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Time and Frequency (Time-Domain) Characterization, 
Estimation, and Prediction of Precision 

Clocks and Oscillators 
Invited Paper 

DAVID W. ALLAN 

Abstract-A tutorial review of some time-domain methods of char- 

acterizing the performance of precision clocks and oscillators is pre- 

sented. Characterizing both the systematic and random deviations is 

considered. The Allan variance and the modified Allan variance are 

defined, and methods of utilizing them are presented along with ranges 

and areas of applicability. The standa,rd deviation is contrasted and 

shoun not to be. in general. a good measure for precision clocks and 

oscillators. Once a proper characterization model has been developed, 

then optimum estimation and prediction techniques can be employed. 

Some important cases are illustrated. As precision clocks and oscilla- 

tors become increasingly important in society. communication of their 

characteristics and specifications among the vendors, manufacturers. 
design engineers. managers, and metrologists of this equipment be- 

comes increasingI> important. 

INTRODUCTION 

66 

w 

H.\T THEN.” asked St. Augustine, “is time? 
If no one asks me. I know what it is. If I wish 

to explain it to him who asks me, I do not know.” Though 
Einstein and others have taught us a lot since St. Augus- 
tine. there are still many unanswered questions. In partic- 
ular. can time be measured? It seems that it cannot; what 
is measured is the time di$erence between two clocks. 
The time of an event with reference to a particular clock 
can be measured. If time cannot be measured, is it phys- 
ical, an abstraction, or is it an anifact? 

We conceptualize some of the laws of physics with time 
as the independent variable. We attempt to approximate 
our conceptualized ideal time by inverting these laws so 
that time is the dependent variable. The fact is that time 
as we now generate it is dependent upon defined origins. 
a defined resonance in the cesium atom. interrogating 
electronics. induced biases. timescale algorithms. and 
random perturbations from the ideal. Hence, at a signifi- 
cant level. time-as man generates it by the best means 
available to him-is an artifact. Corollaries to this are that 
every clock disagrees with every other clock essentially 
always. and no clock keeps ideal or “true” time in an 
abstract sense except as we may choose to define it. Fre- 
quency or time interval. on the other hand. is fundamental 
to nature: hence the definition of the second can approach 
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the ideal-down to some accuracy limit. Noise in nature 
is also fundamental. Characterizing the random variations 
of a clock opens the door to optimum estimation of en- 
vironmental influences and fo the design of optimum com- 
bining algorithms for the generation of uniform time and 
for providing a stable and accurate frequency reference. 

Let us define V(r) as the sine-wave voltage output of a 
precision oscillator: 

V(r) = V. sin @P(t) (1) 

where @ ( r) is the abstract but actual total time-dependent 
accumulated phase starting from some arbitrary origin @(I 
= 0) = 0. We assume that the amplitude fluctuations are 
negligible around V,. Cases exist in which this assump- 
tion is not valid, but we will not treat those in the context 
of this paper. This lack of treatment has no impact on the 
development or the conclusions in this paper. Since infi- 
nite bandwidth measurement equipment is not available 
to us, we cannot measure instantaneous frequency; there- 
fore v(r) = (I /2n) d+/dr is not measurable. We can 
rewrite this equation with y. being a constant nominal fre- 
quency and place all of the deviations in a residual phase 

4(r): 

V(f) = V. sin (27ruor + d(r)). (2) * 

We then define a quantity F(I) = (v(r) - v~)/Y,-,. which 
is dimensionless and which is the fractional or normalized 
frequency deviation of v(r) from its nominal value. In- 
tegrating y(r) yields the time deviation x(r), which has 
the dimensions of time 

., 

x(r) = Oy(r’) dr’. 
s 

(3) 

From this, the time deviation of a clock can be written as 
a function of the phase deviation: 

40) 
x(r) = -. 

