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Abstract 

The simpk mean, the standard deviation and its square, the variance are well known statistical 
measures of a set of dato poi@. It seems natural, therefore, to appb these meawres to signa& generated 
byfiequency standards. However, this approach quickly reveak some signifcant problems. 

Normally, when we compute the mean and standard deviation of some process, we msume thal includ- 
ing more data points in the computation brings us ever closer to the true mean and standard deviation 
of the process. Unfortunately this is not true, in general, for data obtained from sign& generated by 
frequency standardv. Here, the s i t ”  unually deteriorates as more data points are included. 

This tutorial describes, largely in heuristic terms, modified statistical measures which do not “blow 
up” for the kinds of noise processes normally encountered in signak generated by frequency standards. 

I. Introduction 

This paper is about the question “How do we characterize the performance of frequency standards?” 
Historically two approaches have developed: one in the frequency domain and the other in the 
time domain. Our emphasis here will be on the time domain approach; however, we shall begin 
by considering the frequency domain approach because familiarity with this technique helps to 
understand why the two usual measures in the time domain, the standard deviation and its square, 
the variance, don’t work when applied to  frequency standards. 

Let’s begin by considering an ideal frequency standard which, of course, does not exist in nature. 
Such a standard generates a noise-free output with constant amplitude, frequency and phase. Real 
frequency standards fall short in all three categories. However, variations in amplitude with time 
are, for practical purposes, negligible, so we won’t consider that  as a problem in the rest of this 
paper. 

Mathematically, then, the output signal, V(t), of our ideal standard is 

V (  t )  = V, sin( 2.rrvOt) (1) 

*Contribution of the U.S. Government, not subject to copyright. 
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where v,, is the constant amplitude and YO is some constant frequency. 

What real frequency standards generate is 

v = V, sin[2nvot + 4(t)] (2) 

where the phase, 4, is a noise perturbation of the desired frequency. 

The phase noise, 4, falls into two categories: noise we can remove and those we can’t. If the signal 
phase changes predictably with time, a constant frequency offset from the desired frequency for 
example, we can correct the output by appropriate compensating electronic circuitry or on paper. 
By definition, the unpredictable, or random part of the signal can’t be corrected. Here our only 
avenue for improvement is t o  use statistical techniques. However, these statistical improvements 
are in reality based on assumptions-some model or models-which we believe, or a t  least suspect, 
and in a last ditch effort hope, underlie the random part of a signal. 

All this adds up, often enough, t o  a kind of catch 22. Consider a clock whose resonator is a 
swinging pendulum. We suppose that the clock’s misbehavior is related to  changes in the weather. 
Specifically our model says that temperature changes alter the length of the pendulum and thus 
its natural frequency. We want t o  predict how much the pendulum clock’s time departs, on a daily 
basis, from time kept by a perfect clock over, say, a period of a month. It’s easy. All we have to  do 
is foretell the weather day by day for the next month. 

Here our model is probably correct but it doesn’t help much in any detailed way. The best we can 
do, in the absence of actual temperature measurements, is depend on local weather forecasts which 
are notoriously unreliable. 

The actual situation for frequency standards may be worse. A good deal of statistical information 
about frequency standards has accumulated from numerous measurements over the years, but 
nobody has any respectable models for what causes the most troublesome kinds of noise. Put  
differently, the models themselves are statistical models based on measurements, not statistical 
models based on the physics of the underlying behavior. Its as though we have reams of data  giving 
the average temperature but we know nothing whatsoever about the laws governing atmospheric 
processes. With this state of affairs about the best we can do  is say the temperature tomorrow will 
be about what it was today. 

Nevertheless, much has been gained by inspecting frequency standards through the eyes of statis- 
ticions. As an example, in section VI, we consider how various statistical models of frequency 
standard performance can be applied to  determining the performance of a clock over a specified 
time. 

11. Measuring Performance in the Frequency Domain 

Consider again the output of an ideal frequency standard as expressed by Equation 1. Figure l a  
graphically represents Equation 1 in the frequency domain. This figure shows that the output is at  
frequency uo with amplitude V,. A variation on Figure la, Figure l b ,  is t o  plot the power carried 
by the signal at frequency vo, rather than the amplitude. This representation is called the power 
spectrum of the signal, and we shall use this representation from now on for reasons which will be 
apparent later. We can easily extend the power spectrum representation of a signal, as in Figure 

04 



IC, to represent, say, the superposition of three sinusoids at frequencies VI, u2, and u3 with powers 
P1, P2, and P3. 

