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Abstract 
The accuracy of the rate or frequency of an atomic time 

scale is the degree to which its unit agrees with the SI  second. 
Primary frequency standards are constructed in such a manner 
that t,hey provide the most accurate possible physical realiza- 
tion of the SI second. These standards are then used to calibrate 
or construct an atomic time scale which may also be used as a 
stable reference standard. 

Mathematical models characterizing the performance of 
both the primary frequency standards and reference standards 
are developed, and based on these models a current best 
estimate of the SI  second is derived utilizing current and 
previous calibrations. 

The modeling techniques and theory are applied to the 
NBS primary frequency standards and atomic time scale 
system and a significant improvement is realized in the 
accuracy of the frequency estimate so derived. We estimate 
that the second used by the Bureau International de 1’Heure 
in generating TAI and UTC was too short by about 9 ? 2 parts 
in 1013 during the fall of 1974. 

Introduction 
In  generating an accurate time scale there are two 

basic operational necessities : first, as the “seconds” are 
accumulated in constructing the scale, each one should 
conform as closely as possible with the definition of the 
SI second [ I ] ;  this conformity not only guarantees 
accuracy for any time interval but also uniformity for 
the scale. Second, the scale needs an explicit origin; 
this is usually provided by a straight-forward de- 
finition ; i.e., the “seconds” are accumulated starting 
from some well defined event. 

The most accurate physical realizations of the 
second are by evaluable, primary laboratory cesium 
beam frequency standards. Because of the complexity 
of these standards, they are often not conveniently 
usable as clocks; i.e., it is difficult to run them con- 
tinuously and reliably. Rather, these primary stan- 
dards are typically used to calibrate the rate of 
secondary standards which run continuously and 
reliably and hence can be used as clocks. In  other 
words the primary standard is utilized to obtain a 
physical realization of the definition of the second, 
which is “. . . the duration of 9 192 631 770 periods of 
the radiation corresponding to the transition between 
the two hyperfine levels of the ground state of the 
cesium-I33 atom”, and then to determine if the second 
used in the atomic time scale is too long or too short. 
Typically these calibrations are not continuous, but are 
aperiodic and may be made even with different devices. 
One would like to optimally utilize all of these cali- 
brations. 

The logical combination of standards into a single 
standard has been considered by Crow [2], and the 
efficiency of the various methods of doing so has been 

given by him for a variety of distributions. His results 
may be used in combining the calibrations involving 
primary frequency standards if two additional 
problems are considered: f is t ,  calibrations may be 
separated in space, and second, they may be separated 
in time. For example, in practice one calibration is 
compared to another, when spatially separated, by 
using some time signal propagation system such as 
Loran-C; and when temporally separated, one 
calibration may be referred to the next via some 
secondary frequency standard, e.g. an ensemble of 
clocks in a time scale system. 

As to the first problem Guetrot and others [3 to 51 
have considered ways of optimum or near optimum 
filtering of noise introduced by some of the more 
precise methods of communicating time and frequency, 
via Loran-C, VLF, and TV. Particular signal and noise 
models have been deduced respectively for the clocks 
and propagation media, and are assumed to  apply 
generally in the above considerations. Thus the spatial 
separation problem has been treated and solved to the 
degree that the models developed actually describe the 
signal and noise respectively of the clocks and pro- 
pagation medium. 

As to the second problem i t  is fundamentally one 
of the frequency stability of the secondary reference 
frequency standard used in comparing the frequencies 
of two or more calibrations, and several papers have 
been written on the capabilities and stability of such 
references [6 to 171. 

