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ABSTRACT 

In this paper, a formulation of the operative equations that 
might be eiiployed to filter measmements taken of an atomic 
clock are develom in an intuitive my. fighasis is upon 
making clear, in a practical example, concepts and matrix 
components that might otherwise appear somewhat abstract to the 
uninitiated in a formal derivation. 

Particular attention is given to the concept and calculation of 
the process noise required to process timing data in a Kalman 
filter. The author has tried to present the material in such a 
manner that a person with little or no experience could begin 
exprimenting with the use of a Kalman filter to process real or 
simulated timing data. 

r n R O W C T I O N  

This paper assumes a rudimentary understanding of the Kalman filter concept 
and algorithm. It's purpose is to extend that understanding through the 
intuitive development of a practical example. The example chosen is a 2-state 
(phase and frequency) filter to process time difference data between a subject 
clmk and a reference clcck. The reference is assumed perfect and the subject 
clock is assumed to be perturbed by white noise on it's frequency. How to 
include a white noise source on the frequency drift (random walk FPl) is an 
extension that will be developed but not includd in the full example. 

The behavior of a cesium clock system is, for the mst part, deterministic. 
However, random fluctuations in the on-going physical processes give rise to 
some measure of unpredictable behavior. It will k the function of the Kalman 
filter to make optimum estimates of the deterministic parameters (phase and 
frequency states) given measurements that are a function not only of these 
parameters but also of the perturbing noise source(s). This task is ideally 
suited for a Kalman filter. 

One practical reason for estimating deterministic parameters is to use those 
prameters to predict a clock's behavior. For example, this is the purpose of 
estimating satellite clock states at the blaster Control Station of the Global 
Positioning System (GPS). 

Prediction of a clock's behavior wlll generally always be in error for two 
reasons. First, even though given the best possible values for the 
deterministic parameters describing past behavior, one could not predict 
subsequent random motion. Second, the original estimates of the deterministic 
parameters must necessarily have been made in the presence of 



random behavior and are, themselves, subject to error. The function of the 
Kalman filter is to make an "optimum" estimate of the deterministic parameters 
based on whatever data is available in the belief that these will provide the 
best possible prediction under the circumstances. 

Included, additionally, as part of these circumstances is the user-specified 
"-el" which describes the dynamical relationships between the selected 
filter states together with a specification of the noise sources that are 
assumed to exist within the clock. It is very important that the model 
adequately represent the system under consideration in order to obtain the 
best possible result. The made1 is usually expressd very compactly in the 
form of a vector matrix differential equation. In the following section, the 
standard clock &el in state-space, vector-matrix notation will be examined. 

C L m K  MODEL 

Equation 1 is the matrix differential equation form of the clock rndel. X is 
the matrix vector of the states chosen to describe the deterministic behavior 
of the clock. In  our case, as previously stated, we have chosen phase and 
frquency. Call these states X l  and X2 respectively. N is a matrix vector of 
the noise sources we are identifying as the cause of random behavior. Call 
these N1 and N2. 

Equation (1) can expanded as: 

N is a matrix vector consisting of zero mean, white, normally distributed 
noise sources. In our example, white FlVI is being modeled, so the elements in 
the B matrix are set appropriately to reflect this m d e l .  

If random walk frquency were to be modeled, then N2 should be incorporated 
into the model (random walk frequency is generated from white noise on 
frequency drift) by setting the zero in the lower right-hand corner of the B 
matrix to a one. 

Performing the indicated matrix multiplication in equation (2 ) ,  a pair of 
differential equations are obtained: 





Notice that x(TO) has been simpli£ied to X(0). 

Performing the indicated multiplication gives: 

S(t) = X2(0) 

Expressing our state variables X 1  and X2 (phase and frequency) as T and T 

~ ( t )  = ~(0) + T(0)6t (6 )  

Intuitively we see that these equations are correct. quation (6) states that 
the phase at any time (t) is equal to the phase at an earlier time plus an 
accumulation due to the constant frequency offset. Equation (7) states that 
the frquency is constant. 

The next concern, in finding the solution to equation (I), is to consider it's 
nondeterministic term. The solution to this prt is a difficult integral, 
However the covariance of that integral is the quantity of interest (1). It 
is, itself, another integral, but one easily evaluated. Before examining it, a 
short discussion of it's physical significance is in order. 

The covariance matrix of the solution to the random part of the clock model 
specifies the uncertainty in the clock's output due to the white noise sources 
incorprated in the model. In other words, it is a statistical measure of the 
inability of the deterministic states to completely model the clock's 
behavior. This is precisely the quantity needed to "Q" the Kalman filter; or 
mre properly stated, it specifies the amount of "process noise" to be 
incorporated for each filter state. 