The power spectrum approach is a convenient way to represent a sinusoid which has been perturbed 
by noise. We can think of the noise as “blurring” the frequency of the sinusoid so that the power 
spectrum of a real oscillator is more like the one shown in Figure 2 than the idealization in Figure 
lb .  The frequency spread of the power spectrum curve is a measure of the amount of noise. 

The power spectrum in Figure 3 includes both the signal at  uo and the noise components at  other 
frequencies, but we are interested primarily in the power spectrum of the oscillator noise. We can 
isolate this noise as follows. The actual frequency output, v ( t ) ,  of our oscillator signal is just the 
rate of change in the total phase of the sinusoid given by Equation 2. 

d d 
d t  d t  2 7 4 )  = -(27rvot t $( t ) )  = 2 w o  -t - ( (b( t ) )  (3) 

That  is v ( t )  - VO) = &$((b(t)) is the amount by which the output frequency deviates from the 
is a 

dimensionless quantity with greater utility than ( u ( t )  - vo) as illustrated by the following example: 

u(t ) -uo desired frequency. A quantity, called the fractioiid frequency fluctuation, y ( t )  = 
yo 

Suppose the quantity ( v ( t ) - v o )  equals 1 Hz for two different oscillators. Are the two 
oscillators equal in quality? Not if one oscillator operates at  10 Hz and the other at  
10 MHz. In the first case, the avera.ge value of the fractional frequency fluctuation 
is 1/10, and in the second 1/10,000,000 or 1 x The 10 MHz oscillator is 
thus more precise-has a higher Q. If frequencies are multiplied or divided, using 
ideal electronics, the fractional stability is not changed. Since y ( t )  represents the 
fractional frequency excursions of the signal frequency about the nominal frequency, 
vo, the power spectrum of y ( t )  characterizes the oscillator noise independent of the 
oscillator signal frequency. 

111. Real Oscillator Noise Viewed from the Frequency Domain 

Many workers have measured the noise associated with high quality oscillators. Typically the 
measurements yield the result shown in Figure 3. Here we show the power spectral density, S,(f) 
of the fractional frequency fluctuations y(t). The power spectral density S,(f), is simply the power 
spectrum normalized so that the area under the S,(f) curve equals one. S,(f) is one of the two 
commonly used measures of frequency instability-the one i n  the frequency domain. The figure 
shows for frequencies ranging from 10 Hz to about 0.01 Hz the noise power spectral density is 
constant with frequency. This kind of noise, called “white noise FM”, can be reduced by averaging 
measurements taken over an extended period of time. The reason i t  can be “averaged out” is 
because these noise fluctuations, on the average, advance the phase of the signal as much as they 
delay it. 

In the range of frequencies from about 0.01 Hz to about Hz,  the noise density increases as f-’. 
This kind of noise is called “flicker noise FM” and its cause i n  high quality oscillators is not weii 
understood. However, it is probably related to power supply voltage fluctuations, magnetic field 
fluctuations, and component changes, etc. The frequency range over which it dominates, varies 
from oscillator t o  oscillator. 
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At frequencies lower than Hz, noise with an f - 2  dependency is commonly found. This noise, 
“random walk F M  noise”, is probably related to environmental effects such as mechanical shock, 
temperature variations, vibrations, etc. which cause random shifts in the carrier oscillator signal 
frequency. It can be minimized by carefully isolating the oscillator from its environment. 

IV. Effect of Record Length and Sampling Rate on Estimating 

Suppose we have an analog record of oscillator noise, y ( t ) ,  50 seconds long, Figure 4a. We sample 
this record once every second, producing 50 discrete data points y1, y2, 33, etc. This record 
contains a mixture of noise fluctuations a t  many different rates or Fourier frequencies. However, 
the sampling rate, once per second, and the length of the record (50 seconds), place bounds on 
the range of frequencies which can be recovered from the sampled data. First, the sampling rate 
dictates the highest frequency, the Nyquist frequency, which can be recovered or resolved from the 
data points, as illustrated in Figure 4b. 

