a special case. First, since we are dealing 
with real functions of finite length, the slope of the spectrum at the Nyquist frequency 
( 1 1 2 ~ )  is already zero of necessity. The corresponding 6, then, can be taken to be zero. The 
next problem is to determine a frequency corresponding to the first (highest frequency) 4. 
This selection is usually done by trial and error to obtain the best overall approximation 
to a I/ f spectrum (see Fig. 2 and Appendix A). The first 4 is typically in the range of 0.3 
to 0.5. 

A simple program (in BASIC) to determine the 4's and 0's follows: 

220 REM COMPUTE FACTORED PHI'S AND THETA'S 
230 PH(1)=.45#: W=(l#-PH(l))/SQR(PH(l)):TH(l)=O 
240 FOR N=2 TO M 

260 TH(N)'=~#+.~#*w*(w-SQR(W*W+~#)) 
270 W=W/R 
280 P H ( N ) = ~ # + . ~ # *  W*(W-SQR(W*W+~#)) 
290 NEXT N 

where M is the number of lead-lag stages to be used, R is the frequency ratio, W is 
the angular frequencies of the corresponding 4's and e's, and .45 is the initial 4 selected 
from trial and error. The symbol "#" indicates double precision constants. All of the 
calculations should be carried out in double precision except for storing the final time 
series. The filter equations then become: 

300 FORN=lTONTOTAL 
350 Y(l)=PH(l)*Yl(l)+P 
360 FOR 1=2 TO M 

, , 
390 NEXT I' ' 
400 Y 1 (M) =Y (M) 
410 NEXT N 

where NTOTAL is the total number of points to be generated. The inputs to the filter 
are the P-values, which are assumed to be random, normal deviates with zero mean and 
a variance determined by the particular simulation (unity, here). The filter output is the 
output of the Mth, or final stage: Y(M). Limited storage space may restrict how many 
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values can be stored, but the filter can recursively generate as many values as desired if 
all the values do not need to be retained in memory. A simple and reliable algorithm to 
convert uniformly distributed random numbers on (0,l) to normally distributed numbers 
with zero mean and unit variance is: 

310 P=O 
320 FOR K=l  TO 6 
330 P=P+RND(l)-RND(1) 
340 NEXT K 

where each pass through this recursive routine produces a random, normal deviate. 

To generate a million values would overflow the storage available in many computers. For 
the simulations reported here, every 100th value of X(N) (the finite integral of Y(M)) was 
stored for the long r-values. For the smaller T-values only parts of the total one million 
data points were used. By always using the same seed for the random noise generator, 
one can extract various segments of the same noise sample without having all data points 
stored at one time. 

The filter corresponding to lines 300 to 420 could, in principle, be replaced with an 
ARIMA(M,M-1 model by eliminating all the intermediate Y(i) and Yl( i )  variables. Un- 
fortunately, suc 1 a procedure requires many significant digits, and even double precision 
is totally inadequate. The form given here is adequate for most personal computers, but 
we recommend using double precision anyway. 

Greenhall141 has pointed out that the usual convention of starting out a filter with all 
past values set to zero causes systematic errors for all time. In effect, the flicker filter 
has significant auto-correlations for all lags in the data set and the initial zeros produce 
a non-representative sample. Greenhall went on to provide an initialization algorithm 
which circumvents these problems. Appendix B gives a computer program to calculate the 
initialization parameters. 

Figure 3 shows the Allan variance obtained from the (finite) integral of a data set of a 
million flicker simulated numbers using the algorithms presented in this paper. That is, 
we simulated the phase of an oscillator perturbed by flicker noise modulating the oscillator 
frequency. Since the available computer could not handle a million points all at once, 
sample Allan variances were obtained by storing every one-hundredth phase data point, 
for calculating the Allan variances for the larger r-values. For flicker FM, the Allan variance 
is constant15], namely f x s(f) x log(4), where S(f) is the spectral density of y (Figs. 2 and 
5 ) .  

