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Abstract 

We wiU discuss several methods for Characterizing the performance of clocks with special 
emphasis on using calibration information that is acquired v i4  a n  unreliable or noisy channel. 
We wiU discuss time-domain variance estimators and frequency-domain techniques such as cross- 
spectral d y s i s .  Each of these methods has advantages and limitations that we will illustrate 
using data obtained via GPS, ACTS and other methods. No one technique will be optimumfor 
aU of these analyses, and some of these problems cannot be completely characterized by any of the 
techniques we will discuss. 

We will also discuss the inverse problem of communicating frequency and time corrections to a 
real-time steered clock. Methods have been developed to mitigate the disastrous problems of data 
conuption and loss of computer control. 

Introduction 

Measuring the time or frequency of a clock inevitably involves transmitting the clock signal through 
a channel of some sort. The channel may consist of nothing more than a measurement system if 
the clock is nearby, while the channel for a remote clock is likely to be much more complex. In 
either case it is important to characterize the performance of the channel and to remove its effects 
if possible. This is quite difficult to do in general; we will discuss methods that are useful in several 
important special cases. None of these methods is optimal in all situations. 

Differential Comparisons 

One of the simplest methods of separating the contributions of the channel and the clock is to 
observe the same clock through two nominally independent channels. Figure 1 shows the difference 
between two channels, each of which is measuring the time of a single cesium standard with respect 
to a reference oscillator. Since the input signals are identical, the difference should consist primarily 
of a constant value that depends only on the differential delays in the cables and the measurement 
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hardware, and a mean value has been removed from the data set to account for this. The residual 
fluctuations are channel noise. If the channels are independent and identical, we can estimate the 
channel performance by assigning 50% of the remaining variance to each channel. 

We may characterize the data of Fig. 1 using the standard two-sample (Allan) variance. The 
magnitude of the Allan variance is 6 x at 2 hours, and it decreases approximately as 1/J? 
for longer times (Fig. 2), suggesting that the difference between the two measurement systems 
can be modeled as white frequency noise. Although this is not impossible, the response of the 
hardware is more likely to be approximated by white phase noise, which would fall off more 
rapidly with averaging time. If we assume a white phase noise model for the channel, then the 
observed excess power at long periods must be the response of the channel to some other signal. 
The more detailed analysis below shows that the measurement systems are in fact responding to 
fluctuations in ambient temperature. 

The air temperature in the vicinity of the measurement hardware is shown in Fig. 3; there is a clear 
qualitative correlation between these data and the data of Fig 1. This temperature sensitivity may 
be quantitatively estimated using correlation analysis in either the time or the frequency domains. 

Analysis in the Time Domain 

The simplest assumption is that the measurement hardware responds linearly to fluctuations in the 
ambient temperature, possibly with some time lag. If R(t) is the perturbation in the measurement 
at time t when the ambient temperature differs from its long-term average value by T(t) ,  then we 
estimate R(t) by 

The parameter T is the time interval between measurements of both R and T. The Ck coefficients 
in eq. 1 are usually called admittances. They are generally not linearly independent of each other 
since the temperature series itself has a non-zero auto-correlation at  finite lag. As a result, it 
is usually sufficient to use only a single term on the right-hand side of eq. 1. This choice may 
also be necessary to achieve numerical stability in the solution if the auto-correlation function of 
the temperature varies only slowly with lag time (which is the usual situation). We can estimate 
both k and Ck in the simple 1-term w e  by finding the value of k for which the cross-correlation 
function < R(t)T(t - k) > is an extremum. The value of the cross-correlation for this value of 
k divided by < T(t)T(t) >, the variance in the temperature series itself, is then an estimate of 
Ck. The sharpness of this extremum depends on < T(t)T(t - k) >, the auto-correlation of the 
temperature function, and on how well eq. 1 models the variance in the measurement channel. 

We have computed the cross correlation between R and T (data in Figs. 1 and 3), and the result 
is shown in Fig. 4 as a function of lag k ~ ,  where T = 2 hours. We find a clear extremum at 
about k = 2; the normalized admittance at that lag is -6.59 ps/"C. As we should expect, the 
extremum is rather broad because the temperature changes slowly in time and peaks at  a non- 
zero lag because of the thermal inertia of the measuring hardware. We can use eq. 1 to model 
the temperature-induced variance in Fig. 1 and to remove the temperature-dependence from the 
data. This operation reduces the Allan variance by a factor of 3 and whitens the time difference 
data by removing much of the longer-period structure. The Allan variance now decreases more 
rapidly than l /f i ,  suggesting that we are approaching the underlying white phase noise of the 

R(t) = CoT(t) + CIT(t - T )  + . . . + CkT(t - kT). (1) 
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channel. There is still some residual long-period structure in the measurements, however, and we 
can do better. 