Samples are taken at the instants marked by the dots. At this sampling rate we can resolve the 
fluctuation labeled 1 Hz. Fluctuations a t  a higher rate, such as tlie one labeled 5 Hz will be 
confused with frequency fluctuations at lower frequencies. In this particular example there is no 
way to  distinguish between the signal fluctuations a t  1 Hz and at 5 H z .  To avoid this kind of 
confusion we must either sample a t  a rate which is high enough t o  resolve the highest rate of noise 
fluctuation we expect in the oscillator noise spectrum, or ‘alternately, we must remove all frequencies 
above the highest frequency which can be resolved by our sampling rate. This could be done by low 
pass filtering the data  before sampling. Later in this section we shall describe a digital filter which 
accomplishes this purpose; although, the data could be filtered with an analog filter to achieve the 
same result. 

In general the highest frequency we can resolve by sampling every A t seconds, is m. 
The length of the record dictates the lowest noise frequency we can detect. Obviously we cannot 
detect a fluctuation with a one year period by inspecting a record 50 seconds long. More precisely, 
the lowest frequency we can detect from a record T seconds long is 2/T Hz or .04 Hz when T = 50 
seconds. 

Most procedures developed to determine the power spectral density froin a series of discrete data 
points assume that the sampling rate is several times faster than needed to  resolve the highest 
fluctuation frequency expected in the data and the record several times longer than needed to 
resolve the lowest frequency expected. 

1 

V. Time Domain Characterization of Stability 
In the preceding section we showed how oscillator noise can be characterized i n  the frequency 
domain. As a practical matter, the output signals are often sampled to obtain a discrete set 
of y, and then mathematically manipulated to obtain an estimate of S,( j ) .  This often requires 
considerable computation. However, for the types of noises which plague most oscillators, there is a 
considerably simpler approach (from a computational point of view) which is the second, commonly 
used, characterization of instability mentioned in the introduction. 
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In this method we again start with a set of yi, but instead of converting these measurements to a 
frequency domain representation we develop a procedure for determining the dispersion or scatter 
of the yi as a measure of oscillator noise. The bigger the scatter or dispersion of the y; the greater 
the instability of the output signal of the oscillator. 

The most common statistical measure of dispersion is the standard deviation (or equivalently the 
variance which is the square of the standard deviation). The variance, R2, is simply a measure of 
the numerical spread of a set of data points with respect t o  the average or mean value, y, of that 
set of data  points. The formula for computing the variance of a set of M d a t a  points taken at 
uniform intervals of time is: 

The reason for squaring the terms (y; - g) is that an excursion in y; from the mean always gives a 
positive contribution in the calculation of scatter. That  is an excursion in the positive direction is 
not canceled by one in the negative, as is the case for the mean. 

A very simple measure of the instability of an oscillator is to simply compute the variance of the 
y; obtained from a particular oscillator. We would expect our confidence in our measurement of 
the variance t o  increase as we increased the number of data  points used in our computations. 
Unfortunately, for common types of oscillator noise, this is only true to  a point. To understand 
this better refer back to  Figure 3 which illustrates the spectral noise density typical of frequency 
standards. Suppose we have sampled the oscillator noise once per second. We decide to estimate the 
variance of y(t) from 100 consecutive data  points. As we have seen already, data  taken at  intervals 
of one second over a record length of 50 seconds effectively “isolates” those noise fluctuations with 
frequencies in the 0.5 to  .04 Hz range. Or stated differently, only those noise fluctuations in the 0.5 
t o  0.04 frequency range contribute t o  our estimate of the variance. As we increase the data  length, 
lower and lower noise frequencies contribute to  the variance. As we see from Figure 3, however, 
the noise fluctuations have a constant power down to  about 0.01 Hz. This means that as long as 
our data  length does not exceed 200 seconds, the variance does not depend on record length. (It is 
true, however, that  our confidence in the estimate of the variance depends on the number of data  
points, so that,  for best confidence in the variance, we should use 200 data  points.) 

If we extend our calculations to include data taken over an interval which exceeds 200 seconds, the 
variance will be influenced by noise fluctuations from that part of the noise spectrum which is not 
flat with frequency. Now the variance grows in magnitude with data  length. This is unfortunate. 
We would like our statistical measure of scatter to converge toward some value as we increase the 
number of values used in our estimation-not move off to  new values with increasing data  length. 

We must modify our calculation of variance as applied to oscillator noise, so that the variance 
converges toward some value as we increase the number of data points employed in our calculations. 