2;iYO 
(4) 

SYSTEMATIC MODELS FOR CLOCKS AND OSCILLATORS 

The next question one may ask is why does a clock 
deviate from the ideal? We conceptualize two categories 

8 See Appendix Note X 11 
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Fig. I. Frequency .v( I) and time X(I) deviations due to frequency offset 
and to frequency drift in clock. (a) Fractional frequency error versus 
time. (b) Time error versus time. 
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Fig. 2. Nominal values for temperature coefficient for frequency stan- 
dards: QU = quartz crystal. RB = rubidium gas cell, H = active hy- 
drogen maser, H( pas) = passive hydrogen maser, and CS = cesium 
beam. 
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Fig. 3. Nominal values for magnetic field sensitivity for frequency stan- 

dards: QU = quartz crystal. RB = rubidium gas cell, H = active hy- 
drogen maser, H (pas) = passive hydrogen maser, and CS = cesium 
beam. 

OSCILLATZR 

of reasons, the first being systematics such as frequency 
drift (D). frequency offset ( yO), and time offset (x0). In 
addition. there are systematic deviations that are often en- 
vironmentally induced. The second category is the ran- 
dom deviations c(t). which are usually not thought to be 
deterministic. In general, we may write 

S(f) = x0 + yor + l/2 Df' + c(t). (5) * 
Though generally useful, the model in (5) does not apply 
in all cases; e.g.. some oscillators have significant fre- 
quency-modulation sidebands, and in others the fre- 
quency drift D is not constant. In some clocks and oscil- 
lators. e.g.. cesium-beam standards. setting D = 0 is 
usually a better model. 

Note that the quadratic D term occurs because x(r) is 
the integral of .v( t). the fractional frequency. and is often 
the predominant cause of time deviation. In Fig. 1 we 
have simulated two systematic-error cases: a clock with 
frequency offset. and a clock with negative frequency 
drift. Figs. 2-6 summarize some of the important system- 
atic influences on precision clocks and oscillators. In ad- 
dition to Figs. 1-6, important systematic deviations may 
include modulation sidebands, e.g., 60 Hz, 120 Hz, daily, 
and annual dependence% which can be manifestations of 
environmental effects such as deviations induced by vi- 
brations, shock, radiation, humidity, and temperature. 

l !$ee Appendix Note X 12 
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Fig. 4. Nominal capability of frequency standard to reproduce same fre- 
quency after period of time for standards: QU = quartz crystal. RB = 
rubidium gas cell, H = active hydrogen maser, H(pas) = passive hy- 
drogen maser. and CS = cesium beam. 
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Fig. 5. Nominal capability for frequency standard to produce frequency 
determined by fundamental constants of nature for standards: QU =i 
quartz crystal, RB = mbidium gas cell, H = active hydrogen maser. 
H (pas) = passive hydrogen maser. and CS = cesium beam. 
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TABLE 1 
APPLICABLE OSCILLATORS AND RANGE OF AFPLICABILITY 

649 

Typical Noise Types 
u Name cs H-Active H-Passive Qu Rb 

2 white-noise PM SlooS s I ms 
I flicker-noise PM 51 s 
0 white-noix FM 2 10 s 100ss7r104s r1s 219 

- I flicker-noise FM z days Zlo’S L days 21s 2 10’ 
-2 random-walk FM z weeks z weeks L weeks zh 2 days 

OSCILLATOR 

. I ,  - . . : t . . i  ;*fc,E<v &,‘- , .  01. 

