REAL TIME SYNCHRONIZATION VIA PASSIVE TELEVISION TRANSMISSION by # Jean D. Lavanceau and Diane Carroll Mr. Lavanceau and Mrs. Carroll are with the Time Service Division, U.S. Naval Observatory, Washington, D.C. # 1.0 ABSTRACT/INTRODUCTION A method to utilize television transmission in a passive mode for the real time synchronization of clocks has been developed and is presented herewith. A demonstration is currently being conducted in Washington, D.C. to show that the time of day referenced to the U.S. Naval Observatory (USNO) Master Clock (MC) can be derived independently by timing stations monitoring the transmission from the local TV station WTTG (Channel 5). The accuracy and precision that can be achieved with this method is in the submicrosecond region. ## 2.0 BACKGROUND # 2.1 Passive System for Differential Time Transfer A passive method using television transmission for precise clock time comparisons was first conceived and demonstrated in Europe by an experiment conducted in November 1965. Since then, this method ¹ Tolman, J., V. Ptacek, A. Soucek, and R. Stecher, (1967), "Microsecond Clock Comparison by Means of TV Synchronizing Pulses," <u>IEEE Transactions on Instrumentation and Measurement</u>, Volume IM-16, No.3, September 1967, pp. 247-254. NOTE READING A AND READING B ARE THE TIMES OF ARRIVAL OF THE SAME RECEIVED VIDEO PORTION (LINE) READ SIMULTANEOUSLY AGAINST THE RESPECTIVE CLOCKS. Figure 1. "PASSIVE" SYSTEM FOR DIFFERENTIAL TIME TRANSFER (EUROPEAN SYSTEM) has been widely used in some European countries and with some success in the U.S.A. to monitor time differences between clocks located in various laboratories. 2,3,4 The method consists of recognizing and identifying a portion of a video transmission as a time marker (line 10 is used in the U.S.) and of measuring its time of arrival simultaneously at remote locations using precise clocks. Successive differential measurements against the participating clocks will give a measure of the time divergence of the clocks. The fact that the circuit and propagation delays have submicrosecond stability and that the TV time marker can be defined with nanosecond resolution permits relative time transfer measurements to be made with submicrosecond precision. In this passive system, relative time transfers can be made provided that: - Readings are taken simultaneously. - Readings are exchanged after the fact between monitoring clocks. # 2.2 Active System for Real Time Transfer Another approach for precise time transfer via television transmissions was demonstrated in 1970 by the U.S. National Bureau of Standards. 5 This method consisted of actually transmitting time information Parcelier, P., (1969), "Developpement des synchronisations de temps par la television," <u>Proceedings Internat. Conf. Chrommetry (Paris)</u>, Series A-26, 16-20 September 1969, pp. 1-6. ³ Parcelier, P. (1970), "Time Synchronization by Television," 1970 Conference on Precision Electromagnetic Measurement, <u>IEEE Transactions on Instrumentation and Measurement</u>, Volume IM-19, No. 4, November 1970, pp. 233-238. ⁴ Davis, D.D., Bryon E. Blair, and James F. Barnaba, (1971), "Long-Term Continental U.S. Timing System via Television Networks," <u>IEEE Spectrum</u>, August 1971, pp. 41-52. ⁵ Koide, F.K. and E.J. Vignone, (1971), "TV Time Synchronization in the Western U.S.," <u>EID-Electronic Instrumentation</u>, October 1971, pp. 26-31. Figure 2. "ACTIVE" SYSTEM FOR REAL TIME TRANSFER (NBS LINE 16 AND 1 SYSTEM) via the television media. For that purpose, a precise clock and clock encoder were located at the TV transmitter and clock decoders and television receivers were placed at remote locations where precise time transfers were to be made. In this active system, real time transfers can be made provided that: - Clock and clock encoder are available at the TV transmitter. - Clock decoders are placed at time monitoring sites. - Actual time transmissions are secured. - A "portion" of the video transmission must be available for insertion of the time information. - FCC authorization is required. # 3.0 DESCRIPTION OF THE REAL TIME SYNCHRONIZATION TRANSFER METHOD A passive method for real time transfer via television transmissions has been conceived and proposed by the USNO. This method can be used to set clocks at remote locations, independently, and in an absolute sense, to within a few nanoseconds of a reference clock. The technique consists of time positioning the video transmissions from a TV station such that certain television horizontal pulses are transmitted in synchronization with particular seconds of a UTC scale referenced to the U.S. Naval Observatory Master Clock. By stabilizing the 3.579545 megahertz TV color subcarrier frequency of a TV transmitter and by phase shifting it, it is possible to synchronize the TV transmissions by forcing a coincidence between an emitted horizontal line (line 10 odd was selected as a reference time marker to keep it compatible with existing receiving equipment) and a one-second pulse from a reference clock (the USNO MC itself was selected for this purpose). This subcarrier frequency is also used to maintain proper timing of the horizontal and vertical pulses. Because of the unique TV frame repetition rate, this coincidence for the U.S. television system (33.36666666...ms), will occur every 1001 seconds exactly (16^M 41^S). By establishing an arbitrary time of coincidence, it is possible to calculate the dates (times) at which subsequent coincidences will occur between one pulse per second time marks from the USNO Master Clock and the emitted odd horizontal line 10. Such times of coincidence have been computed by assuming an initial coincidence at 0000 UT 1 January 1958 and are given for the second half of the year 1971 in the appendix as "Time of Coincidence (TOC) Ephemeris Reference Tables for Television Transmissions Synchronized to the USNO Master Clock." These tables have the same format as those presently used for Loran-C. Table 1* gives the first TV line 10 odd TOC for each day in hours, minutes, and seconds. Table 2 gives all relative TOC's in a day -- in hours, minutes, and seconds. By adding the relative TOC's (Table 2) to the first TOC of any day (Table 1), one obtains the absolute TOC's for that day. Table 3 gives the time differences for every second of the time interval between the relative TOC's of Table 2 (1001 seconds) and the subsequent TV odd line 10 pulse. A clock located near a local television stations, whose