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Abstract 

The  algorithm which generates the AT1 time scale at the National Institute of Stan- 
dards and  Technology (NIST) has generated a scale with many desirable properties 
since 1968. Five of these are as follows: 

1. The fractional frequency variation of the scale is smaller than any clock in the 

2. The algorithm adaptively estimates the weights of clocks in real time. 
3. The scale is much more reliable than any individual clock. 
4. One can add or remove clocks from the scale easily, with a minimum impact on 

5. One can correct the ensemble for calibrations against a primary reference. 

scale for all integration times. 

the scale. 

There are  three other properties we would like to  obtain: 

1. Automatic frequency step detection. 
2. A scale optimized for post-processing, including running both  forwards and  back- 

3. A scale tha t  can run  with minimal supervision for use in non-technical environ- 
wards in time. 

ments. 

It turns  out t h a t  simply estimating a variance of the frequency state of the clocks 
facilitates all three of these new properties. We report here a new algorithm which uses 
techniques from Kalman filtering to  estimate this variance. Results from simulation 
and  applications t o  real clocks are presented also. 

INTRODUCTION 

Ideally, a time scale algorithm samples an ensemble of clocks to  generate time and frequency with 
more reliability, stability, and frequency accuracy than any of the individual clocks in the ensemble. 
In this paper we study an approach to this ideal. 

A time scale algorithm calculates the time offset of each of the ensemble clocks at  a given reference 
time. Ensemble time, the time of the scale, is realized by applying the appropriate correction to  any 
one clock. If there is no measurement noise this value is independent of which clock is used. The input 
to the algorithm at a given reference time is the time difference between each clock and a particular 
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clock. The algorithm also requires estimates of the deterministic and stochastic parameters which 
characterize each clock’s frequency offsets. 

It is important t o  notice that the time of a clock is not measured. One measures only time differences 
between clocks. Thus the ensemble time which the algorithm generates is not observable. For this 
reason it is inappropriate t o  use an accuracy algorithm, such as a Kalman filter, t o  generate time 
by minimking time error. We can, and do in the algorithms discussed here, optimize time and time 
interval stability. 

It is also important to  realize that a clock as a physical system produces a frequency. The time of a 
clock is artificially derived from the frequency, which is the true physical quantity. Because of this, all 
the parameters which characterize clock performance describe aspects of the frequency. One can use 
these parameters t o  optimize time uniformity and frequency accuracy. An algorithm that optimizes 
time accuracy should simply allow the clock with the best long term stability to  dominate the scale, 
thus sacrificing much of the performance of other clocks, especially in short term. We will look at 
these things further as we go along. 

The AT1 time scale algorithm a t  the National Institute of Standards and Technology (NIST) has 
generated a scale with many desirable properties since 1967. Five of these are as follows: 

1. The fractional frequency variation of the scale generally appears smaller than any clock in the 
scale for all integration times. 

2. The algorithm adaptively estimates the weights of clocks in real time. 

3. The scale is much more reliable than any individual clock. 

4. We can add or remove clocks from the scale easily, with a minimum impact on the scale. 

5 .  We can correct the ensemble for calibrations against a primary reference. 

There are three other properties we would like to  obtain: 

1. Automatic frequency step detection. 

2. A scale optimized for post-processing, including running both forwards and backwards in time. 

3. A scale that can run with minimal supervision for use in non-technical environments. 

The new algorithm we report here combines aspects of the NIST AT1 algorithm with techniques from 
Kalman filtering to  estimate clock states representing the random walk plus drift of the frequency 
offsets of each clock, as well as the variance of these states. For a given clock, this state, which we call 
“Y”, is not a physical state, but a mathematical estimate of the frequency offset in the presence of 
white noise modulating the frequency. The variance of this state gives us a confidence of this estimate. 
Having this estimate facilitates attainment of all three of our goals. 

Frequency step detection always requires examining the data over some time period. In nearly real 
time operation it is possible to  compare the estimate of average frequency offset over an interval with 
the filtered estimate from the beginning of that interval. Using the estimate of frequency deviation as 
a test for outliers, we can determine if a frequency step occurred in the recent past. 
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We can also smooth our estimates of “Y” in post-processing by combining the forward and backward 
filters. The proper way to  combine these is well-defined in Kalman filter theory. Essentially, we use 
the reciprocal of the forward and backward filter variances as weights to  combine their respective 
state estimates at a given reference time. We must be careful not t o  incorporate the data  a t  that 
time in both filters before combining them, else they will not be independent estimates. Thus, at a 
given reference time, we use the extrapolated estimates of state and variance from one direction, the 
backward filter for example, and combines this state estimate with the one from the forward direction 
which has been updated with the data. 