Fig. 6. Nominal values (ignoring sign) for frequency drift for frequency 
standards: QU = quartz crystal, RB = rubidium gas cell. H = active 

hydrogen maser, H (pas) = passive hydrogen maser, and CS = ccsium 
beam. 

then the average fractional frequency for the ith measure- 
ment interval is 

(6) 

where - r. over yi denotes the average over an interval ro. 
We can thus construct a set of discrete frequency values 

from such a time-difference data set. If the standard de- 
viation is calculated for this set of values, one can show 
that for some kinds of power-law spectra encountered in 
precision oscillators the standard deviation is divergent 
[ 11, [2], [S], i.e., it does not converge to a well-defined 
value and is a function of data length. Hence the standard 
deviation is seldom useful and can be misleading in char- 
acterizing clocks. An IEEE subcommittee has recom- 
mended S,( f ) in the frequency domain and a measure 
U:(T) in the time domain [ 11. S,,( f ) is the one-sided 
spectral density of y as a function of Fourier frequency f. 
The latter is often called the Allan variance or two-sample 
variance. The convergence of uY ( P) has been verified [ l]- 
[4] for the power law spectra of interest in precision clocks 
and oscillators. The measure u:(r) is defined as [l] 

uf(7) = f ((Ay,)*) 
Fig. 7. Simulated random processes commonly occurring in output signal 

of atomic clocks. Power law spectra S( f ) are proportional to w to some * 
where A? is the difference between adjacent fractional exponent, where f is Fourier frequency ((w- =-2x/) and S,(f) = 

w’S”( f)). 

RANDOM MODELS FOR CLOCKS AND OSCILLATORS 

The random-frequency deviations of precision clocks 
and oscillators can often be characterized by power-law 
spectra S,(f) - f (I, where f is the Fourier frequency and 
(II typically takes on integer values, i.e., -2, - 1, 0, 1, 2 
[l]-[4]. Fig. 7 shows noise samples corresponding to 
these different power law spectra, and Table I shows the 
nominal range of applicability of these power-law models. 

TIME-DOMAIN SIGNAL CHARACTERIZATION 

Given a discrete set of time deviations Xi taken in se- 
quence for the measurable time difference between a pair 
of clocks or between a clock and some primary reference, 
and given that the nominal spacing between adjacent time 
difference measurements is r. (see Fig. 8 for an example), 

l See Appendix Note # 13 

frequency measurements, each sampled over an interval 
7, and the brackets ( ) indicate an infinite time average 
or expectation value. A pictorial description is shown in 
Fig. 9 for a finite data set. A data set of the order of 100 
points is more than adequate for convergence of a,,( T), 

though of course the confidence of the estimate will typ- 
ically improve as the data length increases [6]. 

Given a discrete set of stored evenly spaced data, the 
value of 7 can be varied in the software [7]. If 7. is the 
minimum data spacing for the original stored data set y?, 
then one can change the sampling time to 7 = m0 by av- 
eraging R adjacent values of y,Trn to obtain a new fractional ak * 
frequency estimate yr, with sample time 7 as input to (7). 
Note this is different from averaging adjacent values of x. 
Hence in a very convenient way one can calculate uY ( 7) 

as a function of 7. which will be shown to be very useful. 
For a finite data set of M values of FT. (7) for general 7 

becomes (see Fig. 8 for an example computation of u!( 7 

l * See Appendix Note # 14 
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Fig. 8. Simulated time deviation plot .x(r) with indicated sample time T over which each adjacent fractional frequency J, is 
measured. Equations are for standard deviation and for estimate of u,(r) for finite data set of M frequency measurements. 
Often standard deviation diverges as data length increases when measuring long-term frequency stability of precision oscil- 
lators, whereas u.“(r) converges. 

TIME 

Fig. 9. Pictorial of computation of Allan variance. Simulated time varia- 
tions plotted are random walk. At set sample time 1. Ay = (.r, - 2~: - 
I, )/T is computed. With time of measurement of I, 1 ahead of .x2 and 
that of .I: z ahead of x,. all possible values of Ay are computed. Each 
Ay is squared and average squared value determined. m’; taking 1 /Z 
of this yields two-sample or Allan variance for that value of r. Value of 
7 can then be changed either in hardware or software to determine Allan 
variance for another value of 7. 