transmissions are disciplined to the USNO Master Clock, can be set to or accurately measured against the reference clock by using the TOC tables. The procedure involved is similar to the one used for the synchronization of clocks via the Loran-C system. A knowledge of the geographical location of the clock relative to the TV transmitting antenna is necessary in order to compute the propagation time delay. This delay can also be determined initially by transport of clocks. ^{*} Tables 1, 2 and 3 are located in the appendix. The clock time must be set or known to within 16 milliseconds (half of the TV frame period). This can be done by using the HF standard time signal transmissions from CHU, WWV, NSS, etc. Using the receiving system shown in Figure 3, the procedure listed below should be followed: - Take a series of measurements during a synchronized period of TV transmissions, recording: - (a) The time differences between the one-second pulse from the local clock and the received horizontal line 10 odd pulse (output of the line 10 pulse discriminator). - (b) The dates (times) at which those readings are taken. - Using the TOC tables (see appendix), reduce the data as shown in the example below: Example: Let the local clock be a clock (Clock A) located at a monitoring station A. Suppose measurements are taken on 21 October 1971. (a) From the measurements: (e.g., as printed by a line printer) | Hr. | Min. | Sec. | <u>μs</u> | |-----|------|------|-----------| | 16 | 51 | 17 | 9121.25 | | 16 | 51 | 16 | 8121.24 | | 16 | 51 | 15 | 7121.26 | | 16 | 51 | 14 | 6121.25 | | 16 | 51 | 13 | 5121.25 | (b) From the TOC Tables: From Table 1 $$0^{H}$$ 11^{M} 48^{S} From Table 2 $+ 16^{H}$ 24^{M} 19^{S} Time of last coincidence: 16^{H} 36^{M} 7^{S} Figure 3. RECEIVING SYSTEM FOR TV TIME TRANSFER Selecting arbitrarily the measurement taken at $16^{\rm H}~51^{\rm M}~14^{\rm S}$, one calculates the time which has elapsed between that measurement and the last coincidence: (c) From Table 3 one finds that $15^{\rm M}$ $7^{\rm S}$ corresponds to $6,100.000~\mu{\rm s}$. This means that the first horizontal line 10 odd pulse following 16^H 51^M 14^S was transmitted on 21 October 1971 at 16^H 51^M 14^S .006100000, (or 6,100.000 μ s after the 14th second). That very same horizontal line was received at 16^H 51^M 14^S .00612125 (or 6,121.25 μ s after the 14th second). Assume that the propagation time for the path between the transmitting antenna of the TV station and the TV receiving antenna at the Monitoring Station A is 18.00 μ s. One finds, by subtraction, that Clock A was in error with respect to the TV transmissions by: (6121.25 μ s - 18.00 μ s) - 6100.00 μ s = 3.25 μ s. This can be expressed as follows: At 1651 UT 21 October 1971, UTC (Clock A) - UTC (TV) = 3.25 s. # 4.0 EXPERIMENT On 23 September 1971, the U.S. Naval Observatory installed an instrumentation systems, which was conceived and assembled at the Observatory, in the master TV control room of the local Metromedia station WTTG (Channel 5). A cesium portable clock set to the USNO Master Clock was carried to the TV studio at this time. This system was set up as shown in Figure 4. All instruments were connected to a 24-hour service power source. The digital clock was synchronized to the USNO MC via the cesium portable clock. The 3.579545 megahertz frequency output of the synthesizer was phase shifted so that the time
difference between the 1 pps from the digital clock and the emitted horizontal line 10 odd pulse output of the TV discriminator agreed with the values listed in the TV TOC tables (see appendix). The video transmissions, thus synchronized at the TV studio by using the TOC tables, were checked at the U.S. Naval Observatory by measuring the time of arrival of the same horizontal line. No attempt was made at that time to accurately set the video emissions from WTTG to the U.S. Naval Observatory Master Clock. This could have been done by applying necessary corrections for all instrumentation delays. The daily time differences between the USNO Master Clock and the WTTG emitted horizontal line 10 (odd frame) are listed in Table I and plotted in Figure 5. Some daily measurements were made during live transmissions and others during film transmissions. Transmitter delays were measured to vary by about 0.5 microsecond when programs were switched between those two sources. This and the fact that daily measurements recorded were not from averaged readings, accounts for the large variations shown on the graph (Figure 5). Precautions can easily be taken during measurements to prevent this from happening. The path delay at the transmitter, between the oscillator and the transmitting antenna will be kept constant by using the automatic line of instrumentation proposed below. Note: The oscillator was free running during the period of the experiment. No corrections were applied to the phase of the 3.57945 megahertz synthesized frequency nor were any corrections applied to the frequency or the phase of the oscillator. Figure 4. EQUIPMENT INSTALLED AT THE TV TRANSMITTER FOR THE EXPERIMENT Table I. DAILY TIME DIFFERENCES UTC (USNO MC) - UTC (WTTG)* | DATE 1971 | UTC (USNO MC) - UTC (WTTG) * | |--------------|------------------------------| | SEPTEMBER 28 | 3. 22 µs | | 2 9 | 3.15 | | 30 | 3.18 | | OCTOBER 1 | 3. 1 8 | | 2 | | | 3 | | | 4 | 3. 80 | | 5 | 3.65 | | 6 | 3.24 | | 7 | 3.60 | | 8 | 3. 13 | | 9 | | | 10 | | | 11 | | | 12 | 3,00 | | 13 | 2,86 | | 14 | 2.80 | | 1 5 | 2,82 | | 16 | | | 17 | | | 18 | 2.86 | | 19 | 2.84 | | 20 | 2.72 | | 21 | 2.71 | | 22 | 2.71 | | 23 | | | 24 | | | 2 5 | | | 26 | 2.69 | | 27 | 2,63 | | 28 - | 2.10 | | 29 | 2, 56 | | 30 | | | 31 | | | NOVEMBER 1 | 2.73 | | 2 | 2, 63 | | 3 | 2.49 | | , 4 | 2.48 | | 5