The AT1 time scale is adaptive once we know the clock parameters characterizing the short and long 
term behavior of the clocks. Since our new scale uses the Kalman formalism, we can enter a new clock 
and the algorithm will optimally adapt its estimate of frequency offset variance. This allows us to 
enter new clocks without perturbing the scale. 

Both results from simulation and applications to real clocks are presented. 

THEORY: AT1 

We first present the AT1 algorithm and then show how we have modified it. In the AT1 algorithm each 
clock has two states which are estimated: the time and frequency offsets of the clock from ensemble 
time. Frequency drift can be entered and used, but it is not estimated adaptively by the algorithm. 
The AT1 algorithm is a three-tiered process: the time update, the update of the variance of the time 
offset, and the frequency update. The weight of a clock is proportional to the reciprocal of the variance. 
Each of these updates can be broken down into two steps: an initial estimate and the update. 

1. Time Prediction: 

kj(t + T )  = Xi@)  + ( l q t )  + D p / 2 ) r  (1) 

We predict the time offset from ensemble time, i;, of clock i for the current measurement time (t  + T) 
based on the previous estimates a t  time t of time offset, X;, and filtered frequency, &, and the entered 
frequency drift, Dj. 

2. Time Update: 

n 

X j ( t  + T )  = c = w;[&(t + T) - x ; j ( t  + T)] (2) 
i= l  

We update the time offset of each clock j against the scale a t  time t + T given the measurements 
X;j( t  + 7 ) .  Clock j ’ s  offset is estimated using the measurement and prediction of each other clock, i ,  
then these estimates are combined in a weighted average. The weights w; are determined adaptively 
in equations 6 - 10. This is the maximum likelihood estimate of Xi if the w;’s are proportional 
to the reciprocal of the variances of the time residpals, and the residuals have a gaussian normal 
distribution.[’] 
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3. Frequency Estimate: 

(3) 
Xi(t  + T )  - X i ( t )  f i ( t  + T )  = 

7 

% is the estimate at time t + T of the average frequency of clock i over the interval T based on the 
latest two time updates, Xi.  

4. Frequency Update: 

We incorporate the previous frequency update into an exponentially filtered estimate of the current 
average frequency offset of clock i. The exponential frequency-weighting time constant (mi)  is deter- 
mined from the relative levels of white noise FM and random walk (or flicker) FM for clock i (equation 
5 ) .  

5. Frequency Update, Exponential Time Constant: 

m; = 1/2 [ -1 + [; - + __ 4&;q '"1 
( 5 )  

We determine mi used in equation 4 to  form the filtered estimate of the frequency of clock i. Here, 
T M ; , , ~  is the integration time which gives the minimum value on a ( ~ ~ ( 7 )  plot given that the clock's 
stochastic deviations are characterized by white and random walk FM. TO is the minimum T value 
used for computing crY(.). This value of mi can be shown to optimize the stability in predicting time 
(equation 1) given these two kinds of noise in the clock (white and random walk FM)[']. If white 
FM and flicker FM are more suitable models, then m; can be approximated as rZ/ro,  where r, is the 
intercept value of r on a uU(.) plot for the white and flicker FM. 

6. Variance Estimate: 

P; is the lack of predictability of clock i over the interval T ,  being the difference between the prediction 
and the update. Thus it is an estimate of the deviation (square root of variance) of the clock based on 
the current measurement cycle. The additive term Ki accounts for the fact that the term in brackets 
on the right-hand side of equation 6 is biased because clock i is part of the ensemble. See equation 
10 t o  calculate Ki. 
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7. Variance Update: 

e; (r )  estimates the mean squared time error of clock i by filtering exponentially the estimate of clock 
i's deviation from the current measurement cycle. Since the noise characterktics of a clock may not 
be stationary, past measurements are de-weighted in the filtering process. The time constant for the 
filter is typically chosen to be N, = 20 days for cesium clocks, representing the time one expects the 
white FM level to  be constant. The initial value of e;(r) can be estimated as ."CT;(T). 

8. Ensemble Variance: 

E",(.) forms an estimate of ensemble time error. Any clock can only improve this number - a poorly 
performing clock cannot harm the stability of the ensemble. 

9. Adaptive Clock Weights: 

wj is the weight to  be used in equation 2 for clock i .  When calculated this way, the resulting ensemble 
time stability can be shown to be optimized in a maximum likelihood sense, assuming a normal 
distribution of the noise of clock i with variance e;(.). 

10. Bias of the Error Estimate: 

Kj estimates the bias in the error estimate from the first term on the right of equation 6. This error 
estimate is biased small, on the average, because each clock is a member of the ensemble and sees itself 
through its weighting factor. The larger a clock's weight, the larger is the bias. Under the assumption 
of a normal distribution of clock noise the size of the bias can be estimated as given by equation 10, 
which is added to  equation 5 in order to remove the bias, on the average!']. 

