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Abstract 

In contrast to common practise in many other physical sciences, the statistical analysis 
of PTTI data is often based directly on time domain techniques rather than on frequency 
domain (spectral analysis) techniques. The predominant analysis technique in the PTTI 
community, namely, the two-sample (or Allan) variance, is often used to indirectly infer 
frequency domain properties under the assumption of a power-law spectrum. Here we 
argue that direct use and estimation of the spectrum of PTTI data have a number of 
potential advantages. First, spectral estimators are typically scaled independent chi-square 
random variables with a known number of degrees of freedom. These properties allow easy 
computation of the variance of estimators of various quantities that are direct functions 
of the spectrum. Second, the effect of detrending data can be quantified more easily 
in the frequency domain than in the time domain. Third, the variance of estimators of 
the two-sample variance can be expressed in terms of readily estimated spectral density 
functions. This allows one to generate confidence intervals for the two-sample variance 
without explicitly assuming a statistical model. Fourth, there exist tractable statistical 
techniques for estimating the spectrum from data sampled on an unequally spaced grid or 
from data corrupted by a small proportion of additive outliers. The two-sample variance 
cannot be readily generalized to these situations. 

1. Introduction 

Statistical techniques for the analysis of data indexed by time fall roughly into two 
different categories, namely, time domain techniques and frequency domain techniques. 
Although the correlation structure of Gaussian stationary processes can be completely 
characterized in either the time domain through the autocovariance function (acvf) or the 
frequency domain through the spectrum (or, equivalently, the spectral density function 
(sdf) when it exists), the preferred characterization for statistical analysis is the spectrum 
for three reasons. First, the spectrum is much easier to interpret physically than the acvf 
since the former can be related simply to power output from a narrow band-pass filter. 
Second, the statistical properties of estimators of the spectrum are much more tractable 
than those of the acvf. Third, the effect of linear operations is more easily expressed for 
the spectrum than for the acvf. 



Precise time and time interval (PTTI) data is often analyzed using a specialized time 
domain technique called the two-sample (or Allan) variance. Part of the appeal of this 
technique lies in the fact that it can be used to infer the sdf for processes with a power-law 
sdf. It is thus a time domain technique with a frequency domain orientation which allows it 
to be physically interpreted. However, the sampling properties of the standard estimators 
of the two-sample variance are as undesirable as those of the acvf the variance and 
covariance of the estimators depend in a complicated way upon the true sdf, the specific 
sampling times involved, and the number of data points available. This hampers the 
ability of data analysts to make meaningful statistical statements about certain quantities 
of interest. In addition, the effect of linear operations on data are difficult to express with 
the two-sample variance. 

The central theme of this paper is that, since the two-sample variance is closely related 
to the frequency domain, use of direct frequency domain techniques (spectral analysis) 
both complements and extends the usefulness of the two-sample variance in a number of 
areas where sole reliance on the latter can lead to difficult statistical problems. After we 
establish some notation and review the relationship of the two-sample variance to the sdf 
in Section 2, we give examples of the usefulness and complementary nature of frequency 
domain techniques in the sections that follow. 

2. The Two-Sample Variance and the Spectral Density Function 

Let us assume that we observe a portion y l ,  y2, . . ., y~ of length N of {yt}, a real- 
valued stationary process with sdf given by Sy(.). Here yt represents the value of the 
process at time t .  The sampling time between observations is assumed for convenience to 
be 1, which sets the Nyquist frequency at 112. By definition, the two-sample variance for 
sampling time T is given by 

where . r-1 

Thus og(2; T) is simply half the variance of 

a process whose sdf SZ(,)(.) can be readily related to Sy(-) by using the theory of linear 
filters : 

Figure 1 shows G,(.) for T = 1, 4, and 16. Since 



0.000 0.125 0.250 0.375 0.500 
frequency (cycles/unit time) 