6 | 2, 24 | | 6 | | | 7 | | ^{*} UTC (WTTG) is the emitted odd horizontal line 10 of phase controlled transmissions from WTTG. Figure 5. EMITTED ODD HORIZONTAL LINE 10 OF PHASE-CONTROLLED TRANSMISSIONS FROM WTTG VERSUS THE U.S. NAVAL OBSERVATORY MASTER CLOCK # 5.0 EQUIPMENT USED FOR THE EXPERIMENT # 5.1 TV Transmitter (WTTG) The equipment installed by the USNO in the WTTG TV control room consists of a cesium oscillator and digital clock, a digital phase shifter and TV subcarrier frequency synthesizer, a time interval counter, and a TV receiver and line 10 pulse discriminator (see Figure 6). The five megahertz output of the cesium oscillator is connected to the input of the synthesizer and digital phase shifter unit which generates the 3.579545 megahertz color subcarrier frequency for the TV transmitter. The TV receiver and line 10 pulse discriminator monitor the TV transmissions and generate a pulse every odd horizontal line 10 transmitted. This pulse is compared every second to the output of the clock on the time interval counter. A completely automatic line of instrumentation could be developed for use at the TV transmitter. Presently, by using the system installed by the USNO, approximately 50 percent of all transmissions from WTTG are phase-controlled, such that the video is transmitted on time with respect to the USNO MC by positioning line 10 as explained above. That percentage could be increased substantially, however, by installing in the TV studio a phase shifter which could automatically correct the phase of the subcarrier frequency when video transmissions step away from the synchronized position. Certain sources of programs will generate this condition. A prototype for an automatic phase detector, phase shifter, and video positioner is presently being developed and should be evaluated in the next few months. # 5.2 Monitoring Site (U.S. Naval Observatory) The instrumentation system at the USNO consists of a TV receiver and line 10 pulse discriminator, a time interval counter, and a Figure 6. EQUIPMENT AT TELEVISION TRANSMITTING STUDIO המרדעססונונו printer. The TV receiver and line 10 pulse discriminator monitors the TV transmissions and generates a pulse every odd horizontal line 10 received. This pulse can be compared at any second to the output of the USNO Master Clock and the time of arrival of this TV reference pulse is read on the time interval counter (see Figure 7). Similarly, improved TV time receiving systems can be built to give a direct presentation of the time difference in microseconds between a local clock and a "TV transmitter clock." This can be done by compensating for the propagation delays and by normalizing one of the clocks to the other, such that their respective time marks can be compared on a time interval counter to give an actual display of the time difference between the two clocks. A prototype of such an apparatus is also being developed for evaluation. # 6.0 CONTROL OF TRANSMISSIONS BY A REFERENCE CLOCK The correct time position of the video transmissions can be secured by a monitor station having the reference clock for the system. In the Washington, D.C. area, the USNO is that control station and the reference clock to the TV transmitter is the USNO Master Clock (see Figure 8). As long as the clock and phase control equipment installed at the TV station performs normally, the only parameter which may have to be adjusted is the frequency of the oscillator located at the TV studio. The effective frequency of this oscillator must be the same as the frequency of the reference clock (USNO MC). Any frequency offset of the TV oscillator from this clock will cause the position of the video transmissions to shift slowly away from it. A time agreement between the TV and USNO clocks can be secured by issuing to the station minute periodic phase step corrections which will be computed at the USNO. This could be accomplished automatically by installing at the TV studio a programmable microphase stepper, the rate of which will be controlled by the USNO (see Figure 7. TIME MONITORING RECEIVING SYSTEM Figure 8. DISTRIBUTION SYSTEM AND CONTROL Figure 9). Incidentally, such an apparatus is commercially available to give programmable phase corrections at an average rate as small as ten femtoseconds/sec (0.00000010 microseconds/sec). Also, a "disciplined oscillator" could replace the cesium oscillator installed at the TV studio, thus effecting a consequent cost reduction. # 7.0 EXTENDED COVERAGE Any timing system located within the reception area of time-controlled TV transmissions emitted from a local TV station can, of course, be synchronized using the method described above. A large number of time-controlled TV transmissions could be set up over the continental United States simply by installing at the TV transmitter similar types of equipment as shown in Figure 9. The major problem would be to keep all clock systems installed at the TV studios on time and on frequency with the reference clock. However, this could be implemented in many cases by the stations linking together (line-of-sight or microwave link) to keep their local oscillator and clock synchronized to each other, or by installing precise time standards which could be "visited" periodically to keep the offset (time and frequency) within acceptable limits. These "visits" could be done by portable clocks, fly-over techniques, satellite time transfers, Loran-C, and others. It is possible and could be proposed to link the East Coast and West Coast U.S. TV stations to the USNO Master Clock via the SATCOM system. Time transfer with submicrosecond accuracy is presently and routinely being done between the SATCOM terminals located in Brandywine, Maryland; Camp Roberts, California; and others. Since the USNO has access to this SATCOM network through the Brandywine terminal, the system could be configured as shown in Figure 10. Selected TV stations located in Guam, Hawaii, the Philippines, Alaska, etc. could be linked to the USNO Master Clock simply and economically by using the same approach. Figure 9. PROGRAMMABLE MICROPHASE STEPPER AT TV STUDIO EXTENDED COVERAGE - LINKING EAST AND WEST COAST BY SATCOM SYSTEM Figure 10. # 8.0 APPLICATIONS Numerous applications could be found and implemented if accurate time and frequency could be obtained easily and inexpensively from the transmissions of existing TV stations. This could be the case, if the method of video phase-control described were to be used to discipline key TV transmissions. Some of these applications could certainly be found in the fields of precise navigation, traffic control and transportation, collision avoidance systems, real time computer systems, geodesy, the TV industry, and high speed communications, just to name a few. # 9.0 CONCLUSION The method presented herein introduces a new approach to the use of existing television transmissions for PTTI applications. It is a system which: - Permits real time transfer to be made independently to submicrosecond accuracy - Does not require any special TV transmissions (channel capacity) - Improves stability of TV emissions - Does not require special licensing - Is simple to use - Could be developed into the most economical system available for real time applications - Is compatible with existing receiving equipment A summary of the characteristics of the three TV transfer methods is discussed in Figure 11. # 10.0 ACKNOWLEDGMENT The authors wish to express their gratitude to the personnel of the WTTG Metromedia television station and, in particular, to Albert Harmon #