= 70). i.e., n = 1) 

1 
M-?n+ I 

u;(T) = c ( y:*n 
2(M - 2n + 1) k=I 

- F:)* (8) 

where yi+, and y: are still adjacent fractional frequen- 
cies (i.e., no dead time exists between the measure- 
ments), each averaged over T = ~7~. and 

xk-n - xk 
f . (9)* 

Alternately, one may write (see Fig. 9 for an example) 

ugr> = 
1 

27*(M -2n + 1) 
M-?n+l 

iF, (Ii+% - 2r;+n + X,)? (10) 

l See Appendix Note # 15 

where X, is taken from the set of M + 1 = N discrete time 
deviation measurements between a pair of clocks or os- 
cillators, i = 1 to M + 1: 

Xk+) = 70 ,$, y:” f .t+,. (11) 

Equation (8) is obtained from a first difference on fre- 
quency, and (10) from the second difference on the time; 
they are mathematically identical, yielding the option of 
using frequency or time (phase) data. 

For power-law spectra the following proportionality ap- 
plies: u;(z) - 7’, where p is typically constant for a 
particular value of Q. A simple and elegant relationship 
exists between the spectral density exponent CY (in the re- 
lationship S,(f) - f”) and cc, i.e., p = -CY - 1 (-3 
< OL I l)andp = -2 (01 zz 1) [8]. For example, for 
a significant range of T values. a,(r) - 7”!’ is propor- 
tional to I-( I;‘*) for cesium. rubidium, and passive hy- 
drogen maser frequency standards. Therefore p has the 
value of - 1, and hence Q has the value of 0 (white-noise 
frequency modulation). This is the classical noise exhib- 
ited by an important set of atomic clocks for 7’s beyond 
a few seconds. In this case. u) ( ro) is equal to the standard 
deviation. Fortunately, for most cases with precision 
clocks and oscillators where T 1 1 s, the simple relation- 
ship p = --(Y - 1 is applicable. It is convenient to plot 
log uY( T) versus log T to estimate the value of p and to 
let n = 2', 1 = 0, 1, 2, * * * (7 = n70). 

An ambiguity exists at p = -2; one cannot conve- 
niently tell whether the noise process is flicker-noise phase 
modulation (PM), (Y = + 1, or white-noise PM, CY = +2. 
This ambiguity can be resolved by realizing that for these 
cases a.,.( T) depends on the measurement bandwidth [21, 
[3]. One can construct a variable software bandwidth fS 
by realizing the following [9]. [IO]. In any measurement 
system a hardware bandwidth fh exists through which we 
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TABLE 11’ 

Classical Classical 

Typical Noise Types Standard standard 
a Name 037) = Deviation of I Deviation of y 

2 white-noise PM ~7~7~~ 

1 flicker-noise PM a, 7-’ 

0 white-noise FM a,,~-’ 

u-,r” - I flicker-noise FM 
-2 random-walk FM a-2r 

7 * UJ r)/Js (constant) $(I) &(N + 1)/3N 

- 7 - ur( 7) T -q,(r) 2(Iv + l/3N 

TO - ~~(70) J(M + I)/6 u,( ro) 
undefined u,.(r) JN In N/(2(N - I) In 2) 
undefined u,(7) JN72 

‘Note 7 is a general avenging time and r. is the initial averaging time (7 = nr,, where n is an integer). 
Also note that the last four entries in the fourth column and the last two entries in the fifth column go to 
infinity as M or N go to infinity. M is the initial number of frequency difference measurements and N the 
number of phase or time difference mcasumments N = M + 1. If the spectral density is given by S,(f) 
= h-f”. then 

0-I = 2 log, (Z)h-, 

am2 =; (2&h-,. 