Figure 1. G,(.) for T = 1 (dashed line), T = 4 (dotted line), and T = 16 (solid line). The five 
vertical lines in the upper left portion of the plot mark the positions of the frequencies 1/64, 1/32, 
1/16, I/$, and 114. Note that GI(-)  is concentrated mainly in the frequency interval [1/4, 1/21; 
G4(-), in [1/16, 1/81; and GIG(-),  in [1/64, 1/32]. 

we see that 0:(2; 1) is related to the output power of a board-band high-pass filter applied 
to {y,). For larger values of T, 0:(2; T) is related approximately to the output power of 
a band-pass filter over the frequency range from 1/47 to 1 1 2 ~ .  The width and central 
frequency of the filter, namely, 1/4r and 3 / 8 ~ ,  both decrease as T increases. 

One simple estimator of the two-sample variance is related to an sdf estimation scheme 
called a pilot analysis (see Section 7.3.2 of Jenkins and Watts (1968)). Th' is estimator is 
defined by 

4 M 

where M is the largest integer less than or equal to N / ~ T .  If N = 2p for some integer p, it 
can be shown that the sample variance can be decomposed in terms of 3 ( 2 ;  T) as follows: 

1 N P-1 1 N - 

- N C ( y t  - v ) ~  = C 5:(2; 2* ) ,  where y = C 9'. 
t= l  k=O t=l 

A pilot analysis consists of using f bi(2;  2') to estimate the sdf in the frequency range 

[ 1 / 2 ~ + ~ ,  1/2'+l]. 
As Jenkins and Watts point out, this sdf estimation scheme is quite crude and should 

not be regarded as a replacement for more serious estimators. The original motivation for 
using pilot analyses was that, to quote Jenkins and Watts, " . . . [they] are easily carried 
out without using an automatic computer . . .," a feature that was important a t  the time 



the authors wrote their book in the 1960's but is of limited value today. From a statistical 
point of view, a pilot analysis is a poor estimate of the sdf both because of its inherent 
lack of resolution and because of the significant correlation between, say, 8:(2; and 
8: (2; 2*+'). This correlation arises because of the significant overlap of the regions of 
the sdf that determine 0:(2; 2') and 0: (2; 2'+'). The overlap reflects the fact that the 
transfer function associated with the two-sample variance is only a crude approximation 
to that of a band-pass filter (see Figure 1). One of the main reasons for the popularity of 
spectral analysis is that good sdf estimators are approximately uncorrelated for estimates 
separated in frequency by typically a multiple of 1/N. This allows a data analyst to make 
statements about the confidence of quantities calculated from spectral estimates without 
overly restrictive assumptions. As we argue in subsequent sections of this paper, this does 
not hold for the two-sample variance. 

Nonetheless, the two-sample variance is important because it tells us which portions 
of the sdf are important for measuring frequency stability in the time domain for various 
sampling times. Accordingly, we follow Rutman (1978) and define a band-pass variance:  

(the factor of 2 above is due to the fact that Sy (-) is a two-sided sdf). The rationale behind 
considering this quantity is that, whereas 0:(2; 7) has an associated transfer function that 
is approx imate ly  that of a band-pass filter for the interval [1/47, 1/27]? the transfer function 
for P;(r) is exact ly  so. We may derive estimators for P:(T) by appropriate integration of a 
good quality sdf estimator. In contrast to estimators of 0:(2; r), the statistical properties 
of estimators of P:(T) are tractable under rather mild assumptions. This is due simply 
to the fact that the latter can be estimated directly in terms of sdf estimators, which are 
approximately uncorrelated on a known grid of frequencies. 