The solution to the r dom part of the clock model is: 
f $ 

J 

with covariance: t - S t  
/-t 

Jt-st 
Evaluation of this integral (Fq. 9) will specify the "Q's" required for t i~ch 
state in the filter. Because of its importance, the evaluation will be 
outlined for a mre general mdel incorporating three states (frequency drift 
is added) and a random forcing function (white noise) associated with each 
state. The appropriate choice of zeros in the A and B matrices will tailor 
these results for a particular application. 



Write B N (Eq 1) = 

I where S1, etc. are the standard deviations of the respective white noises in - 
the d e l .  In the previous developnent, the B matrix contained 1's which 
implid unit standard deviations. 

I 
By definition: G3.7 BN = E (BN (BN)') = B E(NN1) B1 

where E is the expectation and the prime indicates the matrix transpose. 

Assumina the noise sources to be uncorrelatd: 

where 6 indicates the Dirac delta function. 

So: 
v1 0 

m m  1; m 
0 v3 

where V1, etc., are the variances of the noise sources. 

Now 4 COV (BN) 0' is determined by performing the indicated multiplication. 
For the three state model, the transition mtrix d( f i t )  is: 

The r e s u l t  is: 

COV BN +(6t)' = M l  + M26t + M36tZ -I-M46t3 + ~ 5 6 t 4  (10) 

The mtrices M1 through M 5  are: 



Finally, equation (10) is integrated over the interval 6t, from (t4t to t) to 
obtain the Q(6t) matrix required to optimally tune the klman filter. The 
result is : 

This same process, applied to the simpler model chosen for our example, gives: 

By inspection one sees that non-zero process noise (Q) is applied to the phase 
state only and that its magnitude is proportional to time: specifically, the 
time between measurement updates to the filter. In other words, while the 
last measurement will have presumably decreased the uncertainty in the phase 
state over what it had been previously, the uncertainty should start growing 
again until the next measurement. Some sense of the dynamics of a Kalman 
filter can be had at this pint by imagining that due to a loss in some 
measurements, a longer than normal time elapses between the latest and the 
previous measurement. Because of the relatively larger value for "Q"(6t 
increased) and hence growth in uncertainty in the state, the Kalman gain will 
be correspondingly larger than otherwise for the state. This, in turn, causes 
the delayed measurement to have a larger impact on the estimate of this state 
than under the postulated "normal conditions". 

It is this process that gives rise to the idea of a kalmar~ filter "memory", 
and the fact that it is effected by the filter process noise. Generally larger 
values of process noise tend to weight the latest measurements more heavily. 



The mriverse is that without the incorporation of adequate process noise, too 
little weight is given to the latest measurements. Suffice it to say, the 
choice of "Q's" is critical and can mean the difference between optimum and 
worthless results in a given situation. It is for this reason that some 
attention has been given to the concept of filter "Q'ing" in this discussion. 

The state variables (X) to he estimted have already been established as the 
phase and frequency (X1 and X2). Let it further be specified at this point 
that these are "epch states". That is to say, a phase and. frequency will be 
estimated for a specifid time in the pst such that when propagatd to 
current time by the transition matrix, one obtains the corresponding 
"current-time" states. It can be shown that epoch and current-time state 
formulations result in identical estimates of the current-time states (3). If 
there is an advantage to estimating epoch states it is the relative ease with 
which predictions can be made relative to a fixed vis a variable epoch. 

Use of e m  states introduces a conceptual subtlety that initially caused 
this author some difficulty in formulating the filter algorithm under 
discussion. It has to do with the state-transition matrix which has already 

I &en introduced and describd validly as the model for the time-evolution of 
states. But note that epoch states, themselves, are generally constant by 
rlefinition. Continuous reestimtion is required due to the stochastic 
behavior of the clock, but in the absence of data the transition matrix for 
the epoch states is unity. There are, in other words, two transition 
matrices: the first descriks the time evolutiori of states and was used to 
calculate the process noise. The second propagates epoch states between 
measurements. bbre importantly, it propagates the epodh state cmvariance 
matrix between measurements-a process called the "time update" and the first 
step in the Kalman cycle. 

This process propagates the epoch state covariance from its computed value 
immediately following the last measurement update to the time of the next 
measurement. Call these covariances P(k+) and P(k-tl-) respectively. In this 
notation kf means immediately after the last measurement update, k+l- means at 
the time of but before processing the next measurement. The time update 
~mns i s t s  of computing P(k-t-1-1 given P(k+) from the last k h a n  cycle. 

I The inverse of the transition matrix means that the mccess noise added to 

1 
account for the growth in uncertainty during the interval hetween measurements 
is propagated back to e p h .  In our example pre and post multiplication by 
the inverse and the inverse of the transpose of the transition matrix leaves 
the Q matrix unchanged. If there had been a noise term associated with the 
frquency rate term (random walk frequency) this would not be the case. Note 

r 
that the transition mtrix normally encountered with the propagation of the P 
matrix itself is missing. This is, of course, because it is unity as 
discussed almve. 