"PASSIVE" SYSTEM FOR DIFFERENTIAL TIME TRANSFER (EUROPEAN SYSTEM) IN USE IN EUROPE AND IN THE USA # "ACTIVE" SYSTEM FOR REAL TIME TRANSFER (NBS LINE I6 OR I) PROPOSED AND TESTED # "PASSIVE" SYSTEM FOR REAL TIME TRANSFER (USNO SYSTEM) PROPOSED AND TESTED # REQUIREMENTS: - READINGS MUST BE TAKEN SIMUL— TANEOUSLY BY THE TIMING STATIONS TO BE SYNCHRONIZED. - DATA MUST BE EXCHANGED AFTER THE FACT BETWEEN THE MONITORING STATIONS. - LINE 10 PULSE DISCRIMINATOR MUST BE INSTALLED AT TIME MONITORING STATIONS. ACTUAL TIME INFORMATION FCC AUTHORIZATION TO TRANSMIT IS REQUIRED. MUST BE TRANSMITTED. PROPAGATION AND EQUIPMENT DELAYS MUST BE KNOWN FOR ALL COOPERATING STATIONS. STALLED AT TIME MONITOR TV RECEIVER MUST BE IN- # REQUIREMENTS: SYNTHESIZER MUST BE IN— STALLED AT TV TRANSMITTER. CODER MUST BE INSTALLED AT TV TRANSMITTER. CLOCK AND CLOCK EN- REQUIREMENTS: LINE 10 PULSE DISCRIMINATOR MUST BE INSTALLED AT TIME MONITOR STATION. # STATION. CLOCK DECODER MUST BE INSTALLED AT TIME MONITOR STATION. # CAPABILITIES: PERMITS REAL TIME TRANS-FER TO SUBMICROSECOND ACCURACY. PERMITS DIFFERENTIAL TIME SYN-CHRONIZATION TO SUBMICROSECOND PRECISION. CAPABILITIES: GIVES HOURS. MINUTES AND SECONDS IN ADDITION TO SYNCHRONIZATION. # CAPABILITIES: - PERMITS REAL TIME TRANS-FER TO SUBMICROSECOND ACCURACY. - PERMITS USE OF EXISTING "LINE 10" RECEIVERS. - CAN BE IMPLEMENTED ANY— WHERE WITHOUT SPECIAL LICENSING. # Figure 11. COMPARISON OF TV TIME TRANSFER METHODS and Robert Swartwout for their cooperation and helpfulness throughout the experiment. They also wish to thank Austron, Tracor, and Timing Systems, Inc. for their help with the equipment. Thanks are also due to many colleagues at the USNO, in particular, to James McDermott for his assistance in preparing the instrumentation. # 11.0 ADDITIONAL REFERENCES "NBS Experimental System Ready for Network Tests," <u>Broadcast</u> <u>Engineering</u>, October 1971, pp. 12-13. "NBS Time and Frequency Services Bulletin," (Monthly Publication), Frequency-Time Broadcast Services Section, Time and Frequency Division, NBS, Boulder, Colorado. Racciu, Antonio, (1969), "Digital Separator for TV Field Synchronizing Pulses," Istituto Elettrotecnics Nazionale, Torino, 30 December 1969. "USNO Daily Phase Values - Series 4" (Weekly Publication), Time Service Division, U.S. Naval Observatory, Washington, D.C. USNO Series 14, No. 5, (1970), "Demonstration of Frequency - Time Dissemination via Television," Time Service Division, U.S. Naval Observatory, Washington, D.C., 3 June 1970. ## APPENDIX 26 August 1971 Time of Coincidence (TOC) ephemeris Reference tables for Television Transmissions synchronized to the USNO Master Clock. # 1. INTRODUCTION: Some Video transmissions are time positioned such that certain Television horizontal pulses - identified as line 10 odd - are transmitted in synchronization with particular seconds of a UTC scale referenced to the U. S. Naval Observatory Master Clock. ## 2. DISCUSSION: The times of coincidence of TV line 10 odd pulses with second pulses of the U. S. Naval Observatory Master Clock are found for each day by adding the values given in Table 2 to the values given in Table 1. $\underline{\text{Table 1}}$ gives the first TV line 10 odd TOC for each day in hours, minutes and seconds. $\underline{\text{Table 2}}$ gives all relative TOC's in a day in hours, minutes and seconds. By adding the relative TOC's (Table 2) to the first TOC of any selected day (Table 1) one obtains the absolute TOC's for the day. # Example 1: Assume that an operator monitoring a Television transmission desires to make a synchronization check between the station clock and the TV synchronized transmissions at about 1930 UT 19 September 1971. From Table 2, the values near 1930 UT are: | H | М | S | |----|----|----| | 19 | 11 | 09 | | 19 | 27 | 50 | | 19 | 44 | 31 | These values added to the value from Table 1 listed for the 19 September 1971: give the times of coincidence between the beginning of TV line 10 odd pulses and U. S. Naval Observatory Master Clock one-pulse-per-second, namely: | H | M | S | |----------|----------|----------| | 19
19 | 23
40 | 35
16 | | 19 | 56 | 57 | <u>Table 3</u> gives the time differences between every second of the time interval between the relative TOC's of Table 2 (1001 seconds) and the subsequent TV line 10 odd pulse. Between the times of coincidence as given by Tables 1 and 2, the time difference between any one-pulse-per-second of the U. S. Naval Observatory Master Clock and the immediately following line 10 odd pulse of a synchronized TV transmission can be determined by using Table 3. # Example 2: Assume that such a time difference is required at 19^h 30^m 00^s UT on 19 September 1971. For Tables 1 and 2 we found that the last TOC occurred at 19^h 23^m 35^s (see example 1). Therefore, the time at which the time measurement is required occurs 6M 25 sec after that last TOC. From Table 3 we note that the value corresponding to 6 minutes 25 seconds is 17966.667 microseconds. Therefore, the TV line 10 odd pulse immediately following the 19 $^{\rm h}$ 30 $^{\rm m}$ 00 UT one-pulse-per-second of the U. S. Naval Observatory Master Clock on 19 September 1971 will be transmitted at 19 $^{\rm h}$ 30 $^{\rm m}$ 0.017966667 sec. TABLE 1 FIRST TOC FOR EACH DAY # TIMES OF COINCIDENCE (NULL) EPHEMERIS TELEVISION LINE 10 ODD SYNC 33,366.666 MICROSECONDS/PERIOD | DATE | TIME | DATE | TIME | DATE | TIME | |-------|-------------|-------------|-------------|-------|---------| | 1971 | H M S | 1971 | H M S | 1971 | H M S | | | | | | | | | OCT 1 | 0 16 22 | NOV 1 | 0 4 17 | DEC 1 | 0 14 7 | | 2 | 0 11 8 | 2 | 0 15 44 | 2 | 0 8 53 | | 3 | 0 5 54 | 3 | 0 10 30 | 3 | 0 3 39 | | 4 | 0 0 40 | 4 | 0 5 16 | 4 | C 15 6 | | 5 | 0 12 7 | 5 | 0 0 2 | 5 | C 9 52 | | 6 | 0 6 53 | 6 | 0 11 29 | 6 | C 4 38 | | 7 | 0 1 39 | 7 | 0 6 15 | 77_ | 0 16 5 | | 8 | 0 13 6 | 8 | 0 1 1 | 8 | 0 10 51 | | 9 | 0 7 52 | 9 | 0 12 28 | 9 | 0 5 37 | | 10 | 0 2 38 | 10 | 0 7 14 | 1 C | 0 C 23 | | 11 | 0 14 5 | 11 | 0 2 0 | 11 | C 11 50 | | 12 | 0 8 51 | 12 | 0 13 27 | 12 | 0 6 36 | | 13 | 0 3 37 | 13 | 0 8 13 | 13 | 0 1 22 | | 14 | 0 15 4 | 14 | 0 2 59 | 14 | 0 12 49 | | 15 | 0 9 50 | 15 | 0 