As pointed out by Rutman (1978), the two-sample variance and the band-pass variance 
are closely related. Thus, for a power-law sdf of the form 

a quick calculation shows that the band-pass variance mimics the two-sample variance in 
that 

where C, depends only on a and not 7. In contrast to the two-sample variance, the band- 
pass variance is well-defined for all values of a. Moreover, in consideration of Equation (1) 
and the fact that the variance o$ of { y,) can be expressed as 

it is plausible that, for certain power-law processes, 
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Figure 2. Comparison of the first moment (bias) properties of the two-sample variance and the 
band-pass variance after removal of linear drift. The solid lines show a y ( 2 ;  T )  (left plot) and & ( T )  
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(right plot) as functions of T .  The solid squares show the square roots of the expected values of 
estimates of 0: (2 ;  T )  (left plot) and P ~ ( T )  (right plot) for drift-corrected data. 

3. The Frequency Drift Problem 

A common problem in the analysis of PTTI data is the presence of linear (or quadratic) 
drifts in frequency. For example, suppose that we are interested in the stability properties 
of {yt}, but that we actually observe 

y ~ r a + b t + y t ,  t = 1 ,  ..., N ,  

where a and b are unknown parameters. It is well known that, for b large enough, use of 
the original y i  data yields a upwardly biased estimate of the two-sample variance a t ( 2 ;  T ) .  

The usual solution to this problem is to estimate b by, say, 

- Y;V -y; b = 
N - 1  ' 

and to estimate 0: (2 ;  T )  using 
I it r y, - bt 

in place of the or2inal data. It can be shown (see Percival (1983))  that this yields a 
downwardly biaskd estimator of 4 ( 2 ;  T )  for T close to N / 2 .  For example, the solid line in 
the left-hand   lot of Figure 2 shows a y ( 2 ;  T )  as a function of T for a random walk process, 

I 
whereas the solid squares show the square root of the expected value of the usual estimators 
of o i ( 2 ;  T )  for N = 128 observations after a drift component has been removed from the 
data. For T = 64, the expected value of the drift-corrected estimator of the two-sample 
variance is about a factor of 2 below the true value. It can be shown that this bias increases 
when a quadratic term is removed instead of just a linear term. There appears to be no 
easy way to correct for this bias using time domain techniques. 

7 3  
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This bias problem can be lessened by use of the band-pass variance. In this approach 
we consider the sdf S,(.) of the first difference of our original data, namely, 

This differencing operation reduces the linear drift term to a constant offset, yet it allows 
us to recover Sy(-) since the sdf's of { z t )  and { y t )  can be related using the theory of linear 
filters: 

We may estimate the band-pass variance by first estimating S,(.) directly and then Sy ( a )  

indirectly using the above equation (followed by an appropriate integration). To return to 
the example sited previously, the solid line in right-hand plot of Figure 2 shows Py(r) as a 
function of T, and the solid square dots, the square root of the expected value of a frequency 
domain based estimator of P ~ ( T )  based upon { z t )  We see that the estimator is essentially 
unbiased for this special important case of a random walk process. If we compare the solid 
lines in the two plots in Figure 2, we see that there is a systematic difference of about 
fi between ,By ( r )  and cry (2; T) as suggested by Display (2). (This procedure has not been 
thoroughly tested for processes other than a random walk, but there are reasons to believe 
that the bias reduction will be quite good in other cases. Quadratic terms can be similarly 
dealt with by using second differences of the original data.). 

Why do estimators of the band-pass variance have better first moment properties 
than those of the two-sample variance? Since the band-pass variance is more closely tied 
to the frequency domain, linear operations such as differencing are analytically tractable 
- a feature that does not hold for the two-sample variance. In addition to the better 
first moment properties, it can be shown that the band-pass variance also has tractable 
second moment properties in the drift removal problem (again in contrast to the two-sample 
variance). 

4. Estimation of Parameters of Power-Law Processes 

Suppose that { y t  ) is a power-law process with sdf 

where the exponent a and coefficient ha are unknown parameters. These must be estimated 
from available data, say, y ~ ,  . . ., y ~ ,  where, for notational convenience, we assume the 
N = 2 P  for some integer p. We compare here two different estimation schemes, one based 
on the two-sample variance, and the other, directly on the sdf. 