The three remaining steps in the K a l m  cycle are to: 

compute the gain 
make the new estimate (measurement update) 
compute the new state covariance 

Once this is complete, the cycle starts again with the time update as 
described in the previous paragraph. 

Before writing the three equations that describe these steps only two new 
matrices need to be intrduced. They are the measurement noise covariance 
matrix (R)  and the measurement matrix ( H ) .  

The measurement noise matrix for our example is simply a 1 x 1 with its single 
element q u a 1  to the variance of the measurement error. 

The measurement matrix (H)  is the matrix that defines the relationship between 
the measurement and the states being estimated. In our example, the phase 
difference between a subject clmk and a reference clock is being measured. 
The measurement is the state X1 propagated to current time (the time of the 
measurement). The transition matrix provides the relationship, namely, 
equation (6) which in mtrix form is written: 

Where A t  is the elapsed time since e p h .  

Letting T(t) = Z - v, where Z is the measureinent incorporating a measurement 
error (v) and defining I 1 A t 1 = H 

which is the standard form for the measurement equation in the Jhlman 
algorithm . 
Notice that in order for equation (12) to be correct X must be the true clock 
states and not the estimated states. We expect some error in the estimte or 
else there would be no need to update it. The quantity Z-Elk (where the hat 
indicates the estimate) plays a major role in the measurement update process. 
This residual carries the information relating to the difference between the 
actual measurement and measurement predicted from existing estimates. 

To complete the Kalman cycle the operative equations are: 

K = P(k+l-) H ' C  R P(k+l-) R '  + RI-1 (compute gain) 

k(k+l) = k(k) + K Z - &(k) (update estimate) 

P(k+l+) = [I - K El] P(k+l-) (u@ate covariance) 



These equations are easily implement& on a small computer. The largest 
matrix is a 2 X 2 and the entire algorithm is reducible to a few algebraic 
mnipulations. Performance of the filter under a variety of conditions can be 
empirically evaluated. Simulated data can be created by integrating the 
output of a Gaussian random number generator where the numbers are interpretd 
as white noise on frequency. The standard deviation of the number generator 
should be chosen to appropriately represent the noise characteristics of the 
clock king simulated.. This follows from the sample time chosen and the Allen 
variance that characterizes the clock. While the d e l  chosen for this 
tutorial is over-simplified for a real situation, it should serve quite well 
as a first step in developing insight and exprience with the use of Kalman 
filters to process timing data. 

The two-state Kalman filter described in this paper was implemented and a 
simulated set of 500 data pints processed with three different values of 
process noise. The magnitudes of the process noise were chosen to represent 
under, over, and optimum "Q'ing" respectively. In all other respects, 
including the input data, the runs were identical. The input data samples, 
(representing simulated phase difference measurements) were generated by 
integrating (summing) over a set of normally distributed random numbers. The 
resulting filter source data is shown plotted in Figure 3. The "true" states, 
in this instance, are zero for both phase and frequency since the only source 
of variation in the data is the random component. The filter states were 
initialized with values of 20ns and + 1 part in 10 E 13 respectively. The 
covariance matrix was initialized with the square of these values. 

The resulting phase estimates for the three cases cited are shown plottd in 
Figure 1. Clearly, increasing the "Q" increases the variation in the phase 
estimate. In accordance with the development of the "Q" rmtrix for our 
simplified noise &el, process noise is added to the phase state only, and it 
follows that this should happen. Perhaps it is not quite as obvious that just 
the reverse should happen to the frequency estimate even though it is not 
being "Q'ed". It is because the filter insures that the time history of the 
estimated "state pair" is such that it will always closely predict the 
measurement data (via the measurement matrix). Increasing the range over 
which the phase estimate is allowed (or forced) to vary, will result in a 
decrease in the variation required of the companion state. The plots of the 
frequency state estimates in Figure 2 confirm this. In fact, t m  much process 
noise for the phase state prevent& the frgiuency estimate from changing at 
all. The important general observation is that the choice of "Q" for even a 
single state can effect the estimates of other states. 
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OUESTIONS AND ANSWERS 

DR. WEISS: 

UnderQ'ing is assuming a sigma too large or too small? 

MR. VARNUM: 

UnderQ'ing means that Q'ing is too small. I have under Q'd the 
phase state. 

DR. WEISS: 

So you are assuming that the sigma is smaller than it actually is for 
the variance of the process. 

MR. VARNlJM: 

That's right. With the result that if you look in the filter, the 
uncertainty in that estimate is collapsing, and the gain is going down 
and less and less can be done to vary that state and it will tend to 
converge on a constant value, which you really don't want to happen 
for the phase if you have modeled the frequency as a constant. But 
underQ'd generally means you have put too little process noise in and 
overQ'd too much. 