VI. Stationarity 

In the previous section we saw that the variance does not yield a satisfactory result when applied 
t o  frequency standard noise. The problem we are encountering is similar to the problem that arises 
when we attempt to  compute the average value for data which has a slow drift. This drift might 
be due t o  some instrumental fault so the drift is an artifact of the measurement procedure. 
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Consider the record shown in Figure 5-a. These data  have random fluctuations superimposed on 
a slow drift. Obviously the mean value computed for the first half of the record does not equal 
the mean computed for the second half. In this example the mean depends on when the mean is 
computed. 

With stationary data the mean and variance converge toward some value as the record length 
increased. Obviously data with a slow drift is non-stationary so the mean and variance never 
converge t o  any particular value. 

We would like t o  have a measure of dispersion of frequency standard noise which converges toward 
some value as record length increases. If we apply the normal variance, R2, calculation to the data 
shown in Figure 5a, this will not be so; since, the mean, which enters into the variance calculation, 
changes with record length. 

Suppose, however, that  we calculate another quantity, d2,  which is similar to R2 except that  instead 
of subtracting the mean from each data  point before squaring their summation, we subtract the 
previous data  point. That is: 

. M  

The terms (y; - y;-l) = Ay; take on nearly the same values that they would whether a trend is 
present or not i.e., the quantity d2 is insensitive to  the.absence or presence of a trend, while R2 is 
sensitive. 

Let us examine d2 from a different point of view. Figure 5b shows a plot of the Ayi’s. The Ay; 
plot is similar to Figure 5a except that the trend is missing. In fact, we can think of the process of 
taking successive differences (computing the Ay’s) as equivalent to running the data  in Figure 5-a 
through a high pass filter which removes the trend. Equation 3, then, is akin t o  computing R2 but 
contains the additional feature of removing the trend. With the trend removed, we would expect 
d2 t o  converge with increasing data  length where R2 did not. 

Let’s consider now, in more detail, the nature of the high pass filter produced by taking successive 
differences. We could determine experimentally the frequency response of this filter by taking a large 
number of digitized sine waves with the same amplitude but with different frequencies. Suppose 
for example we took a 1 Hz sinusoid sampled ten times per second to produce a set of pi’s, Figure 
6a. We now take successive differences between the y; t o  produce the Ay; which are also shown in 
Figure 6b. As we see we obtain, again, a sinusoid of the same frequency but with reduced amplitude 
(and shifted phase which is not important here). Similarly we could take other sinusoids of unit 
amplitude and in a similar manner determine their amplitudes upon taking successive differences. 
The result of such an experiment is shown in Figure 7a. As we see the filter does not attenuate the 
frequency a t  the reciprocal of two times the sampling rate (0.05 Hz) but does attenuate all lower 
frequencies with the attenuation increasing as the frequency approaches zero. 

In some situations we might want t o  leave the trend in and remove the fast fluctuations. For 
example, suppose we have data  consisting of hourly temperature readings taken over a period of 
one year. If we average the hourly temperature readings, a day a t  a time, we remove the hourly 
fluctuations leaving just the day to  day trend. The response of this low-pass averaging filter is 
shown in Figure 7b. It has unity gain a t  0 Hz and zero gain a t  1/2 (averaging interval) = 1/[2 (24 
hours)] = 5.8 x Hz. 
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Suppose, now, we have a set of measurements which we first average, corresponding to low-pass 
filtering, and then difference, corresponding to high-pass filtering. We can think of these two 
operations together as equivalent to band pass filtering the original data. The shape of this band 
pass filter is simply the product of the low and high pass filters, Figure 8a. 

Figure 8a shows the response shape of the band pass filter corresponding to  first averaging the 
data  two seconds a t  a time and then taking successive differences. As we increase the time over 
which we average the data and then take differences, the frequency a t  which tlie band pass filter 
has maximum response moves toward a lower frequency and the width of the filter decreases. To 
demonstrate this we have plotted in Figure 8-b tlie band pass filter response corresponding to  
averaging and differencing times of 2 ,  4, and 10 seconds. 