*Note this equality assumes use of modified u:( 7) = z:( 7). 

measure the phase difference or the time difference be- 
tween a pair of oscillators or clocks and we define Th = 
1 / fh. In other words, rh is the sample time period through 
which the time or phase date are observed or averaged. 
Averaging n time or phase readings increases the sample 
time window to nrh = 7,. Let 7$ = 1 /J; thenf, = h/n, 
i.e., the software bandwidth is narrowed to f,. In other 
words, fs = fh/n decreases as we average more Values; 

i.e., increase n (I = nrc). One can therefore construct a 
second difference composed of time deviations so-aver- 
aged and then define a modified af (7) = 5; (7) that will 
remove the ambiguity through bandwidth variation: 

Z;(7) = 
1 

27’n’(N - 3n + 1) 
N-3n+l 

c 
j=l ( 

II&j-l 2 

c (-K,+2” - hi+, + 4) 
i=j ) 

(12) 

where N = M + 1, the number of time-deviation mea- 
surements available from the data set. Now if Z;(T) - 
rp’, then p’ = -a - 1 (1 I QI I 3) [lo], [ll]. Thus 
a,,( 7) is typically employed as a subroutine to remove the 
ambiguity if U?(T) - 7-l. This is because the p’ = --a! 
- 1 relationship is valid as an asymptotic limit for large 
n and Q! c 1 and is not valid in general; however, there 
is evidence that 5;( 7) may be a better measure [ 121. Spe- 
cifically, for Q = 2 and 1, c(‘/Z equals -3/2 and - 1, 
respectively, providing a clean differentiation between 
white-noise PM and flicker-noise PM. 

If three or more independent oscillators or clocks are 
available along with time (phase) or frequency measure- 
* See Appendix Note # 16 

* 

ments between them, then it is possible to estimate a var- 
iance for each oscillator or clock. Often there is a refer- 
ence to which the rest are periodically measured at a 
sampling rate 1 /re. If at each measurement the time or 
frequency differences between the clocks are measured at 
nominally the same time, then the time difference or fre- 
quency difference can usually be estimated or calculated 
between every possible pair in the set of oscillators or 
clocks. Given a series of measurements, variances s$ can 
be calculated on the time or frequency data between all 
pairs. It has been shown [13] that the individual clock 
variances can be estimated using the following equations: 

where 

B = --& .:.s:. 
‘<I 

(13) 

m is the number of clocks available in the set, and sf = 
0. If the variance measures used are at(r) or is: ( 7). then 
( 13) can be used to estimate the individual variances as a 
function of 7. 

Table II illustrates why one should not use the standard 
deviation to characterize clocks. For the different kinds of 
noise processes we list the standard deviation of the time 
deviations and of the fractional frequency deviations as a 
function of a,( T). The divergent nature of the standard 
deviation is apparent. Even for classical white-noise FM 
the standard deviation of the time diverges as the square 
root of the data length, i.e., the number of samples N [2]. 

TN-125 

Notes and Errata
See item 16 on page TN-339 of the Appendix for further information.  Click on the link for this equation to go there.



652 IEEE TRANSMJT~~~~~ 0~ ULTRASONICS. FERROELE~~RICS, AND FREQUENCY CONTROL. VOL. UFFC-34. NO. 6. NOVEMBER 1987 

TABLE 111 

Opfimum 
Typical Noise Types Prediction Time Error: 

Q Name .r(rp) rms” Asymptotic Form 

2 white-noise PM rp * u,(r,)/J5 constant 
I Aicker-noise PM - zr * ~~(7,) d/in rp/2 In T,, 6 
0 white-noise FM TP * oJ7p) 

l/2 
‘P 

-I flicker-noise FM Tp * q~p)/~ 
-2 random-walk FM 

Tr 
‘p . $(rp) 3/z 

‘P 

5, is the prediction interval. 

TIME AND FREQUENCY ESTIMATION AND PREDICTION 

Using u,.(l), $(T), S,(f), or S,(f), one can char- 
acterize typical power law processes. Once characterized, 
this opens the opportunity for determining optimum esti- 
mates of values by employing the statistical theorem that 
the optimum estimate of a white-noise process is the sim- 
ple mean. 