Analysis in the Frequency Domain 

The constant time-deliiy used in eq. 1 is phenomenologically useful, but does not accurately model 
the actual system. We inserted the delay to model the thermal inertia of the hardware, but this 
inertia does more than just introduce a time delay-it also acts as an integrator of the fluctuations 
in the ambient temperature. This integration acts as a low-pass filter. In addition, the correlation 
analysis does not recognize that both of the time series have high-frequency uncorrelated noise 
which nevertheless contributes to the computation. Both of these considerations imply that the 
actual admittances are likely to decrease at higher Fourier frequencies (shorter period perturba- 
tions). This dependence is not incorporated into eq. 1, which estimates a frequency-independent 
average admittance. The admittance estimated using that model is therefore likely to be too small 
at long periods where the temperature fluctuations are significant and too large at short periods 
where the data are largely noise due to other causes. 

The simplest way of incorporating these considerations into the model is to assume a linear 
frequency-dependent admittance. If R’ and T’ are the Fourier Transforms of R and T, respectively, 
then the admittances will be estimated to satisfy 

where C’(f) is the admittance as a function of frequency. The admittance at each frequency may 
be complex to incorporate both a magnitude and a phase shift; the phase shift. is the frequency- 
domain analog of the time delay in eq. 1. 

If R‘ and T’ are computed using standard Fast Fourier Transform methods, then each will have n 
degrees of freedom, where n is the number of points in the timedomain functions R and 2’. (These 
frequency-domain degrees of freedom are normally assigned to n/2 amplitudes and n/2 phases, 
but other assignments are possible.) Equation 2 can then be solved for n/2 complex admittances, 
all of which will be approximately linearly independent of each other: 

This process would reduce eq. 2 to an identity, but it would result in an admittance estimate that 
was not physically reasonable, since C’(f) should not vary rapidly with frequency. We can intro- 
duce this constraint by averaging C’(f) both in frequency and in time. The frequency averaging is 
motivated by the fact that the hardware and its surroundings are a non-resonant thermal system 
and cannot have a response that is a rapidly-varying function of frequency. The timeaveraging 
recognizes that the admittance to temperature should depend on the mechanical and electrical 
design of the system and its surroundings and should therefore be timeindependent. (This latter 
condition may not be true if the system is also sensitive to the spatial gradient of the temperature. 
This quantity may vary in time even if the temperature does not.) 
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It is possible to satisfy both of these averaging criteria simultaneously by breaking the time series 
into blocks and by averaging the admittances computed in each block. The blocks are usually 
chosen to be consecutive, non-verlapping subsets of the data. The frequency resolution of a 
Fourier transform is inversely proportional to the length of the input time series, so that shorter 
blocks implies a wider bandwidth for each estimate and hence greater frequency averaging. In 
addition, as the length of each block decreases the number of blocks in a given data set increases, 
thereby increasing the number of admittance estimates that are averaged to yield the final value. 
The admittances that make up each average are computed using data from different times, resulting 
in an averaging of the admittances over the time period of the full data set. 

Fig. 5 shows the coherence between the two data sets as a function of frequency. The coherence 
is simply the average of C’(f) computed as above and then normalized by the average power in 
the time series at frequency f .  Each block contained 64 measurements (128 hours). If C’(f) = 1 
then the two series are perfectly coherent at that frequency, which means that there is a constant 
relationship between the two amplitudes and phases. A measurement of the amplitude and phase 
in one series can be used to construct a perfect prediction of the corresponding parameters in the 
other. Note that C’(f) = 0.82 at very low frequencies, so that most of the observed variance in the 
time difference data at low frequencies is due to temperature fluctuations and could be removed 
using the temperature observations. The rather surprising peak in the coherence at 1.25 c/day 
is not a resonance - it is due to the fact that the temperature spectrum itself has a peak in its 
power spectrum at that frequency, perhaps because of harmonics generated by the interaction of 
the underlying diurnal temperature cycle with the slower weekday/weekend cycle. 