The two-sample variance scheme is based on the well-known result that, to a good 
approximation, 



where A, depends only on a and h, but not T. If we estimate og(2; T) by 8:(2; T ) ,  we 
may use the following regression model to estimate a and h, indirectly: 

where 
k u t= logd : (2 ;2 ) ;  S ~ l o g A , ;  1 3 1 - ( a + l ) ;  v k ~ k l o g 2 ;  

and {qk) is a sequence of error terms. Unfortunately the statistical properties of the error 
terms do not match those of classical regression models: both E{qk) and var{qk) depend 
upon k and the unknown exponent a, and cov{qj, qk) # 0 (particularly for j = k f 1). 
Nonetheless, it is still possible to obtain ordinary least squares estimates of S and P (and 
hence A, and a )  from the above model; it is not possible to obtain meaningful measures 
of the statistical variability of these estimates directly from the model. 

The sdf estimation method is based upon unsmoothed (but possibly tapered) direct 
estimates sY( f k )  of the sdf over a grid of frequencies { f k )  (typically f k  = BIN, but certain 
data tapers may require the use of a slightly coarser grid). From Equation (cc) we can 
formulate the following regression model: 

where 
WkI1ogg,(fk);  y ~ l o g h , ;  Vk=lOgfk; 

{uk) is a sequence of error terms; and M is the number of frequencies in the grid (usually 
M = N/2). Because spectral estimators are typically independently distributed scaled 
chi-square random variables with a known number of degrees of freedom, the statistical 
properties of the error sequence are close to those of classical regression models: E{vk) # 0, 
but it is a constant that depends only on the number of degrees of freedom of the spectral 
estimator; var{vk) is a known constant; and cov{vj, uk) z 0 for j # k. Thus, it is possible 
to obtain not only ordinary least squares estimates of y (and hence A,) and a, but also 
meaningful internal and external measures of the statistical variability of these estimates. 
(Further details on this estimation technique can be found in a thesis by Mohr (1981).) 

The relative merits of these two estimation schemes were investigated by generating 
a thousand different realizations of length N = 128 of a Gaussian white noise process with 
variance 1. For this special case, 

a = O ;  S Y ( f ) = l ;  and O ; ( ~ ; T ) = T - ' ,  

so Equation (dd) holds exactly. The average of the thousand different estimates of a for the 
two methods indicated that, while the sdf method was essentially unbiased (& = -0.002), 
the two-sample variance method was significantly biased (& = 0.24 instead of 0). This bias 
can be attributed to the fact that E{qp-l) in Model (5) is quite different from E{qk) for 
k < p - 1. When this term is dropped from the regression model, the properties of the 
two-sample variance estimate improved considerably (& = 0.01). The real advantage of 
the sdf approach, however, is that, in contrast to the two-sample variance, one can readily 
calculate the variance of the estimated parameters directly from the regression model. 



5. Estimation of Variance of Two-Sample Variance Estimators 

The usual approach to estimating the variance of two-sample variance estimators re- 
quires one to specify a particular model for the data (see Lesage and Audoin (1977) and 
Yoshimura (1978)). This is unsatisfactory from both a data analytic and an operational 
point of view. The usual procedure seems to be to, first, plot the estimated two-sample 
variance as a function of T; second, make a judgement about what pure power-law model 
seems appropriate for various sampling times; and third, calculate the variance estimate 
based upon this assumed model. The data analytic problem here is that the theoretical 
works referenced above assume an a prior known pure power-law model and not a compos- 
ite power-law model determined from the data; the operational problem is the difficulty in 
automating this procedure for use on a digit a1 computer. 