THEORY: ATl-PLUS-VARIANCE 
c 

What is missing here is an estimate of the variance of the residuals of the frequency offset from the 
ensemble, Y. In our approach, we interpret Xi as a measurement of the time of clock i against the 
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scale. Thus the first difference, % of Xi, as in equation 3, is a measurement of the frequency offset of 
clock a' from the scale. We use a simple Kalman formalism to filter this measurement to estimate Y ,  
where we use Q ( T )  as noise of the measurement. We model Y as having a random-walk noise and a 
fixed drift. Thus, Y is not the physical frequency as produced by the clock, but. since we are filtering 
down the white frequency modulation (FM), it is only the random-walk component of the frequency 
of the clock, plus any drift. 

The X terms do reflect the physical time offset of the clock from the scale, thus incorporating the 
white FM. The Y term is used to  better predict the X values. We substitute equations 4 and 5 with 
the Kalman equations: 

11. System Model: 

Yl,(t + T )  = x(t) + Dir + ~ ( r ) .  (11) 

is the random walk component of the frequency offset of clock i from the scale plus the drift offset. 
The random walk is driven by the white noise process ~(7). 

12. Measurement Model: 

fi = Yl, + E ; ( T )  

The measurement fi is a direct measurement of K ,  plus white noise. 

The actual equations used for update are: 

13. Variance Prediction: 

(13) 
2 Ei(t + T )  = P ( t )  + arl * r.  

k is the prediction of variance of the residuals of Y which grows with r according to a:, the variance 
of the white noise process, q ,  driving the random-walk FM. 

14. F'requency Update: 

$(T) * Y ( t )  + P * i. 
E:(r) + P Y ( t  + T) = 

We see that the Kalman formalism also gives us an exponential filter on Y .  Thus in steady state this 
algorithm reduces to  AT1 if the weights are chosen properly. This implies that this algorithm inherits 
the ability that  AT1 has to model flicker frequency. 
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15. Variance Update: 

q r )  * fJ 
E ; ( T )  + P P =  (15) 

In the Kalman formalism the system parameters are known in advance. This system is a modification, 
an adaptive Kalman filter, where we estimate the “measurement noise,” C ? ( T ) .  This allows the variance 
of the residuals of Yto evolve both from an initial value, as is normal for the Kalman filter, and if 
E ? ( T )  changes. This allows the exponential filter parameters on Y, as expressed in 14, to change with 
time, both after entering a new clock, and if the white FM level of the clock changes. 

It is possible to solve for the steady state form of these equations and make identifications between 
the AT1 algorithm and our new algorithm. We find that the steady state value of P is: 

16. 

Making the appropriate identifications between equations 4 and 14 we find: 

17. 

Using 16 in addition yields: 

18. 

These equations allow us to compare the performance of the two algorithms with the parameters m 
and q set consistently. 

We close this theoretical section mentioning results from elsewhere. Jones and Tryon[2] have designed 
a time scale algorithm which is purely a Kalman filter. This scale, called TA(NIST), has been run 
at NIST in parallel with AT1 since about 1983. That filter is mathematically identical with the 
AT1 algorithm for the time and frequency predictions and updates131. The difference among these 
algorithms is the weighting of clocks in the time update and the exponential filter parameters in the 
frequency update. These differences effect the ensemble time they generate, which is realized as the 
time offsets, X i ,  of the clocks against ensemble time. 

We will show in simulation and with real clocks that the pure Kalman filter time scale sacrifices 
short term performance, and simply follows the cloCk with the best long term performance. This is 
consistent with the design of Kalman filters in general which minimize error. The Jones Tryon filter 
attempts to estimate and minimize both time and frequency error. An additional problem with this is 
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that since time is unobservable, elements of the covariance matrix grow without bound. In practice, 
with a good ensemble of clocks, this growth is not large enough to cause computer overflow errors in 
any reasonable amount of time, though it is suggestive of an undesirable situation. 

SIMULATION 

In simulation w e  show the following: 

1. Both algorithms AT1 and AT1 plus frequency variance produce a time scale apparently better 
than the best clock in the scale at all integration times. 

2. The TA(N1ST) algorithm is dominated by the clock with the best long term performance a t  all 
integration times. 

3. The ATl-plus-frequency- variance estimate of the confidence on the frequency offset estimate 
appears to  be a reasonable estimate. 

4. The use of this confidence estimate to  determine frequency steps improves long term performance 
of the time scale. 

Figure 1 illustrates item (1). Here we have generated data simulating clocks with various levels of 
white FM and random- walk FM. We have treated the problem as we would with real clocks where we 
only measure clock differences. We have computed the stability of each clock using an N-cornered hat 
techniqueI4I. The stability of the scale we have determined by taking the output value of clock minus 
scale and subtracting the generated value of clock minus truth. If we look directly a t  the variances of 
the generated data, we see significant differences between the variances computed directly, and those 
estimated from N-cornered hat (Figure 2).  These differences must be due to apparent correlations 
in the data. This should come either from the finite data length, or from real correlations in the 
pseudo-random number generator. If the generated clocks are truly correlated, then the algorithm 
can only produce a variance better than the uncorrelated part. We notice that the scale seems to  
follow the shape of the variances from the N-corner hat. This suggests correlation in the generated 
data. 