For example, consider the very common and very im- 
portant case of white-noise FM typically found on the sig- 
nals from cesium standards, rubidium standards, and pas- 
sive hydrogen masers. The optimum estimate of the 
frequency is the simple mean frequency, which is equiv- 
alent to (xN - x~)/MT~. It is still all too common within 
our discipline to see our colleagues erroneously determin- 
ing the frequency for these kinds of oscillators by calcu- 
lating the slope from a linear least-squares fit to the time 
deviations and quoting the standard deviation around that 
fit as a measure of the clock performance. There are three 
problems in proceeding this way. First, the frequency es- 
timate is not optimum in a mean-square-error sense. It is 
equivalent to throwing away about 20 percent of the data 
and thereby increasing the cost in the case of a calibra- 
tion. Second, the standard deviation diverges as the square 
root of the data length. Third, the standard deviation is 
significantly dependent on the filter form, e.g., linear least 
squares, as well as the clock deviations. On the other 
hand, such a filter is sometimes useful for assessing out- 
liers. The optimum “end-point” method outlined earlier 
has the risk that if either of the points is abnormal, (i.e., 
the model fails), the result will of course be adversely 
effected. Therefore such a filter is useful to assess whether 
there are outliers-paying special attention to the end 
points. Also, if the measurement noise exceeds the com- 
bined noise in the clocks, then the end points will be ad- 
versely affected. The key message is that the end-point 
method for estimating frequency is only optimum if the 
noise is pure white FM, which is easy to determine from 
a log ~~(7) versus log f plot. 

There are other useful, and maybe not so obvious, op- 
timum estimators appropriate for time-difference data sets. 

1) Given white-noise PM, the best time estimate is the 
simple mean of the time deviations; the frequency 
estimate then is the slope from a linear least-squares 
fit to the time deviations, and the frequency drift D 
is determined from a quadratic least-squares fit to 
the time deviations per (1). 

2) Given white-noise FM, the optimum estimate of the 
time is the last value; the optimum-frequency esti- 
mate is outlined in the previous paragraph, and the 
optimum-frequency-drift estimate is derived from a 
linear least-squares fit to the frequency. 

3) Given random-walk FM, the current optimum time 
estimate is the last value plus the last slope (clock 
rate) times the time since the last value; the opti- 
mum-frequency estimate is obtained from the last 
slope of the time deviations; and the optimum-fre- 
quency-drift estimate is calculated from the mean 
second difference of the time deviations. Caution 
needs to be exercised here, for typically there will 
be higher frequency component noise in a real data 
stream, such as white-noise FM, along with ran- 
dom-walk FM, and this can significantly contami- 
nate the drift estimate from a mean second differ- 
ence. If random-walk FM is the predominant long- 
term power-law process, which is often the case, 
then the effect of high-frequency noise can be re- 
duced by calculating the second difference from the 
first, middle, and end-time deviation points of the 
data set. 

The flicker-noise cases are significantly more compli- 
cated, though filters can be designed to approximate op- 
timum estimation [14]-[ 161. As the data length increases 
without limit, time is not defined for flicker-noise PM, 
and frequency is not defined for flicker-noise FM. This 
has some philosophical implications for the definitions of 
time and frequency, unless some low-frequency cutoff 
limits exist. If significant frequency drift exists in the data, 
it should be optimally subtracted from the data or it will 
bias the long-term values of uY( 7): 

qyw = 4. (14) 

Once the power-law spectra are deduced for a pair of 
oscillators or clocks, then one can also develop an opti- 
mum predictor. Table III gives both the optimum predic- 
tion uncertainty values for the various relevant pure 
power-law spectra as well as their asymptotic forms. Spe- 
cial forecasting techniques must be used for optimal pre- 
diction when combinations of these processes are present 
[ 171. To illustrate how these concepts relate to real de- 
vices, Fig. 10 shows a uY( 7) diagram for some interesting 
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-161 
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lcG3wJ kc!cmdQ 
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Fig. 10. Square mot of Allan variance for variety of state-of-the-art prc- 
cision oscillators including NBS-6. NBS primary frrqucncy standard. 