14 26 | 15 | 0 7 35 | | 16 | 0 4 36 | 16 | 0 9 12 | 16 | 0 2 21 | | 17 | 0 16 3 | 17 | 0 3 58 | 17 | 0 13 48 | | 18 | 0 10 49 | 18 | 0 15 25 | 18 | 0 8 34 | | 19 | 0 5 35 | 19 | 0 10 11 | 19 | 0 3 20 | | 20 | 0 0 21 | 2C | 0 4 57 | 20 | 0 14 47 | | 21 | 0 11 48 | 21 | 0 16 24 | 21 | 0 9 33 | | 22 | 0 6 34 | 22 | 0 11 10 | 22 | 0 4 19 | | 23 | 0 1 20 | 23 | 0 5 56 | 23 | 0 15 46 | | 24 | 0 12 47 | 24 | 0 0 42 | 24 | 0 10 32 | | 25 | 0 7 33 | 25 | 0 12 9 | 25 | 0 5 18 | | 26 | 0 2 19 | 26 | 0 6 55 | 26 | 0 0 4 | | 27 | 0 13 46 | 27 | 0 1 41 | 27 | 0 11 31 | | 28 | 0 8 32 | 28 | 0 13 8 | 28 | 0 6 17 | | 29 | 0 3 18 | 29 | 0 7 54 | 29 | 0 1 3 | | 30 | 0 14 45 | 30 | 0 2 40 | 30 | 0 12 30 | | 31 | 0 9 31 | _ • | | 31 | 0 7 16 | | | | | | | | TABLE 1 FIRST TOC FOR EACH DAY # TIMES OF CUINCIDENCE (NULL) EPHEMERIS TELEVISION LINE 10 DDD SYNC 33,666.666 MICROSECONDS/PERIOD | JAN 1 0 2 2 FEB 1 0 6 38 MAR 1 0 5 1 2 0 13 29 2 0 1 24 2 0 16 28 3 0 8 15 3 0 12 51 3 0 11 14 4 0 3 1 4 0 7 37 4 0 6 0 0 11 14 4 0 3 1 4 0 7 37 4 0 6 0 12 13 7 0 4 0 7 0 8 6 7 0 6 0 12 13 7 0 4 0 7 0 8 3 22 8 0 1 45 9 0 13 12 13 1 11 14 14 9 0 13 12 11 13 1 14 14 </th <th>DATE</th> <th>TIME</th> <th>DATE</th> <th>TIME</th> <th>DATE</th> <th>TIME</th> | DATE | TIME | DATE | TIME | DATE | TIME | |---|---|---|--|---|--|---| | | 1972 | H M S | 1972 | H M S | 1972 | H M S
| | | JAN 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
12
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 0 13 29
0 8 15
0 3 1
0 14 28
0 9 14
0 4 0
0 15 27
0 10 13
0 4 59
0 16 26
0 11 12
0 5 58
0 0 44
0 12 11
0 6 57
0 1 43
0 13 10
0 7 56
0 2 42
0 14 9
0 8 55
0 3 41
0 15 8
0 9 54
0 4 40
0 16 53
0 5 39 | FEB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 0 1 24
0 12 51
0 7 37
0 2 23
0 13 50
0 8 36
0 3 22
0 14 49
0 9 35
0 4 21
0 15 48
0 10 34
0 5 20
0 0 6
0 11 33
0 6 19
0 1 2 32
0 7 18
0 2 4
0 13 31
0 8 17
0 3 3
0 14 30
0 9 16
0 4 2
0 15 29 | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 0 16 28
0 11 14
0 6 0
0 0 46
0 12 13
0 6 59
0 1 45
0 13 12
0 7 58
0 2 44
0 14 11
0 8 57
0 3 43
0 15 10
0 9 56
0 4 42
0 16 9
0 10 55
0 5 41
0 0 27
0 11 54
0 6 40
0 1 26
0 12 53
0 7 39
0 2 25
0 13 52
0 8 38 | TABLE 1 FIRST TOC FOR EACH DAY # TIMES OF COINCIDENCE (NULL) EPHEMERIS TELEVISION LINE 10 ODD SYNC 33,666.666 MICROSECONDS/PERIOD | DATE | TIME | DATE | TIME | DATE | TIME | |-------|---------|-------|---------|-------|---------| | 1972 | H M S | 1972 | H M S | 1972 | H M S | | | | | | | | | APR 1 | 0 9 37 | MAY 1 | 0 2 46 | JUN 1 | 0 7 22 | | 2 | 0 4 23 | 2 | 0 14 13 | 2 | 0 2 8 | | 3 | ú 15 50 | 3 | 0 8 59 | 3 | 0 13 35 | | 4 | ე 10 36 | 4 | 0 3 45 | 4 | 0 8 21 | | . 5 | 0 5 22 | 5 | 0 15 12 | 5 | 0 3 7 | | 6 | 0 0 8 | 6 | 0 9 58 | 6 | 0 14 34 | | 7 | 0 11 35 | 7 | 0 4 44 | 7 | 0 9 20 | | 8 | 0 6 21 | 8 | 0 16 11 | 8 | 0 4 5 | | 9 | 0 1 7 | 9 | 0 10 57 | 9 | 0 15 33 | | 10 | 0 12 34 | 10 | 0 5 43 | 10 | 0 10 19 | | 11 | 0 7 20 | 11 | 0 0 29 | 11 | 0 5 5 | | 12 | 0 2 6 | 12 | 0 11 56 | 12 | 0 16 32 | | 13 | 0 13 33 | 13 | 0 6 42 | 1.3 | 0 11 18 | | 14 | 0 8 19 | 14 | 0 1 28 | 14 | 0 6 4 | | 15 | 0 3 5 | 15 | 0 12 55 | 15 | 0 0 50 | | 16 | 0 14 32 | 16 | 0 7 41 | 16 | 0 12 17 | | 17 | 0 9 18 | 17 | 0 2 27 | 17 | 0 7 3 | | 18 | 0 4 4 | 18 | 0 13 54 | 18 | 0 1 49 | | 19 | 0 15 31 | 19 | 0 8 40 | 19 | 0 13 16 | | 20 | 0 10 17 | 20 | 0 3 26 | 2 C | 0 8 2 | | 21 | () 5 3 | 21 | 0 14 53 | 21 | 0 2 48 | | 22 | 0 16 30 | 22 | 0 9 39 | 22 | 0 14 15 | | 23 | 0 11 16 | 23 | 0 4 25 | 23 | 0 9 1 | | 24 | C 6 2 | 24 | 0 15 52 | 24 | 0 3 47 | | 25 | 0 0 48 | 25 | 0 10 38 | 25 | 0 15 14 | | 26 | 0 12 15 | 26 | 0 5 24 | 26 | 0 10 0 | | 27 | 0 7 1 | 27 | 0 0 10 | 27 | 0 4 46 | | 28 | 0 1 47 | 28 | 0 11 37 | 28 | 0 16 13 | | 29 | 0 13 14 | 29 | 0 6 23 | 2.9 | 0 10 59 | | 30 | 0 8 0 | 30 | 0 1 9 | 30 | 0 5 45 | | | | 31 | 0 12 36 | | | | | | | | | | # TABLE 2 # ALL TOC'S IN A DAY # TIMES OF COINCIDENCE (NULL) EPHEMERIS # TELEVISION LINE 10 000 SYNC 33,366.666 MICROSECONDS/PERIOD | | H. W. 2. | H | H TM 'S | |--|--------------------|---------------------|--| | | 0 0 0 | 11 7 20 | 22 14 40 | | | 0 16 41 | 11 24 1 | 22 31 21 | | 1 14 14 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 33 22 | 11 40 42 | 22 48 2 | | | 0 50 3 | 11 57 23 | 23 4 43 | | * | 1 6 44 | 12 14 4 | 23 21 24 | | | 1 23 25 | 12 30 45 | 23 38 5 | | • | 1 40 6 | 12 47 26 | 23 54 46 | | | 1 56 47 | 13 4 7 | | | a the color defend on the management of the | 2 13 28 | 13 20 48 | A CONTRACTOR OF THE | | | 2 30 9 | 13 37 29 | | | 1 m 4 m 1 m | 2 46 50 | 13 54 10 | | | | 3 3 31 | 14 10 51 | | | | 3 20 12 | 14 27 32 | | | and the state of t | 3 36 53 | 14 44 13 | Control of the Contro | | | 3 53 34 | 15 0 54 | | | * 128 D | 4 10 15 | 15 17 35 | · · · · · · · · · · · · · · · · · · · | | | 4 26 56 | 15 34 16 | , | | | 4 43 37 | 15 50 57
16 7 38 | | | | 5 0 18
5 16 59 | 16 7 38 | • | | A | 5 33 40 | 16 41 0 | The second secon | | | 5 50 21 | 16 57 41 | | | ************************************** | 6 7 2 | 17 14 22 | <u> </u> | | | 6 23 43 | 17 31 3 | | | | 6 40 24 | 17 47 44 | | | | 6 57 5 | 18 4 25 | | | | 7 13 46 | 18 21 6 | The second secon | | | 7 30 27 | 18 37 47 | • | | and the second of o | 7 47 8 | 18 54 28 | | | | 8 3 49 | 19 11 9 | | | | 8 20 30 | 19 27 50 | | | | 8 37 11 | 19 44 31 | | | | 8 53 52 | 20 1 12 | • | | | 9 10 33 | 20 17 53 | | | | 9 27 14 | 20 34 34 | | | | 9 43 55
10 0 36 | 20 51 15
21 7 56 | | | | 10 17 17 | 21 7 36 21 24 37 | _ | | | 10 33 58 | 21 41 18 | | | | 10 50 39 | 21 57 59 | | | | 10 20 27 | | • | | - | | | | TABLE 3 INTERPOLATIONS FOR ALL SECONDS BETWEEN TOC'S # TELEVISION LINE 10 ODD SYNC 33,366.666 MICRUSECUNDS/PERIOD | | | | | | | | | | | | | |----------|------------|---------------------|----------|---------------|-------------|-----|-------------|-----------|---|-----|-----------| | M | S | (کیر) | μ | S | (کیر) | H | <u>s</u> | (کیر) | M | S | ys) | | o | 1 | 1000-000 | 0 | 51 | 17633.333 | 1 | 41 | 900.000 | 2 | 31 | 17533.333 | | 0 | <u> </u> | 2000.000 | 0 | | 18633.333 | I | | 1900.000 | | | 18533.333 | | 0 | 3 | 3000.00v | 0 | | 19633.333 | | 43 | 2900.000 | | | 19533.333 | | 3 | 4 | 4000.003 | | 54 | 20633.333 | - 1 | 44 | 3900.000 | | | 20533.333 | | ٥ | 5 | 5000.000 | Ó | | 21633.333 | ì | 45 | 4900.000 | | | 21533.333 | | 0 | ~~~ | 6000.000 | <u>ਰ</u> | 56 | 22633.333 | T | 46 | 5900.000 | | | 22533.333 | | 0 | 7 | 7000.000 | 0 | 57 | 23633.333 | 1 | 47 | 6900.000 | | | 23533.333 | | Ü | 8 | 8000.000 | 0 | 58 | 24633.333 | 1 | 48 | 7900.000 | 2 | 38 | | | 0 | 9 | 9000.000 | 0 | 59 | 25633.333 | 1 | 49 | 8900.000 | 2 | 39 | 25533.333 | | 0 | TJ | 10000.000 | | . 0 | 26633.333 | I | 50 | 9900.000 | |