Yoshimura [6] considers in detail calibrations of a 
clock ensemble by a primary frequency standard 
involving the assumption of a particular statistical 
model of noise processes. One of these assumptions was 
that the stability of a reference clock ensemble may be 
characterized by 

where S,(f) is the spectral density of the fractional 
frequency fluctuation, y;  f is the Fourier frequency, 
and h, and h-, are the intensities of the white noise 
frequency modulation (FM) and flicker noise FM 
respectively. A further assumption was that the 
frequency calibrations with a primary standard had 
errors which were random uncorrelated from one 
calibration to any other calibration. With these 
assumptions he showed that such calibrations could 
improve the stability of an atomic time scale over 
periods of years but that there was some degradation 
of stability for shorter times (months). 

This paper will add some additional elements to the 
Yoshimura model : consideration of frequency steps, 
frequency drift and probable correlations among 
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calibrations made by the same primary frequency 
standard or other similar ones, and probable contrib- 
utors to the instability of a reference clock ensemble. 
I n  addition, a method will be presented whereby the 
stability of stable reference clocks may be efficiently 
utilized while simultaneously utilizing the accuracy 
given by all the calibrations by the primary standards 
- the goal being to  have both short and long term 
stability as well as accuracy for the atomic time scale. 

Model for Clocks and Standards 
A .  A stability model for a clock ensemble 

As some years of data are now available on 
commercial cesium beam frequency standards, i t  has 
become evident that over periods of years frequency 
drift becomes a predominant term in the time dis- 
persion of a clock or of an ensemble [7, 8, 9, 10, 14, 151. 
The apparent magnitude of this drift is of the order of 
parts in I O l 3  per year. The direction of the drift quite 
typically tends to be negative, but positive drifts have 
been noted [15]. 

Occasional frequency steps seem also to occur in 
these standards and methods of handling these to some 
degree have been published [9, I O ,  14, 151. Sufficient 
data are not available on these frequency steps to 
ascertain the underlying processes involved. One can 
easily model the process of a step, however. 

If the above considerations are added to the 
Yoshimura model for the instabilities of a reference 
cesium clock ensemble, one may write the following 
equation as a measure of the time-domain stability : 

where ai.(t), h,, L1, h-, are as defined in reference 13, 
and D is the linear frequency drift, i.e. fractional 
frequency change per unit of z. An example of Eq. ( 2 )  
is shown in Fig. 1 for an individual commercial cesium 
clock. Another individual atomic clock or an ensemble 
of such clocks may differ from this characterization 
and Fig. 1 is given only as an example to illustrate the 
theory. 

B. An accuracy ModeZ for a Frequency Standard 
Also shown in Fig. 1 is a point a t  0, (z = 30 days) = 

2 x representing a monthly frequency calibration 
error due to the primary frequency standard whose 
errors in the calibration are random uncorrelated from 
one to any other. If these calibration errors could be 
averaged perfectly in time, they would average as t - ’ l a  
and the dashed line in Big. 1 illustrates the principle 
that a t  some sample time t the average error of several 
such calibrations will fluctuate less than an ensemble of 
commercial standards. 

Such an accuracy model is subject to two im- 
perfections ; first, the calibrations cannot be averaged 
perfectly, i.e. there exists no perfect reference ; and 
second, for a given primary standard and even for a set 
of primary standards the errors of one calibration may 
well be correlated (in space or time) with some other 
calibration. A more general model for the errors 
involved in any given calibration may be written; 

ai(Z) = a&,$) + o&(Z) for the lth calibration, (3) 
where a:(Z) is the overall accuracy for the calibration, 

Stability model of A clock ensemble 

- l-J 10-F 
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Flicker noise FM 
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Fig. 1. Fractional frequency stability model for a reference 
clock ensemble and for calibrations with a primary standard 
whose inaccuracies are uncorrelated from one calibration to 
any other; oV(z) is the square root of a 2 sample variance 
according to the recommendation of the IEEE sub-committee 
on frequency stability [13] and z is the frequency sample time 
or interval. The stability level for the random walk FM was 
generated by introducing a simulated random frequency step 

occurring on the average every 256 days 

aruc (I) is an estimate of the random uncorrelated errors 
(often these are the primary contribution to an error 
budget generated during the complete evaluation of a 
primary standard), oz(Z) is an estimate of errors that 
are correlated with some of the past calibrations or 
with some other primary standard due to similarity of 
design or evaluation procedure. The bar over ruc “ z c ”  
denotes the logical “not”. 