Figure 3 shows a comparison of the output of a version of the Kalman filter which defines TA(N1ST) 
with the simulated input data. We see that the Kalman algorithm has the stability of the clock with 
the best long term variations. 

Figures 4 and 5 show the residuals from the AT1-plus-variance algorithm compared with the estimated 
confidence, from the estimated variance of frequency residuals. The algorithm estimates the random- 
walk component of a clock’s frequency offset from the ensemble time. Since these are generated clocks 
we know the true value of the random-walk component of frequency of that clock versus the true value 
of the time scale. The differences of these two, the estimate minus truth, are the residuals plotted. 
The sigma value used in the plot is the root-mean-square of the estimated deviation of the clock plus 
the estimated deviation of the scale. The line plotted is the three-sigma value. This should be a 99.8 
percentile. Over the 700 points plotted we should get 1 or 2 residuals crossing the lines of the sigmas. 
This seems to  be the case. 

Last, we inserted frequency steps in the simulated clocks. Figure 6 shows the frequency offset from 
the scale of the simulated clock 9, with a frequency step of 1 x on MJD 46500. This clock 
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was given a white FM level of 30 ns, and a random walk FM level of 0.5 ns, both at  1 d. Figure 7 
shows the estimate from the AT1-plus-variance scale of the random-walk component of frequency. 
The reduction in the white FM is apparent. The scale was able to detect the frequency step, with the 
step detector set at 4 sigma, with sigma defined as above. When such a step is detected, we re-run 
the scale, removing the clock with the step until the scale can learn the new frequency value. Figure 8 
shows the frequency offset from the scale of the simulated clock 1, with a frequency step of 2 x 
on MJD 46100. The noise of this clock is almost all random walk FM as compared to its level of white 
FM. The estimate from the scale shows very little smoothing. Yet, even in this case, the frequency 
step detector automatically found the step and removed the clock from the scale. In Figure 9 we 
see the benefit from having detected the frequency steps. There is a significant improvement at  an 
integration time of 128 d and longer. 

REAL DATA 

Last, we took data  from real clocks at  NIST over the period from December 31, 1988, to October 
30, 1989. We ran our AT1-plus-variance algorithm on this data, including automatic frequency step 
detection and recalculation. We also took data using GPS common view meas~rements f~]  with other 
laboratories: PTB, USNO, TUG, and NRC. Using an N-cornered hat technique, we were able to 
determine the variance of each of these. We compared these results with a similar analysis using the 
official NIST AT1 time scale. The results for the two scales run on NIST clocks as well as USNO 
and P T B  are plotted in Figure 10. We find that the official AT1 and the new AT1-plus-variance 
scale are similar, though in long term the official scale is somewhat better. The official AT1 scale is 
watched carefully and administratively checked for time and frequency steps, as well as changes in 
clock performance in general. We find that human care adds much to a time scale. 
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AT1 + Variance on Simulated Clocks 
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Figure 1: 
cornered hat technique. 
taking the output value of clock minus scale and subtracting the generated 
value of clock minus truth. 
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We have computed the stability of each simulated clock using an N- 
The stability of the scale we have determined by 

The AT1 scale outperforms all clocks at all 

Tmth vs NComcr Ha 

m 
a 

m . *  @ i  . . . . 
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defines TA(N1ST) with the simulated input data. 
algorithm has the stability of the clock with the best long term variations. 
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Simulation Clk 1: Residuals vs. Estimated Confidence 
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Figure 4 :  
the estimated confidence, from the estimated variance of frequency residuals. 
The line plotted is the three-sigma value. 

The residuals from the AT1-plus-variance algorithm compared with 

Simulation Clk 9: Residuals vs. Estimated Confidence 
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Figure 5: 
the estimated confidence, from the estimated variance of  frequency residuals. 
The line plotted is the three-sigma vafue. 

The residuals from the AT1-plus-variance algorithm compared with 
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Fn~pency-Step Detection Improves Long-Tctm Stability 
Simulated Clocks 
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Figure 6 :  
a frequency s t e p  o f  1*10-12 on M J D  46500. 
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Figure 7 :  
component of  frequency f o r  c lock 9 .  
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Figure 9 :  
t h i s  diagram. 
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Figure 10: The r e s  I t s  f o r  the  t w o  s c a l e s ,  t he  o f f i c i a l  AT1 and the  n AT1 - 
plus-var iance ,  run on NIST clocks a s  wel l  a s  USNO and PTB 
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