The admittance analysis shows that the effects of temperature are largest at periods of several 
hours and longer, and it is possible to remove these effects from the data by low-pass filtering 
the temperature data and then subtracting them from the time-difference measurements with a 
time shift of a few hours as indicated in the previous analysis. The coherence analysis is used to 
estimate the characteristics of the filter function and the scale factor that should be applied to the 
low-passed data. 

Discussion 

Each of the preceding analyses modeled the data differently. A twosample Allan variance com- 
putation, for example, is most useful if the power spectrum of the variance in the data set can be 
approximated by a polynomial in frequency. The correlation analysis models the relationship using 
a constant timedelay independent of frequency, and is usually appropriate only if the data to be 
examined are band-limited signals with appreciable broad-band coherence. The frequency-domain 
analysis is the most general of the three approaches, but it may produce numerically unstable esti- 
mates without lots of averaging. In addition, the coherence estimates are not normally distributed 
if the “true” coherence is small - the estimates tend to be too large when the actual coherence is 
less than about 0.55. While all describe the same data set, the interpretations are quite different 
in each case. 

A common assumption in all of the analyses is that the characteristics of the data set are time 
invariant, so that the entire series can be described by a single set of global parameters. These 
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methods will not be useful for modeling isolated transmission errors, for example, and problems 
of this type must be treated with some form of timedependent analysis. Kalman techniques 
and moving-average models are well-known methods of detecting these problems, but all of these 
methods tend to require surprisingly large quantities of data to function reliably. Since there 
is no reliable means of predicting when a glitch will occur, the measurement interval is usually 
driven by how long a large glitch can be allowed to remain undetected rather than by the more 
usual statistical considerations derived from an Allan variance computation. This problem is more 
difficult than the choice between Type I and Type I1 errors in conventional statistical analyses 
because the magnitude of a channel error is not governed by a statistical distribution and is at 
least potentially unbounded. 

Another situation that is difficdt to model using the techniques we have described is a channel 
that has significant multi-path effects, such as a radio channel or a wide-area computer network. 
There is a lower bound but essentially no upper bound to the channel delay in both of these 
situi*t.ions, so that it is not the mean but the minimum value of a group of measurements that is 
an invariant of the system and hence represents the “correct” delay. The mean is unbounded in 
principle, but it will always be too large even if some artificial bound is enforced. The channel 
delay can be estimated by comparing measurement data received via several independent routes, 
but it is often quite difficult to construct several independent channels to the same system since 
the local hardware tends to be common to all of these channels. 

Application to a Steered Clock 

Timedifference data are often used to steer a remote clock so that it is kept on time or on frequency 
with respect to some other system. Although the channel is “inside” this servo loop in principle, 
the loop gain does not attenuate offsets and phake shifts of the type we have been discussing. These 
offsets in the measurement channel are transmitted to the control system without attenuation. In 
addition, the control loop must be designed to minimize the effects of a channel failure. 

Both of these problems tend to be more serious if frequency steering is used, since the measurement 
error or channel failure is converted to a control signal whose effect grows linearly with time. 
Although time steering does not have this problem, it introduces steplike discontinuities into 
the output of the steered device which complicate the analysis of its performance and degrade its 
spectral purity. 

Our steered clocks are currently controlled using a combination of time and frequency steering. 
The frequency component of the steering is designed to control the long-term performance of the 
clock while the time corrections have a limited range and are only intended to compensate for the 
short-term fluctuations in the output. The steering system that realizes UTC(NIST), for example, 
is steered in this way. Using a measurement interval of 12 minutes, the average time correction 
that must be applied is 200 ps. The frequency steering is designed to realize UTC(N1ST) in long 
term, so that if the system fails, the divergence of the output from UTC(N1ST) is on the order 
of ns/day and is governed by the free-running stability of a cesium standard rather than by a 
frequency steering command that was intended to be applied for 12 minutes but in fact remained 
in force because the channel failed. The performance of this servo is nearly optimum in the sense 
that the short-term (< 2 hours) RMS deviation in the steered output is essentially the same as the 
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frequency noise in the cesium standard itself while the long-period performance is better than this 
and is limited by the performance of the AT1 time scale that is used as the reference for estimating 
UTC(N1ST). 
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Fig. 1 .  Time Difference Between Two Channels 
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Fig. 3 .  Ambient Temperature 
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