Correlated errors are sometimes assessed as part of 
the error budget [I81 ; for example, when the Ramsey 
cavity phase shift is measured, the value corresponds 
to  some frequency error which is part of the bias 
corrections used in the actual realization of the SI  
second. The “true” value is obtained by correcting the 
measured value, and if this cavity phase shift is not 
measured in an uncorrelated way from one calibration 
to  another this may give rise to a significant contribu- 
tion to arx(Z). It will be shown later that other 
experience with a particular standard may give insight 
into its correlated contribution to the errors in a 
sequence of calibrations. 

Assessing all the contributions to oz(Z) is obviously 
very difficult ; but as an example comparisons among 
several different standards may reveal some diffi- 
culties - previously unknown - in a particular 
standard. 

Theoretical Development 
A .  Best Estimate” of frequency (or of the S I  second) 

We define a fractional frequency ogset for a fre- 
quency v(t) to be ( y ( t )  - V C ~ ) / Y C ~ ,  where vcS is derived 
from the true cesium frequency. We wish to  develop an 
algorithm that will approach a best estimate of vcS 
within some practical limits. Let us define a calibration 
as a measurement of the frequency of a standard with 
some evaluable primary frequency standard. Consider 
the lth calibration, and let ys (1) be the measured value 
of the fractional frequency offset of it reference 

* Best estimate is used in this paper aa the minimum 
squared error. 
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standard (such as TAI or a clock ensemble) minus the 
fractional frequency offset of an evaluable primary 
standard. The words “reference standard” are here 
used to mean that it is continuously available. Let 
$e (1) be an estimate of the fractional frequency offset 
of the reference standard based on all previous cali- 
brations up to  but not including the %h calibration, 
defined recursively by 

$e( I )=p(I -  1). i e ( I -  I)+ (I - B ( I -  I)) * yS(I- 1) 
+ Ae(I-  1,0, (4) 

where Ae( I -  1, I )  is the fractional frequency fluctua- 
tion introduced by the reference standard between the 
( I -  1)th and I t h  calibrations (assumed to be random 
and uncorrelated* with respect to the fluctuations in 
any y S  ( I )  and to have zero mean), and the /I ( I  - 1) are 
previously determined weighting factors. It follows 
that some linear combination of the values ge(I), 
Ys (0  : 

( 5 )  
will have a minimum variance for some optimum value 
of p ( I ) .  The fj ( I )  of Eq. (5) is defined as a best estimate 
of the fractional frequency offset a t  I .  This value of 
p ( I )  may then be used in Eq. (4) to estimate ge(I + 1). 

To determine the value for p(1) take the variance 
of y(I) and minimize with respect to  p ( 1 ) ;  i.e. 

5 ( I )  E . ?e ( I )  + (1 - B(O) * Y~.(o  

\ Var ( I )  = p2(1) . c i ( ~ )  + (I - p(1))2 oi(~) 

4- 2 @ ( I )  - (1 -p (I)) Var [@e (I) * yf3 ( I ) ]  = 0 (6) 
Now @ ( I )  - the estimated accuracy from past 
calibrations combined and remembered by the 
reference standard predictor Be ( I )  - is 

O:(I)= 02(1- I)+ ( O i e ( N =  2 ,  T, 7,  fh))  ( 7 )  

where e ( I  - 1) is the accuracy of the last best estimate 
and the 2nd term on the right of Eq. ( 7 )  is the time 
average of the squared error contributed by the 
reference standard from the last calibration ( I -  1) to 
the current one ( I ) .  The time interval T may rea- 
sonably** be taken as the time from the middle of the 
( I  - 1)th calibration to the middle of the Ith calibration; 
z is the ( I -  l ) t h  calibration interval and f h  is the 
measurement system bandwidth for the calibration 
(typically negligible for the kinds of noise shown in 
Pig. 1). If cye( t )  is known for the reference standard as 
in Fig. 1, then the 2nd term in Eq. ( 7 )  may be esti- 
mated using reference [19]. The value for u: ( I )  is given 
by Eq. (3). Now ys ( I )  may be separated into that part 
which is random and uncorrelated from one calibration 
to  the next and into that part which is not ; therefore, 