 26533.333 | | 0 | 11 | 11000.000 | 1 | 1 | 27633.333 | 1 | 51 | 10900.000 | | | 27533.333 | | 0 | 12 | 12000.000 | 1 | 2 | 28633.333 | 1 | | 11900.000 | | | 28533.333 | |) | 13 | 13000.000 | 1 | 3 | | 1 | | 12900.000 | | | 29533.333 | | 0 | 14 | 14000.000 | - T | 4 | 30633.333 | 1 | | 13900.000 | | | 30533.333 | | 0 | 15 | 15000.000 | 1 | 5 | 31633.333 | 1 | 55 | 14900.000 | | | 31533.333 | | 0 | 12 | 16000.000 | I | -6 | 32633.333 | Ī | 36 | 15900.000 | | | 32533.333 | | J | 17 | 17000.000 | 1 | 7 | 266.667 | 1 | | 16900.000 | 2 | 47 | 166.667 | | 0 | 18 | T80000000 | T | 8 | 1266.667 | | 58 | 17900.000 | | 48 | 1166.667 | | 0 | 19 | 19000-000 | 1 | 9 | 2266.667 | 1 | | 18900.000 | | 49 | 2166.667 | | 0 | 20 | 20005.005 | 1 | 10 | 3266.667 | 7 | | 19900.000 | | 50 | 3166.667 | | 0 | 21 | 21000.000 | 1 | 11 | 4266.667 | 2 | 1 | 20900-000 | | 51 | 4166.667 | | 0 | 22 | 22000.000 | 1 | 12 | 5266.667 | 2 | 2 | 21900.000 | | 52 | 5166.667 | | o | 23 | 23000.000 | 1 | 13 | 6266.667 | 2 | | 22900.000 | | 53 | 6166.667 | | 3 | 24 | 24000.000 | I | 14 | 7266.667 | 2 | | 23900.000 | | 54 | 7166.667 | | 0 | 25 | 25000.000 | 1 | 15 | 8266.667 | 2 | 5 | 24900.000 | | 55 | 8166.667 | | 0 | 26 | 26000.000 | | 16 | 9266.667 | 2 | - 6 | 25900.000 | | 56 | 9166.667 | | 0 | 27 | 27000.000 | 1 | 17 | 10266.667 | 2 | 7 | 26900.000 | | | 10166-667 | | 0 | 28 | 28000.000 | 1 | 18 | 11266.667 | 7 | 8 | 27900.000 | | | 11166.667 | | 0 | 29 | 29000.000 | 1 | 19 | 12266.667 | 2 | 9 | 28900-000 | 2 | 59. | 12166.667 | | 0 | 30 | 30000.000 | 1 | 20 | 13266.667 | 2 | 10 | Z9900-000 | 3 | 5 | 13166.667 | | 0 | 31 | 31000.000 | 1 | | 14266.667 | 2 | 11 | 30900.000 | 3 | 1 | 14166.667 | | | 3 Z | 32000.000 | 1 | 22 | 15266.667 | 2 | 12 | 31900.000 | 3 | 2 | 15166.667 | | | 33 | 3300C -00 0 | 1 | 23 | 16266.667 | 2 | 13 | 32900.000 | 3 | 3 | 16166.667 | | | 34 | 63 3.333 | 1 | 24 | 17266.667 | | 14 | 533.333 | 3 | 4 | 17166.667 | | | 35 | 1633.333 | | | 18266.667 | | 15 | 1533.333 | 3 | | 18166.667 | | | 36 | 2633.333 | 1 | | 19266.667 | | 16 | 2533.333 | 3 | | 19166.667 | | | 37 | 3633.333 | 1 | 27 | 20266.667 | 2 | 17 | 3533.333 | 3 | 7 | 20166.667 | | | 38 | 4633.333 | I | | 21266.667 | | 18 | 4533.333 | 3 | | 21166.667 | | | 39 | 5633.333 | 1 | | 22266.667 | | 19 | 5533.333 | 3 | | 22166.667 | | 0 | | 6633.333 | | | 23266.667 | | 20 | 6533.333 | | | 23166.667 | | 0 | | 7633.333 | | | 24266.667 | | 21 | 7533.333 | | | 24166-667 | | | 42 | 8633.333 | | | 25266.667 | | 22 | 8533.333 | | | 25166.667 | | | 43 | 9633.333 | 1 | | 26266.667 | | 23 | 9533.333 | | | 26166.667 | | <u>ე</u> | | 10633.333 | 1 | 34 | 27266.667 | | | 10533.333 | | | 27166-667 | | | | 11633.333 | I | 35 | 28266.667 | | | 11533.333 | | | 28166.667 | | | | 12633.333 | | | 29266.667 | | | 12533.333 | | | 29166.667 | | | | 13633.333 | I | 37 | 30266.667 | | | 13533.333 | | | 30166.667 | | 0 | | 14633.333 | _ 1 | 38 | 31266-667 | | | 14533.333 | | | 31166-667 | | 0 | | 15633.333 | | | 32266.667 | | | 15533.333 | | | 32166.667 | | <u> </u> | コリ | 16633.333 | 1 | 40 | 33266.667 | 2 | 30 | 16533.333 | 3 | 20 | 33166.667 | TABLE 3 INTERPOLATIONS FOR ALL SECONDS BETWEEN TOC'S | | | 1510N
666 MI |
 | | PERIOD | |-------|---|-------------------|------|---|--------| |
M | s | (_M S) | М | S | (24) | | M S (mS) | м : | s (AS) | M S (AS) | M S (#S) | |--------------------------------|-----------------|-------------|----------------------------------|----------------------------------| | 3 21 800.0 | 00 4 1 | 1 17433.333 | 5 1 700.000 | 5 51 17333.333 | | 3 22 1800.0 | | 2 18433.333 | | 5 52 18333.333 | | 3 23 2800.0 | | 3 19433.333 | 5 3 2700.000 | 5 53 19333.333 | | 3 24 3800.0 | 00 4 T4 | 4 20433.333 | 5 4 3700.000 | 5 54 20333.333 | | 3 25 4800.0 | | 5 21433.333 | 5 5 4700.000 | 5 55 21333.333 | | 3 26 5800.0 | 55 4 16 | 22433.333 | | 5 56 22333.333 | | 3 27 6800.0 | | 7 23433.333 | 5 7 6700.000 | 5 57 233 33.3 33 | | 3 28 7800.0 | 5 0 4 11 | 3 24433.333 | 5 8 7700.000 | 5 58 24333.333 | | 3 29 8800.0 | | 9 25433.333 | 5 9 87 00 .0 00 | 5 59 25333.333 | | 3 30 9803.0 | | 26433.333 | 5 10 9700.000 | 6 0 26333.333 | | 3 31 10800.00 | | L 27433.333 | 5 11 10700.000 | 6 1 2 7333.333 | | 3 32 11800.00 | | 2 28433.333 | | 6 2 28333.333 | | 3 33 12800.00 | | 3 29433.333 | 5 13 12700-000 | 6 3 29333.333 | | 3 34 13800.0 | | 30433.333 | 5 14 13700.000 | 6 4 30333.333 | | 3 35 14800.0 | | 5 31433.333 | 5 15 14700.000 | 6 5 31333.333 | | 3 36 15800.0 | | 32433.333 | | 6 6 32333.333 | | 3 37 16800.00 | | | 5 17 16700.000 | 6 7 33333.333 | | 3 38 17800.00 | | | | 6 8 966.667 | | 3 39 1880C.O | | | 5 19 18700.000 | 6 9 1966.667 | | 3 40 19800.0 | | | | 6 10 2966.667 | | 3 41 20800.00 | | | 5 21 20700.000 | 6 11 3966.667 | | 3 42 21800.C | | | | 6 12 4966.667 | | 3 43 22800.00 | | | 5 23 22700.000 | 6 13 5966.667 | | 3 44 23800.00
3 45 24800.00 | | | 5 24 23700.000 | 6 14 6966.667 | | 3 46 25800.00 | | | 5 25 24700.000
5 26 25700.000 | 6 15 7966.667 | | 3 47 26806.00 | | 1 10066.667 | 5 27 26700.000 | 6 16 8966.667
6 17 9966.667 | | 3 48 27800.00 | | 11066.667 | | 6 18 10966.667 | | 3 49 28806.00 | | 12066.667 | 5 29 28700.000 | 6 19 11966.667 | | 3 50 29800.00 | | 13066.667 | 5 30 29700.000 | 6 20 12966.667 | | 3 51 30800.00 | | 14066.667 | 5 31 30700.000 | 6 21 13966.667 | | 3 52 31800.00 | | 15066.667 | | 6 22 14966.667 | | 3 53 32800.00 | | 16066.667 | 5 33 32700.000 | 6 23 15966.667 | | 3 54 433.3 | | 17066.667 | | 6 24 16966.667 | | 3 55 1433.33 | 3 4 45 | 18066.667 | 5 35 1333.333 | 6 25 17966.667 | | 3 56 2433.3 | 3 4 46 | 19066.667 | 5 36 2333.333 | 6 26 18966.667 | | 3 57 3433.33 | | 20066.667 | 5 37 3333.333 | 6 27 19966.667 | | 3 58 4433.33 | | 21066.667 | 5 38 4333.333 | 6 28 20966.667 | | 3 59 5433.33 | | 22066.667 | 5 39 5333.333 | 6 29 21966.667 | | 4 0 6433.33 | | 23066.667 | 5 40 6333.333 | 6 30 22966.667 | | 4 1 7433.33 | | 24066.667 | 5 41 7333.333 | 6 31 23966.667 | | 4 2 8433.33 | | 25066.667 | 5 42 8333.333 | 6 32 24966.667 | | 4 3 9433.33 | | 26066.667 | 5 43 9333.333 | 6 33 25966.667 | | 4 4 10433.33 | | 27066-667 | 5 44 10333.333 | 6 34 26966.667 | | 4 5 11433.33 | | 28066.667 | 5 45 11333.333 | 6 35 27966.667 | | 4 6 12433.33
4 7 13433.33 | | 29066.667 | 5 46 12333.333 | 6 36 28966.667 | | 4 8 14433.33 | | 31066.667 | 5 47 13333.333
5 48 14333.333 | 6 37 29966.667
6 38 30966.667 | | 4 9 15433.33 | | 32066.667 | 5 49 15333.333 | 6 38 30966.667