There is an alternative approach to this problem. It can be shown that, for large N, 
the variance of commonly used two-sample variance estimators can be expressed in terms 
of an integral involving the sdf of {yt). For example, suppose that we consider the fully 
overlapped estimator of the two sample variance: 

(using the notation of Section 2). If {yt) is a Gaussian process, it can be shown (see 
Percival (1983)) that 8:(2; T) is asymptotically normally distributed with mean 0:(2; T )  

and asymptotic variance 

Suppose that we estimate Sy(f) by 

where {ht) is a data taper normalized such that C h: = N. We may then estimate 
avar{Bi(2; T))  by replacing S,(f) with 3,(f) in Equation (6). The resulting integral may 
be computed either by an exact technique (using Parseval's theorem) or by numerical 
integration. Further work is needed to assess the usefulness of this technique (particularly 
for cases where N is small), but it is a promising automatic non-parametric approach for 
estimating var{8;(2; 7)). 

6. Detection of Periodic Components 

One of the chief uses of spectral analysis is in the detection of narrow-band enhance- 
ments of power. In PTTI data, these enhancements might be an indication of an unde- 
sirable environmental influence on an oscillator. Here we show with an artificial example 
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Figure 3. Effect of a narrow-band spectral component on the estimated two-sample variance and 
sdf. The two small plots in the upper left-hand corner show the original (top) and manipulated 
(bottom) clock data. The estimated two-sample variance for these series are shown, respectively, by 
the solid line and the solid squares in the upper right-hand plot; the corresponding estimated sdf's 
are shown, respectively, in the lower left-hand and right-hand plots. 

that a plot of the estimated two-sample variance at sampling times that are powers of two 
(a common practice) can completely fail to give any indication of narrow-band features in 
the data. This failure points out one of the chief dangers in sole use of the two-sample 
variance and argues for routine use of spectral analysis (particularly for exploratory data 
analysis). 

Our example concerns 1024 daily average fractional frequency deviates of a cesium 
beam atomic clock compared to a Naval Observatory clock time scale (upper left-hand plot 
of Figure 3). We have simulated a "weekend" environmental effect by adding 4 x 10-l4 to 

E- each deviate occurring on Saturday or Sunday. The manipulated data are plotted below 
the original data in Figure 3. There is no important visual difference between the two 
series. The estimated two-sample variances for the original and manipulated data are 



shown, respectively, as a solid line and solid squares in the upper right-hand plot. These 
are quite similar to each other. Tapered (but unsmoothed) estimates of the sdf of the 
original and manipulated data are shown, respectively, on the lower left-hand and right- 
hand plots. The two additional peaks are prominent in the right-hand plot. These occur 
at the fundamental frequency corresponding to a period of one week and at harmonics 
associated with that frequency. The "weekend" effect stands out prominently in the sdf 
but not the two-sample variance. 

It should be noted that, if the estimated two-sample variances were plotted for all 
possible values of r (instead of just for a logarithmically spaced subset as is usually done), 
the narrow-band feature would manifest itself as an oscillation in the one portion of the 
plot. This would be a tip-off to an experienced analyst that a narrow-band feature was 
present in the data, but it would be extremely difficult to determine the exact nature of 
the feature without the aid of the estimated sdf. 

7. Conclusions 

We have argued in this paper that direct use of frequency domain techniques can be 
lead to a qualitative improvement in the analysis of PTTI data. From the point of view of 
st atistical analysis, these improvements are mainly due, first, to the statistical nature of 
spectral estimators, which are (to a very good approximation) independent of each other on 
a known grid of frequencies, and, second, to the tractable response of the spectrum under 
linear filtering - neither of which are shared by the two-sample variance. Although the 
chief difference between the statistical properties of estimators based upon the spectrum 
and of those based upon the two-sample variance is that the former have more tractable 
second moment properties, there are some small (but important) improvements in first 
moment properties (see Sections 3 and 4). 

There is, however, a qualitative improvement that can be expected from a second point 
of view, namely, that of exploratory data analysis (EDA). For our purposes here, EDA can 
be regarded as the search for interesting (and perhaps unexpected) features in data. This 
aspect of spectral analysis was touched upon in Section 6. In fact, spectral analysis is a 
prime example of an EDA tool: Tukey (1984) has stated ". . . it was my experience with the 
practice of spectrum analysis that led to my recognition of the importance of exploration 
in more general data analysis." Because statistics such as the two-sample variance and 
the band-pass variance are broad-band summaries of spectral properties, they cannot be a 
substitute for spectral analysis in EDA. In the view of this author, one does not know that 
the two-sample or band-pass variance is a meaningful measure of oscillator performance 
until after a spectral analysis has been done. 