(8) ys (0 = Yruc (0 + YZ (0 for any I 
Using Eqs. (8) and (4) one may calculate the third 
term in Eq. (6) (call i t  the correlation term), 
2 . p(1)  . (1 - ,!?(I)) C(I )  obtaining the following: 

i - 1  

i = l  i- 1 
C ( I ) = . y  ( l -p(z- i ) ) .  y G ( z , z - i ) . r J p ( z - j ) ,  

(9) 
* This assumption will be good to the degree that 

de(Z - 1,Z) << ys(Z) on the average. 
** The value of Tis commonly takenfromthebeginningof 

one measurement to the beginning of the next, but with 
variable calibration intervals and calibration deviations the 
above usage is more appropriate. 

where y=(Z, I -  i) is the cross-covariance between the 
Zth and (1 - i)th frequency calibrations. 

One cannot measure this cross-covariance, but one 
may write the following relationship : 

/ Y G  ( I ,  1- 4 j ( 0 .  g G  (1- i). (10) 
In  general y~ ( I ,  I - i) may be positive or negative, but 
in practice where a series of calibrations may involve 
the same or similar primary standards i t  will tend to be 
positive. We tested the effects of setting it near zero, 
of using the equality, and of using some values in 
between and observed negligible differences. We chose 
y~ ( I ,  I -  i) equal to e= ( I )  CTG ( I -  i) as a 
reasonable estimate in the NBS application. 

The next step is to solve for p ( I ) ,  which gives: 
os2 ( I )  - c ( I )  

@ ( I )  = d ( I )  + US2(Z) - 2 C(Z) 

Thus, the best estimate of frequency is given by 
substituting Eq. (11) into Eq. (4): 

The accuracy for the estimate is given by the variance 
of $ ( I ) ,  i.e.: 

~ . .  
ue2(Z) * c r s 2 ( I )  - @ ( I )  

d ( 1 )  + us2(I) - 2 C(I )  0 2  ( I )  = 

Of course, if the calibration fluctuations are totally 
random and uncorrelated then C(I)  = 0, and the 
accuracy takes on a more simple form: 

From Eq. (14) it is easy to see that, as expected, the 
optimum accuracy, e ( I ) ,  is better than that from the 
current calibration, os(Z), as well as the memory 
ability of the reference standard predictor oe ( I ) .  

Aspects of the theory developed by Crow [2]  may 
be applied in an approximate and operational sense by 
letting oE ( I )  in Eq. (IO) above take on the value of 
the deviation of the lth calibration as given by the 
standard from the last best estimate via the memory 
of the reference standard; Le., oz (1 )  =: 1 y6(I) - ye@) 1 .  
Such a procedure may be appropriate as shown by 
Crow, where standards separated in space are em- 
ployed. An example of this would be where the Bureau 
International de 1’Heure obtains data from the 
primary frequency standards of various national 
laboratories and wishes to combine them to get a best 
estimate of the SI second. Since we are limited to very 
few primary standards, two of which are a t  NBS, we 
have choosen to  estimate oE(I) as well as possible 
from all pertinent data characterizing the standard. 
We believe this latter approach gives us a more 
sensitive method of ascertaining systematic difficulties 
than the former approach. 