6 39 31966.667 | | 4 10 16433.33 | | 33066.667 | 5 50 16333.333 | 6 40 32966.667 | | 1 10 1013343 | | 330001001 | 2 20 103334333 | 0 70 32700000 | TABLE 3 INTERPOLATIONS FOR ALL SECONDS BETWEEN TOC'S TELEVISION LINE 10 000 SYNC 33,366.666 MICROSECONDS/PERIOD | M S (pS) | M S (کبر) | M S (MS) | M S (seS) | |----------------|----------------------------------|----------------------------------|---| | 6 41 600.000 | 7 31 17233.333 | 8 21 500.00C | 9 11 17133.333 | | 6 42 1600.000 | 7 32 18233.333 | 8 22 1500.000 | 9 12 18133.333 | | 6 43 2600.000 | 7 33 19233.333 | 8 23 2500.000 | 9 13 19133.333 | | 6 44 3600.000 | 7 34 20233.333 | 8 24 3500.000 | 9 14 20133.333 | | 6 45 4600.000 | 7 35 21233.333 | 8 25 4500.000 | 9 15 21133.333 | | 6 46 5600.000 | 7 36 22233.333 | 8 26 5507.000 | 9 16 22133.333 | | 6 47 6600.000 | 7 37 23233.333 | 8 27 6500.000 | 9 17 23133.333 | | 6 48 7600.000 | 7 38 24233.333 | 8 28 7500.000 | 9 18 24133.333 | | 6 49 8600.000 | 7 39 25233.333 | 8 29 8500.000 | 9 19 25133.333 | | 6 50 9600.000 | 7 40 26233.333 | 8 30 9500.000 | 9 20 26133.333 | | 6 51 10600.000 | 7 41 27233.333 | 8 31 10500.000 | 9 21 27133.333 | | 6 52 11600.000 | 7 42 28233.333 | 8 32 11500.000 | 9 22 28133.333 | | 6 53 12600.000 | 7 43 29233.333 | 8 33 12500.000 | 9 23 29133.333 | | 6 54 13600.000 | 7 44 30233.333 | 8 34 13500.000 | 9 24 30133.333 | | 6 55 14600.000 | 7 45 31233.333 | 8 35 14500.000 | 9 25 31133.333 | | 6 56 15600.000 | 7 46 32233.333 | 8 36 15500.000 | 9 26 32133.333 | | 6 57 16600.000 | 7 47 33233.333 | 8 37 16500.000 | 9 27 33133.333 | | 6 58 17600.000 | 7 48 866.667 | 8 38 17500.000 | 9 28 766.667 | | 6 59 18600.000 | 7 49 1866.667 | 8 39 18500.000 | 9 29 1766 667 | | 7 0 19600.000 | 7 50 2866.667 | 8 40 19500.000 | 9 30 2766.667 | | 7 1 20600.000 | 7 51 3866.667
7 52 4866.667 | 8 41 20500.000 | 9 31 3766.667 | | 7 3 22600.000 | | 8 42 21500.000 | 9 32 4766.667 | | 7 4 23600.000 | 7 53 5866.667
7 54 6866.667 | 8 43 22500.000
8 44 23500.000 | 9 33 5766.667
9 34 6766.667 | | 7 5 24600.000 | 7 55 7866.667 | 8 45 24500.000 | - 9 34 67 <i>6</i> 6.667 °
9 35 7766.667 | | 7 6 25600.000 | 7 56 8866.667 | 8 46 25500.000 | 9 36 8766.uh7 | | 7 7 26600.000 | 7 57 9866.667 | 8 47 26500.000 | 9 37 9766.667 | | 7 8 27600.000 | 7 58 10866.667 | 8 48 27500.0CO | 9 3A 10766.667 | | 7 9 28600.000 | 7 59 11866.667 | 8 49 28500.000 | 9 39 11766.067 | | 7 10 29600.000 | 8 C 12366.667 | 8 50 29500.000 | 9 40 12766.667 | | 7 11 30600.000 | 8 1 13866.667 | 8 51 30500.000 | 9 41 13766.667 | | 7 12 31600.000 | 8 2 14866.667 | 8 52 31500.000 | 9 42 14766.667 | | 7 13 32600.000 | 8 3 15866.667 | 8 53 32500.000 | 9 43 15766.667 | | 7 14 233.333 | 8 4 16866.667 | 8 54 133.333 | 9 44 16766.667 | | 7 15 1233.333 | 8 5 17866.667 | 8 55 1133.333 | 9 45 17766.667 | | 7 16 2233.333 | 8 6 18866.667 | 8 56 2133.333 | 9 46 18766.667 | | 7 17 3233.333 | 8 7 19866-667 | 8 57 3133.333 | 9 47 19766.667 | | 7 18 4233.333 | 8 8 20866.667 | 8 58 4133.333 | 9 48 20766.667 | | 7 19 5233.333 | 8 9 21866.667 | 8 59 5133.333 | 9 49 21766.667 | | 7 20 6233.333 | 8 10 22866.667 | 9 0 6133.333 | 9 50 22766.667 | | 7 21 7233.333 | 8 11 23866.667 | 9 1 7133.333 | 9 51 23766.067 | | 7 22 8233.333 | 8 12 24866.667 | 9 2 8133.333 | 9 52 24766.667 | | 7 23 9233.333 | 8 13 25866.667 | 9 3 9133.333 | 9 53 25766.667 | | 7 24 10233.333 | 8 14 26866.667 | 9 4 10133.333 | 9 54 26766.667 | | 7 26 12233.333 | 8 15 27866.667 | 9 5
11133.333 | 9 55 27766.667 | | 7 27 13233.333 | 8 16 28866.667
8 17 29866.667 | 9 6 12133.333 | 9 56 28766.661 | | 7 28 14233.333 | 8 18 30866.667 | 9 7 13133.333 | 9 57 29766.667 | | 7 29 15233.333 | 8 19 31866.667 | 9 8 14133.333
9 9 15133.333 | 9 58 30766.667
9 59 31766.667 | | 7 30 16233.333 | 8 20 32866.667 | 9 10 16133.333 | | | | - EG 320001001 | , IO TO[330332 | 10 9 32766.667 | TABLE 3 INTERPOLATIONS FOR ALL SECONDS BETWEEN TOC'S # TELEVISION LINE 10 ODD SYNC 33,366.666 MICROSECONDS/PERIOD | . managaraganhar dadda da | | | | |---|------------------------------------|------------------------------------|------------------------------------| | M S (24) | M S (MS) | M S (MS) | M S (AS) | | 10 1 400.003 | 10 51 17033.333 | 11 41 300.000 | 12 31 16933.333 | | 13 2 1400.000 | 10 52 18033.333 | 11 42 1300.000 | 12 32 17933.333 | | 10 3 2400.000 | 10 53 19033.333 | 11 43 2300.000 | 12 33 18933.333 | | 15 4 3400.000 | 10 54 20033.333 | 11 44 3300.000 | 12 34 19933.333 | | 10 5 4400.000 | 10 55 21033.333 | 11 45 4300.0C0 | 12 35 20933.333 | | 13 6 5400.000 | 10 56 22033.333 | 11 46 5300.000 | 12 36 21933.333 | | 10 7 6400.000 | 10 57 23033.333 | 11 47 6300.000 | 12 37 22933.333 | | 10 8 7400.000 | 10 58 24033.333 | 11 48 7300.000 | 12 38 23933.333 | | 10 9 8400.000 | 10 59 25033.333 | 11 49 8300.000 | 12 39 24933.333 | | 10 10 9400.000 | 11 0 26033.333 | 11 50 9300.000 | 12 40 25933.333 | | 10 11 10400.000 | 11 1 27033.333 | 11 51 10300.000 | 12 41 26933.333 | | 10 12 11400.000 | 11 2 28033.333 | 11 52 11300.000 | 12 42 27933.333 | | 10 13 12400.000 | 11 3 29033.333
11 4 30033.333 | 11 53 12300.000 | 12 43 28933.333
12 44 29933.333 | | 10 14 13400.000 | 11 4 30033.333
11 5 31033.333 | 11 54 13300.000
11 55 14300.000 | 12 45 30933.333 | | TO 15 15400.000 | 11 6 32033.333 | 11 56 15300.000 | 12 46 31933.333 | | 10 17 16400.000 | 11 7 33033.333 | 11 57 16300.000 | 12 47 32933.333 | | 10 18 17455.000 | 11 8 666.667 | 11 58 17300.000 | 12 48 566.667 | | 10 19 18430.000 | 11 9 1666.667 | 11 59 18300.000 | 12 49 1566.667 | | 10 20 19400.000 | 11 10 2666.667 | 12 0 19300.000 | 12 50 2566.667 | | 10 21 20401.000 | 11 11 3666.667 | 12 1 20300.000 | 12 51 3566.667 | | 10 22 2140:.000 | 11 12 4666.667 | 12 2 21300.000 | 12 52 4566.667 | | 10 23 22400.990 | 11 13 5666.667 | 12 3 22300.000 | 12 53 5566.667 | | 10 24 23400.000 | 11 14 6666.667 | 12 4 23300.000 | 12 54 6566.667 | | 10 25 24400.000 | 11 15 7666.667 | 12 5 24300.000 | 12 55 7566.667 | | 10 26 25400.000 | 11 16 8666.667 | 12 6 25300.000 | 12 56 8566.667 | | 10 27 26400.000 | 11 17 9666.667
11 18 10666.667 | 12 7 26300.000
12 8 27300.000 | 12 57 9566.667
12 58 10566.667 | | 10 28 27400.000 | 11 19 11666.667 | 12 8 27300.000