Let us close with a few remarks about the status of modern spectral analysis. A 
recent major advance in the subject of spectral estimation is the multiple orthogonal data 
taper approach due to Thomson (1982). This approach quantifies clearly the tradeoffs 
between resolution, bias and variance of spectral estimators. There is an extension of 
Thomson's approach (due to Bronez (1985)) that works for data collected at unequally 
spaced intervals. Chave, Thomson, and Anders (1987) give details on a robust spectrum 
estimation scheme which works well for data corrupted by a small portion (say, 10%) of 



additive outliers. Finally, with the advent of relatively low cost, yet powerful, personal 
computers (such as the Macintosh I1 and forthcoming versions of the IBM PS 11), the 
computational cost of doing spectral analysis should no longer present any problem. 
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QUESTIONS AND ANSWERS 

Mark Weiss, National Bureau of Standards: Can you say something about the confidence of 
the estimate of the spectrum versus the sigma tau curve. Do you get a better confidence 
on the power spectrum? Are there ways of improving the confidence level on the Fourier 
spectrum? 

Prof. Percival: Some of the work that Thompson did in '82 solved these questions. What 
he advocates is a multiple orthogonal data taper method. That sounds frightening but 
after you look at the work you ask why nobody thought of this before. Actually, somebody 
did think of it before-Lord Rayleigh, 100 years ago and his work has just now surfaced. It 
turns out that you can actually get very good estimates of the confidence on the spectrum 
and good bounds on what he terms the local bias and broad band bias. That is bias due 
to smearing out locally and bias due to components far away in frequency from the area 
that you are interested in. Spectral analysis has taken a real leap forward in the last five 
years due to this work. 

Mr. Weiss: Are you saying that is as good, or better? 

Prof. Percival: It would be hard to compare them because they are two different things, 
the sigma tau curve is one thing and the spectrum is another quantity altogether. Out 
at the n/2 case which is a X2 random variable which has two degrees of freedom. That is 
kind the fundamental, unsmoothed, sampling properties of the spectrum. Then it can't 
be any worse than the spectrum and I think that they might be better. The point is that 
with the spectrum you have tractable statistical properties, but with the Allan variance, 
because of the correlation between estimators, things tend to get very sticky when you try 
to combine things. 

Charles Greenhall, Jet Propulsion Laboratory: How does the Beta of tau depend on tau for 
white phase noise? Does it go as +? 

Prof. Percival: It would be the slope in the spectrum. It would be so whatever the 
slope is in the spectrum, it directly translates into the band pass variance. 

Mr. Greenhall: Yes, I was just thinking that for white phase and for flicker of phase, Beta 
of tau resembles more the modified Allan variance. 

Prof. Percival: It could. It could in some sense alleviate the need to use the modified sigma 
tau in some cases and the ordinary sigma tau in others because the bandpass variance is 
convergent for all alphas and has a unique signature for all alphas. There is no mapping 
of various power laws onto each other. 

Anthony Hewitt, General Electric: What is effect of outliers in the data in this kind of 
analysis? 

Prof. Percival: Again, there are some recent results which would help quite a bit. There is 
a very nice article by Chase, Thompson and Andrews in the JGR last January on robust 
estimation of the spectrum. As long as your data is not contaminated too badly, say at the 
level of 10% to 20% outliers, you can get good estimates of the spectrum in the presence 
of additive outliers. The tradeoff is that you have to use a blocking scheme or Welch type 
estimator, so that there is a loss of resolution. The loss in resolution is probably not too 
important for typical PTTI data, so those methods might be very attractive 