RMS TIME DEVIATION 
/’ 

Fig. I I. From frequency stability characterization shown in Fig. 10, op- 
timum prediction algorithms to minimize time error can be obtained. 
Based on optimum prediction procedures rms time prediction error for 
prediction interval rP can be calculated for each oscillator shown in Fig. 
IO and corresponding values am plotted in Fig. Il. 

state-of-the-art oscillators, and Fig. 11 shows the rms time 
prediction errors for the same set of oscillators. 

CONCLUSION 

In conclusion, it is clear that classical statistics do not 
allow characterization of common kinds of random signal 
variations found in precision oscillators. The two-sample 
Allan variance provides a valuable and convergent mea- 
sure of the power-law spectral-density models useful in 
characterizing random deviations for most oscillators and 
clocks. Once characterized, we can calculate optimum 
time and frequency estimates as well as predicted values. 
Characterizing the random variations also provides near- 
optimum estimation of systematic effects, which often 
cause the predominant time and frequency deviations. For 
example, if we wanted to optimally determine the static 
temperature dependence with the temperature set at two 
different values, we would stabilize the oscillator at one 
temperature and measure the frequency against a refer- 
ence for a time I,, corresponding to the r for the nominal 

minimum ur( T) value. We would then change the tem- 
perature to the other value and repeat the measurement 
with the same criteria and note the A!‘” between the two 
optimally determined frequency values. If these two steps 
are repeated several times, an arbitrarily good precision 
for the temperature coefficient is achieved if it is linear. 
The uncertainty is approximately given by u,,( r,,,)/ fi, 
where P is the number of AT values obtained from 
switching back and forth. Knowing the characteristics of 
both the random and the systematic deviations of preci- 
sion clocks and oscillators clearly is useful to the de- 
signer, the manufacturer, the planner, and the user as well 
as the vendor of these devices. 

The aforementioned procedures usually work well if the 
clocks or oscillators are in a reasonable environment. If 
the environment is adverse, other procedures and analysis 
methods may have to be employed. As a general rule it is 
often useful to analyze the data in the frequency domain 
as well as the time domain. The frequency domain is es- 
pecially useful if there are bright lines, i.e., sidebands to 
the carrier frequency. The effect of a modulation sideband 
fm on ur (7) can be calculated, and is given by [ 181 

where xPP is equal to the peak-to-peak or twice the ampli- 
tude of the time-deviation modulation. 

If one is trying to estimate the power-law spectral be- 
havior between a pair of oscillators or clocks using u,,(r), 
it is apparent from (15~ that if significant modulation 
sidebands are present on the signal, these can seriously 
contaminate that estimate. However, if a u,,(r) plot dis- 
plays a character as given by (15), then the amplitude and 
frequency of that modulation sideband can be estimated 
from this time-domain analysis technique. In practice, this 
approach is often used, but these modulation sidebands 
can be more efficiently estimated in the frequency do- 
main. If the measurement sampling rate 1 /rc is set equal 
to fm, then the modulation sideband is aliased away and 
has no effect on uY( 7). 

The best rule in all analysis is to use common sense. 
Very often the most revealing information may be in a 
plot of the raw time (phase) difference or frequency-dif- 
ference residuals after some trend has been removed. Such 
a plot is usually the first thing to look at when character- 
izing clocks and oscillators. Caution here’is also impor- 
tant as a pure random walk on the time residuals (white 
FM) may be visually interpreted as having frequency 
steps. This is especially true for flicker FM as often seen 
in quartz-crystal oscillators. Following the time-residual 
plot with a uY( T) analysis often answers the question as 
to whether or not such steps are statistically significant. 
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