Application using NBS-4, NBS-5, 
and the NBS clock ensemble 

An estimation of the model parameters in Eq. ( 2 )  
for the NBS clock ensemble gives: l/h,12 2: 6 x 10-l2 
[s’ lz], l/L1 2 In 2 2: 3 x 10-14, 2nvm6 5 2 x 1O-l’ 
[s-’L], and ]Dl w 1 x 10-13/year. In  Table 1 are listed 
the pertinent calibration data in which the NBS 
primary frequency standard was used to measure the 
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frequency (clock rate) of the NBS clock ensemble. The 
calibration periods were typically 3 days or longer 
giving a measurement precision of about 1 x IO-l4. 
The NBS clock ensemble consists of eight commercial 
cesium beam frequency standards operating as clocks 
where data are statistically analyzed and optimally 
combined in an algorithm which weights each clock 
appropriately in order to generate a near optimally 
stable Atomic Time Scale, AT,(NBS), from the 
available data [20]. The rate (frequency) of this scale 
has not been changed* as a result of any of the listed 
calibration data, but has been maintained - as nearly 
as possible - as an independent ongoing stable 
frequency reference. The listings in Table 1 for ys (1) are 
VAT~(NBS) - vcs/vcs, a t  the time of the lth calibration, 
where vcS is the frequency of either NBS-111, NBS-4 
or NBS-5 as indicated in the third column. The above 

* Also, these calibrations have never been used to alter the 
rate of UTC(NBS) which also was independently maintained. 
For coordination purposes during 1974 and 1975 to date the 
frequency of UTC(NBS) was constrained to be 8 parts in l O I 3  
higher than that of AT,(NBS). 

expression may equivalently be written: ys (1) = yAT0- 

(NB) (1 )  - ycS ( I ) .  The column for oruc (1) is estimated 
primarily from the primary standard’s error budget as 
in reference [HI. The estimation of (1) is much more 
difficult as i t  relates to unknown biases as well as 
known biases in a given standard that may unavoidab- 
ly persist from one calibration to  the next. The size 
of this inaccuracy contribution may decrease as one 
gains experience with a given standard as it did a t  NBS. 
One of the main factors leading to the reduction of this 
term in the evaluations of the NBS primary standards 
NBS-4 and NBS-5 was the choice of three independent 
evaluation techniques [18, 21,22,23]. Calibrations 2, 
3, 4, 6, 8, and 9 employed the “Power Shift” method; 
calibration 5 used a microwave “pulse” method; and 
calibration 1 and 7 cesium “beam reversal” method for 
evaluation of the primary standard. Calibrations 10 
through 19 depended on the complete evaluation 
performed for calibration 9, but these calibrations 
were independent of each other in the measurement of 
the perturbing influence due to the magnetic field and 
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m - - 5 ~ 1 6 ’ ~  
co a 
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-10 x 10-l~ 
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Modified julian d a y s  - 1973 1974 1975 

Fig. 2. A plot of the fractional frequency deviations of the rate of the time scale AT,(NBS) as calibrated with NBS-4 or NBS-5 
(YAT,,(NBS)-YC~) versus time (Modified Julian Day). The uncertainties are k oruc(Z) for calibrations 1 = 2 through Z = 19 

Fig. 3. A plot of the best estimate and measured fractional frequency deviation of the rate of the ATJNBS) scale with respect 
to the NBS primary frequency standards NBS-4 and NBSd (YATO(NBS)-YC~) versus running time. The uncertainty bars are 
calculated from Eq. (13) and represent + ~ ( l ) ,  the accuracy best estimate. The number above the uncertainty bars indicate 

whether the last calibration a t  the time of the best estimate was with NBS-4 or NBS-5 
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in the “optimum” microwave power setting needed for 
each calibration. An experimental estimate for crK (1) 
was not possible - the present model could not retro- 
actively be applied to the calibration with NBS-111. 
The long spacing to that calibration would decrease 
the correlation; in addition, calibration No. 1 is the 
only one involving NBS-111. An arbitrary value of 
o=(Z) = 2 x IO-13 was chosen as a compromise 
between zero and an unknown small value. 