From this illustration we see that by adjusting the length of the averaging time of the original data 
points, we can move the center frequency of the filter. This suggests that we might use such a band 
pass filter t o  estimate the power spectral density of oscillator noise. Suppose we first average and 
difference our data, the yi, with the filter centered at  1.0 Hz. The filtered data now contains only 
those noise components near 1 Hz. From this filtered data we compute a value for the variance. 
Next we center the filter a t  0.5 Hz and again compute the variance from the filtered data. Now we 
have computed the variance for the noise fluctuations in the vicinity of 0.5 Hz. We can continue this 
process indefinitely letting the filter center frequency approach 0.0 Hz. If we now plot the variances 
obtained as a function of the associated center frequency of tlie filter, we obtain an estimate of the 
noise power as a function of frequency which is similar to the kind of iiiforniatioii contained in a 
power spectral density, S,(f), plot. This is tlie reason we have chosen to work with tlie variance 
rather than the standard deviation since tlie standard deviation has the dimensions of amplitude. 

I t  can be shown, on a rigorous mathematical basis, that if we pass noise with a l / j  or l /f2 power 
spectral dependence through the type of digital filter we have been discussing, that  the noise passing 
through this filter is stationary. If we now compute the variance of this filtered noise, we can be 
assured that the variance will converge as the record length increases. Further this variance is 
a measure of the noise fluctuations in a particular frequency band which is dependent upon the 
frequency a t  which the bandpass filter is centered. 

VII. Pair Variance 

With the background developed in the previous section, we can now define explicitly the second 
measure of frequency instability (the one in the time domain) which is commonly employed. This 
measure, often called the “pair variance,” is defined by: 

, M 

where M is the number of data points and the y; are obtained by averaging tlie data,  i n  A4 segments, 
each T seconds long. 

We can consider this formula in the light of the bandpass filtering discussed in the previous section. 
First, we notice that the y; are obtained by averaging tlie signal in chunks r seconds long, which 
corresponds to  low-pass filtering the data. Second, the differences are taken between successive 
pairs of data  which are separated in time by T seconds; because, tlie original data was averaged T 
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seconds at a time to create the y;. As we know the averaging and differencing procedures amount to 
band pass filtering the data  to produce stationary noise-assuming the spectral noise density varies 
as l/f or l/f*. We notice that there is a factor 1/[2(Ad - l)] in front of the summation sign which 
differs by a factor of 1/2 from the formula for R2.  This is because we want the two formulas for 
R2 and uf to give the same numerical result for white noise Fh/l-which is stationary. 

Let’s apply the variance to oscillation noise of the type shown in Figure 3. Suppose we compute 
cY(7), the square root of the pair variance, for T = 10 seconds. This corresponds to calculating the 
standard deviation for data  which has passed through the filter labeled 7 = 10 seconds in Figure 
8b. As we increase 7, our band pass filter moves toward lower frequencies and narrows. As long as 
the spectrum is constant with frequency, oy decreases with r ;  since, the filter narrows as i t  moves 
toward lower frequencies. As we move into the f-’ portion of the spectrum, the bandpass filter 
continues to  narrow as the noise power increases. In this region the filter narrows a t  a rate which 
exactly compensates for the increase in noise power so that cy is flat in this range. This flat region 
is called the “flicker floor” of the oscillator, and froin a practical point of view, once the flicker 
floor is reached, no further gains are made by averaging. As we move into the f-2 region, the noise 
power increases at a rate which is faster than is compensated for by the narrowing filter so that in 
this region oy grows with r. 

Obviously the variation of cy(.) with r is related to  the spectral density noise S,( f) as indicated 
by the arrows connecting the two parts of Figure 9. In fact, it can be shown mathematically that 
the slopes of the r ~ ,  vs r curve are -1, 0, and +1 for P, f-’, and f-2 types of noise respectively. 
We see then that the oy vs ( r )  curve is a fairly siniple way, from a computational point of view, to 
infer the noise spectrum of the oscillator. 

Although we have been particularly concerned with f-’ and fd2 noise, it can be shown as we said 
that the pair variance converges for noise which is divergent up to, but not including f-3 noise. At 
f-3, and beyond, gY(7) does not converge as the data  length increases. 