THEMANDELBROTGENERATOR 

The Mandelbrot generator['] sums a set of independent, band limited noises to approximate 
"Fractional Brownian Motions". This can be realized on a digital computer by filtering a 
white noise with a simple low pass filter: 

The knee in the Bode-plot (Fig. 4) for the K-th low pass filter is located at: 

That is, the low frequency asymptote of the filter transfer function has a power gain of 
(I - and the coefficient, 4, corresponding to the frequency at the knee is given by 
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Eq.(2), above (also see Appendix A). To simulate flicker noise, we want the knees of the 
various noises to fall along the curve S = llf. 
As done in the treatment of the Barnes-Jarvis model, one first selects a frequency ratio, 
R, for successive noises, and then calculates the corresponding 4 coefficient using Eq. (2) 
for each noise starting from the first frequency. The initial (highest) frequency is found by 
trial and error using the power spectral densities as calculated in Appendix A. Equating 
the low-frequency asymptote of each noise to llf, one obtains the needed variance of the 
input white noise for each noise. The program used to calculate the 4's and amplitudes, 
A(n), is shown below: 

610 FOR N = l  TO M 
620 W=CO/(RAN) 
630 PH(N)=1#+.5#*W*(W-SQR(W*W+4#)) 
640 A(N)=SQR(.S#*(l#-PH(N))*SQR(PH(N))) 
650 P=O:FOR J = l  TO 6:P=P+RND(lbRND 1):NEXT J 

\ I 

Y(N)=P*A(N)/SQR(l#-PH(N)^2) ' 
NEXT N 

Lines 650 and 660 initialize each low pass filter to a random variable whose variance is 
the variance of its steady state output. This takes care of turn-on transients similar to 
the problems in the Barnes-Jarvis model. The coefficient CO is chosen by observing the 
theoretical spectrum at the higher frequencies, near the Nyquist limit, 1/2T (see Fig. 5 
and Appendix A). 

The program which generates the flicker sample is shown below: 

750 FOR N=l TO NTOTAL 
760 Z=O 
770 FOR 1=1 TO M 
780 P=O:FOR J = l  TO 6:P=P+RND(l)-RND(1):NEXT J 
790 *PH(I)+A(I)*P 
800 
8 10 NEXT I 
820 NEXT N 

The output flicker noise is Z as determined recursively for each value of N. Figure 5 plots 
the theoretical power spectral density times f on a log-log plot similar to Fig. 2. 

CONCLUSION 

Large samples (a million or more values) of pseudo-random noise which approximates a 
flicker (or llf) noise can be generated by rather simple recursive functions. The range 
and goodness of fit can be selected to meet any specific need and the methods are not 
compromised by the number of significant digits carried on most computers. The Barnes- 
Jarvis method and the Mandelbrot method seem to provide equally good results. 

In regard to speed, however, the Barnes-Jarvis method was measured to be over 4 times 
faster than the Mandelbrot method running six-stage filters of comparable performance. 
The difference in speed is probably due to the fact that the Mandelbrot method needs 
one random number per stage per point, while the Barnes-Jarvis method requires only 
one random number per point regardless of the number of stages. The Barnes-Jarvis 
method ran in excess of 300 points per second using a compiled BASIC program in a 
micro-computer. 
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Table 1. ALF (i j) 

RATIO = 2 PHI(1) = .3 

RATIO = 2.5 PHI(1) = .325 

RATIO = 3 PHI(1) = .35 

RATIO = 3.5 PHI(1) = .375 



RATIO = 4 PHI(1) = .4 

RATIO = 4.5 PHI(1) = .425 

RATIO = 5 PHI(1) = .45 

RATIO = 6 PHI(1) = .5 



APPENDIX A 

An "exponential" filter or simple low pass filter has the following form: 

where o < 4 < 1 ,  and an are random normal deviates with zero mean and variance u2.  An 
equivalent representation[*] of this filter in terms of the impulse response function is: 

Yn = an + dan-I + $2an-l + . . . 
Taking the expectation value of the square of (A2) one obtains: 

since the an are independent. The initial conditions for such a low pass filter (e.g., as used 
in the Mandelbrot method), can be taken as a random normal deviate with this variance. 
This is the source of lines 650 and 660 in the text. 