12 9 28300.000 | 12 59 11566.667 | | 10 30 29400.000 | 11 20 12666.667 | 12 10 29350.000 | 13 0 12566.667 | | 10 31 30400.000 | 11 21 13666.667 | 12 11 30300.000 | 13 1 13566.667 | | 10 32 31400.000 | 11 22 14666.667 | 12 12 31300.000 | 13 2 14566.667 | | 10 33 32400.000 | 11 23 15666.667 | 12 13 32300.000 | 13 3 15566.667 | | 10 34 33.333 | 11 24 16666.667 | 12 14 33300.000 | 13 4 16566.667 | | 10 35 1033.333 | 11 25 17666.667 | 12 15 933.333 | 13 5 17566.667 | | 10 36 2033.333 | 11 26 18666.667 | 12 16 1933.333 | 13 6 18566.667 | | 10 37 3033.333 | 11 27 19666.667 | 12 17 2933.333 | 13 7 19566.667 | | 10 38 4033.333 | 11 28 20666.667 | 12 18 3933.333 | 13 8 20566.667 | | 10 39 5033.333 | 11 29 21666.667 | 12 19 4933.333 | 13 9 21566.667 | | 10 40 6033.333 | 11 30 22666.667 | 12 20 5933.333 | 13 10 22566.667
13 11 23566.667 | | 10 41 7033.333
10 42 8033.333 | 11 31 23666.667
11 32 24666.667 | 12 21 6933.333
12 22 7933.333 | 13 12 24566.667 | | 10 42 8033.333
10 43 9033.333 | 11 32 24000.007
11 33 25666.667 | 12 23 8933.333 | 13 13 25566.667 | | 10 44 10033.333 | 11 34 26666.667 | 12 24 9933.333 | 13 14 26566.667 | | 10 45 11033.333 | 11 35 27666.667 | 12 25 10933.333 | 13 15 27566.667 | | 10 46 12033.333 | 11 36 28666.667 | 12 26 11933.333 | 13 16 28566.667 | | 10 47 13033.333 | 11 37 29666.667 | 12 27 12933.333 | 13 17 29566.667 | | 10 48 14033.333 | 11 38 30666.667 | 12 28 13933.333 | 13 18 30566.667 | | 10 49 15033.333 | 11 39 31666.667 | 12 29 14933.333 | 13 19 31566.667 | | 10 50 16033.333 | 11 40 32666.667 | 12 30 15933.333 | 13 20 32566.667 | | | | | | TABLE 3 INTERPOLATIONS FOR ALL SECONDS BETWEEN TOC'S # TELEVISION LINE 10 ODD SYNC 33,366.666 MICRUSECONDS/PERIOD | | | | | | | | | | | | |----------------|-----------------------|----|-------------|--------------------|----|----|------------------------|----------|----|------------------------| | M S | (MS) | M | S | (Just | H | S | (µS) | М | S | (LS) | | 13 21 | 200.000 | 14 | 11 | 16833.333 | 15 | 1 | 100.000 | 15 | 51 | 16733.333 | | 13 22 | 1200.000 | | | 17833.333 | 15 | 2 | 1100.000 | | | 17733.333 | | 13 23 | 2200.000 | | | 18833.333 | 15 | 3 | 2100-000 | 15 | 53 | 18733.333 | | 13 24 | 320C.000 | | | 19833.333 | 15 | 4 | 3100.000 | | | 19733.333 | | 13 25 | 4200 • 000 | | | 20833.333 | 15 | 5 | 4100.000 | | | 20733.333 | | 13 26 | 5200.000 | | | 21833.333 | 15 | 6 | 5100.000 | | | 21733.333 | | 13 27 | 6200.000 | | | 22833.333 | 15 | 7 | 6100.000 | | | 22733.333 | | 13 28 | 7200.000 | | | 23833.333 | 15 | 8 | 7100.000 | | | 23733.333 | | 13 29
13 30 | 8200.000 | | | 24833.333 | 15 | 9 | 8100.000 | | | 24733.333 | | | 9200.000
10200.000 | | | 25833.333 | | 10 | 9100-000 | 16 | | 25733.333 | | | 11200.000 | | | 26833 . 333 | | | 10100.000 | 16 | | 26733.333 | | | 12200.000 | | | 28833.333 | | | 11100.000 | 16 | | 27733.333 | | | 13200.000 | | | 29833.333 | | | 12100.000 | 16
16 | | 28733.333 | | | 14200.000 | | | 30833.333 | | _ | 14100.000 | 16 | | 29733.338
30733.333 | | | 15200.000 | | | 31833.333 | | | 15100.000 | 16 | | 31733.333 | | | 16200.000 | | | 32833.333 | | | 16100-000 | 16 | | 32733.333 | | | 17200.000 | 14 | | 466.667 | | | 17100.000 | 16 | 8 | 366.667 | | | 18200.000 | | 29 | 1466.667 | | | 18100.000 | 16 | 9 | 1366.667 | | | 19200.000 | | 30 | 2466.667 | | | 19100.000 | | 10 | 2366.667 | | 13 41 | 20200.000 | 14 | | 3466.667 | | | 20100.000 | 16 | - | 3366.667 | | 13 42 | 21200.000 | 14 | 32 | 4466.667 | | | 21100.000 | 16 | | 4366.667 | | | 22200.000 | 14 | 33 | 5466.667 | | | 22100.000 | 16 | | 5366.667 | | | 23200.000 | 14 | 34 | 6466.667 | 15 | 24 | 23100.000 | 16 | | 6366.667 | | | 24200.000 | 14 | | 7466.667 | 15 | 25 | 24100.000 | 16 | 15 | 7366.667 | | | 25200.000 | 14 | | 8466.667 | | | 25100.000 | | 16 | 8366.667 | | | 26200.000 | 14 | | 9466.667 | | | 26100.000 | 16 | | 9366.667 | | | 27200.000 | | | 10466.667 | | | 27100.000 | | | 10366.667 | | | 28200.000 | | | 11466.667 | | | 28100-000 | | | 11366.667 | | | 29200.000 | | | 12466.667 | | | 29100.000 | | | 12366.667 | | | 30200.000 | | | 13466.667 | | | 30100.000 | | | 13366.667 | | | 32200.000 | | | 15466.667 | | | 31100.000 | | | 14366.667 | | 13 56 | 33200.000 | | | 16466.667 | | | 32100.000
33100.000 | | | 15366.667 | | 13 55 | 833.333 | | | 17466.667 | | 35 | 733.333 | | | 16366.667 | | 13 56 | 1833.333 | | | 18466.667 | | 36 | 1733.333 | | | 18366.667 | | 13 57 | 2833.333 | | | 19466.667 | | 37 | 2733.333 | | | 19366.667 | | 13 58 | 3833.333 | | | 20466.667 | | 38 | 3733.333 | | | 20366.667 | | 13 59 | 4833.333 | | | 21466.667 | | 39 | 4733.333 | | | 21366.667 | | 14 0 | 5633.333 | | | 22466.667 | 15 | | 5733.333 | | | 22366.667 | | 14 1 | 6833.333 | 14 | 51 | 23466.667 | 15 | | 6733.333 | | | 23366.667 | | 14 2 | 7833.333 | 14 | 52 | 24466.667 | 15 | | 7733.333 | | | 24366.667 | | 14 3 | 8833.333 | | | 25466.667 | 15 | 43 | 8733.333 | 16 | 33 | 25366.667 | | _4 4 | 9833.333 | | | 26466.667 | 15 | | 9733.333 | | | 26366.667 | | 14 5 | 10833.333 | | | 27466.667 | | | 10733.333 | | | 27366.667 | | | 11833.333 | | | 28466.667 | | | 11733.333 | | | 28366.667 | | | 12833.333 | | | 29466.667 | | | 12733.333 | | | 29366.667 | | | 13833.333 | | | 30466.667 | | | 13733.333 | | | 30366.667 | | | 14833.333 | | | 31466.667 | | | 14733.333 | | | 31366.667 | | 14 10 | 15833.333 | 15 | · U | 32466.667 | 12 | 20 | 15733.333 | 16 | 40 | 32366.667 | ## DISCUSSION MRS. CARROLL: Are there any questions? LCDR POTTS: It's not clear to me why, on your last figure, in the proposed USNO system, there is no requirement to know the equipment delays and propagation delays. MRS. CARROLL: That would be necessary; it is in all the systems. LCDR POTTS: I didn't see it listed under that proposed system. Thank you. MRS. CARROLL: Any other questions? MR. GATTERER: I'd like to make a couple of comments and ask you a question. I think this stabilizing of line 10 and putting line 10 on time is a very valuable contribution. I would like to point out that NBS did stabilize the color subcarrier frequency in our early line 10 systems. Is the pulse discriminator circuit in your present equipment different than in the equipment we originally supplied to you? Is there an improvement, is it cheaper, and that sort of thing? MRS. CARROLL: The specifications of that piece of equipment have been shown. I think it is different, because, as I mentioned before, this piece of equipment counts lines, and I believe the piece of equipment that you are referring to recognizes the line 10 because of the particular unique pulse that is located on line 10. All this discriminator does is count the lines until it gets to 10, and then it uses that line. In other words, this piece of equipment could be made to count to any number of lines, whereas yours requires a particular uniqueness about a line, in particular line 10. MODERATOR: Thank you, Mrs. Carroll.