We have considered two measures of frequency stability: one in the frequency domain, S,(f) and 
the other in the time domain, ai(.). From a computational point of view, ui is a convenient 
measure of stability and can be used to  characterize the spectrum of oscillation noise. On the other 
hand, the power spectral density, S , ( f ) ,  is quite often more convenient for theoretical developments 
since i t  is a fundamental quality. Cutler and Searle (reference 1) have shown that ci and S,(f) are 
related as follows: 

This equation is the analog of what we have developed from a digital filter point of view. The term: 

can be thought of as a band pass filter, through which the noise spectrum S,(f) is passed, during 
the integration over f ,  t o  determine oy for a particular T. 
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VIII. Characteristics of Real Frequency Standards and Clocks 

Now that  we are armed with the primary time domain performance measure of frequency standards 
let’s see how the various kinds of standards stack up. Figure 10 illustrates what we might expect 
from a number of different devices. 

For a cesium frequency standard we have displayed three curves: one represents a standard portable 
commercial device, another a high performance commercial standard, and finally, a laboratory 
standard which would be found normally at a national standards laboratory. We include both a 
standard and a high performance rubidium standard. OCXO means an oven controlled crystal 
oscillator. 

With these characterizations let’s consider one example of how we might use these performance 
measures: the problem of predicting the performance of clocks whose resonators are based on the 
frequency standard characteristics discussed in the previous section. 

By now we know that  the kind of noise that dominates, for a particular frequency standard, 
depends on the sample time T. For example we see, from Figure 3 that  a standard rubidium device 
is dominated with flicker noise FM-the flat part of any of the curves in the figure-at about T = 
1000 seconds while the transition for the passive hydrogen maser doesn’t occur until about T = 
100,000 seconds. 

Since a clock is based on a frequency standard, the degree to  which a clock departs from a perfect 
clock over time depends on the kind of noise dominating the frequency standard for the prediction 
time of interest. In our discussion we assume that constant frequency offsets and linear drifts in 
frequency have been removed from the frequency standard driving our clock, and that  only the 
random noise is keeping our clock from perfection. 

For the three regimes of noise illustrated in Figure 3 reference 2 shows that: 

1. When white noise FM and random walk noise predominate, the optimum 
predictor for clock dispersion is simply T O ~ ( T )  

2. when flicker noise FM is dominant the optimum predictor is T O ~ ( T )  In 2. 

Figure 11 shows, applying these rules, the time dispersion- the RMS time prediction error-we 
would expect for active and passive masers, a cesium standard, and a rubidium standard. 

As a specific example, consider a large collection of clocks all of whose resonators are cesium 
frequency standards with the same noise properties. We want t o  know the RMS scatter of these 
clocks after, say, 100,000 seconds-a little over one day-after they have been synchronized. As Figure 
11 shows at 100,000 seconds the RMS spread is about 5 nanoseconds. From a practical point of 
view this means that if we have a large collection of clocks, and want to keep them synchronized 
t o  about 5 nanosecond, we need to  resynchronize them about once a day. 

If these clocks were at nodes in a communications systems we would need t o  dedicate some of our 
communication channel to achieve this level of synchronization, or alternately recalibrate against 
some external time source, say a satellite time signal, about once a day. 

Of course clocks based on other kinds of resonators would need resynchronization more or less often 
depending on the quality of the resonator. 
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IX. Concluding Remarks 
The notion of averaging and differencing successive da ta  points to remove both short term and long 
term variations is an old one. Meteorologists have used these techniques for at least 150 years in 
their studies of temperature and pressure variations. In more recent times a 1942 paper by von 
Neuman et. al. explicitly states the problem of applying the classical standard deviation to data 
containing a trend [reference 31: 

“There are cases, however, where the standard deviation may be held conitant, but 
the mean varies from one observation to  the next. If no correction is made f o r  such 
variation of the mean, and the standard deviation is computed from the data in the 
conventional way, then the estimated standard deviation will tend to  be larger than 
the true population value. When the variation in the mean is gmdual, so that a tmnd 
(which need not be linear) is shifting the mean of the population, a mther simple 
method of minimizing the eflect of the trend o n  dispersion is to estimate standard 
deviation from dij‘ferences. ” 

Clock metrologists have developed these ideas into rather sophisticated but relatively simple tools 
for the study of the important noise processes in frequency standards. In the time and frequency 
literature you will find the pair variance also referred to  as the “two sample variance” or the “Allan 
variance” after David Allan [reference 41 who has focused these techniques on frequency standards. 
But the problem of characterizing oscillator frequency, stability is by no means closed. We have 
discussed the most commonly encountered measures in the frequency and time domains, but anyone 
who wishes to  pursue current investigations will find reference 5 a good place to start. 
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Figure 10 Characteristics of Typical Frequency Standards 
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