Box and Jenkins [31 also show that the PSD of Y (n) is given by: 

At f = 0, the 
frequency for 
for cos(2af)  in 

value S(O) is just 20: / [ (1 -  40)2]  and we define the cutoff frequency as that 
which s ( f )  = s ( 0 ) / 2 .  Using the first two terms in the Taylor series expansion 
(A4), one obtains: 

or, equivalently: 

Also, (see lines 260, 280, and 630): 

1 
0: = p&(l-  60) (A7)  

The power spectral density (PSD) of the Barnes-Jarvis filter at (angular) frequency W can 
be calculated using the following routine: 

500 S=2# 
510 FOR J = l  TO M 
520 
530 
540 NEXT J 

and for the Mandelbrot method the PSD can be calculated using: 

810 FOR'J=I TO M 
820 S=S+~#*(A(J)^~)/(~#+PH(J)^~-~#*PH(J)*C~S(W)) 
830 NEXT J 

where S is the PSD. S is multiplied by W / 2 a  for Figures 2 and 5 to display the errors from 
a perfect l / f  noise. The PH(J)'s and TH(J)'s are those calculated for the appropriate 
noises. 



APPENDIX B 
Initialization of a Barnes-Jarvis Filter 

Following GreenhallI4l, the covariance program (in BASIC) can be written in the form: 

1210 ' COVARIANCE PROGRAM 
1220 FOR N=l TO M 
1230 C(l,N)=l#:D(l,N)=l# 
1240 FOR 1=2 TO M 
1250 Il=I-l:F=ALF(Il)-BET(N) 
1260 IF I o N  THEN F=F/ (BET(I1)-BET(N)) 
1270 C(1,N) =C(Il,N)*F 
1280 F=ALF(Il)+BET(N)-ALF(Il)*BET(N) 
1290 F=F/ (BET(Il)+BET(N)-BET(Il)*BET(N)) 
1300 D(I,N)=D(Il,N) /F  
1310 NEXT I 
1320 NEXT N 
1330 9 

1340 FOR 1=1 TO M 
1350 FOR J=l  TO M 
1360 SUM=O# 
1370 FOR N=l TO I 
1380 F=c(I,N)*D(J,N)/(BET(J)+BET(N)-BET(J)*BET(N)) 
1390 IF I o N  THEN F=F/(BET(I)-BET(N)) 
1400 SUM=SUM+F 
1410 NEXT N 

RZ(I,J)=SUM*(ALF(I)-BET(I))*(ALF(J)-BET(J)) 
NEXT J 

1440 NEXT I 

where BET(1) = 1 - PH(1) and ALF(1) = 1 - TH(1). The desired covariance matrix is 
RZ(1,J). 

The Choleski square root of the covariance matrix can be computed with the following 
BASIC program: 

1450 ' CHOLESKI SQUARE ROOT 
1460 FOR 1=1 TO M 
1470 G=RZ(I,I) 
1480 FOR K=l  TO 1-1 
1490 G=G-ALZ(1,K) ̂ 2 
1500 NEXT K 
1510 ALZ(I,I)=SQR(G) 
1520 FOR J=I+l  TO M 
1530 TEMP=RZ(J,I) 
1540 FOR K=l  TO 1-1 
1550 TEMP=TEMP-ALZ(I,K)*ALZ(J,K) 
1560 NEXT K 

ALZ(J,I)=TEMP/ALZ(I,I) 
NEXT J - - 

1570 NEXT I 
The lower triangular matrix, ALZ(J,I), contains the coefficients needed to initialize the 
Yl(1)'s. Table B1 lists the coefficients for some ratios and initial PHI(1) values. For fewer 
than 10 stages the matrix can simply be truncated. 

The next program initializes the Barnes-Jarvis filter: 



1600 ' INITIALIZATION 
1610 FOR 1=0 TO M 
1620 P=O:FOR J = l  TO 6:P=P+RND(l)-RND(1):NEXT J 
1630 U(1) =P 
1640 NEXT I 
1650 Yl(O)=U(O) 
1660 9 

1670 FOR 1=1 TO M 
1680 Z (I) =O 
1690 FOR J=l TO I 
1700 Z(I)=ALZ(I,J)*U(J)+Z(I) 
1710 NEXT J 
1720 Yl(I)=Y l(1-l)+Z(I) 
1730 NEXT I 

The components Y1(1), ..., Yl(M) are used in the first step of the filter (Lines 300 - 410). 
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