One may note the large frequency dispersion 
uncertainty a t  calibration 2 for the ensemble, 
AT,(NBS) ; this was due to the long period since the 
last calibration with NBS-111, T = 1350 days. 

Fig. 2 is a current plot of the raw calibration values 
(excluding No. 1) ; the confidence intervals shown are 
-t - cmC(Z). These data along with the other data in 

Table 1 were processed through Eqs. (9) through (13) 
inclusive, and Fig. 3 is a plot of the best estimate of the 
obtained frequency and uncertainty of AT,(NBS), so 
obtained. The “X”s are plotted in Fig. 3 as the raw 
calibrations for comparison. 

The circles in Fig. 4 are a plot of the weight given 
each calibration in determining the best estimate of 
frequency after the 19th calibration. The solid line is a 
theoretical example for the 19th calibration where the 
inaccuracy of the primary standard is twice that of the 
inaccuracy of the best estimate as remembered through 
the reference standard, and where zero correlation is 
assumed between any of the calibrations. The peak a t  
the 1st calibration is similar to the results of Yoshi- 
mura [6], and arises because the first calibration 
carries the weight for the infinite past - there being no 
previous calibration. The peak does not occur in the 
results obtained from processing the real data because 
of the dispersion of the frequency of the reference 
standard over the approximately three and one-half 
year interval between calibrations 1 and 2. 

I 
Actual weight given NBS 

0 =_ primary standard - 2 Theoretical weight with 
C(i)=Oandcs (i)=2ae (i) 
for all i, and 1=19 

1 0.10 

Number of calibration 

Fig. 4. The circles are a plot of the weights assigned the last 
(calibration No. 19) calibration and each preceding calibration 
to get the frequency best estimate, d(Z = 19). The solid line is 
theoretically determined assuming C(i) = 0 and us(i) = 2 ue(i) 

for i = 2, . . ., 19 

Once the best estimate of frequency is known, there 
are a variety of ways to servo a time scale in order to 
obtain the stability shown in Fig. 1. First, one needs to  
decide how the servoing will be accomplished, e.g. in an 
analog or digital fashion. As specific examples one may 
choose frequency drifts or steps. The equation for a 
frequency drift which gives rise to a quadratic in the 
time deviation, adds an additional term as compared 
to  one with dated frequency steps; hence, one may 
choose the latter approach in order to simplify the 
description. As long as the frequency steps are small 
compared to the FM flicker noise of the reference 

Table of NBS Frequency Calibration Data 
Listed successively in the columns for each calibration are: the calibration number, I ;  the Modified Julian Day a t  the midpoint 
of each calibration interval ; the NBS primary standard involved; the fractional frequency (rate) of the AT,(NBS) scale minus 
that of the primary standard involved; an estimate of the one-sigma random uncorrelated errors associated with each calibration; 
an estimate of the one-sigma errors that were not random uncorrelated associated with each calibration; an estimate of the one- 
sigma fractional frequency dispersion of the reference standard (the ATo(NBS) scale) during the interval between the ( I  - l ) t h  
and Zm calibration; the fractional frequency (rate) best estimate of the AT,(NBS) scale as defined by the accuracy algorithm in 
the text; and the accuracy corresponding to this best estimate. All fractional frequencies are in parts in IOl3. MJD 42431 corre- 

sponds with 19 January 1975. 

1013 

No. ( I )  3‘I JD NBS-Std ys(I )  ~ m ( 4  GG(~)  (cy2 (2, T, d)’L G(l)  u( l )  

1 40360 
41711 
41 726 
41761 
41777 
41926 
41 964 
42049 
42050 
42086 
42130 
42172 
42211 
42241 
42276 
42319 
42354 
42396 
42431 

NBS-3 
NBS-5 
NBS-5 
NBS-5 
NBS-5 
NBS-4 

NBS-4 

NBS-4 
NBS-4 
NBS-4 
NBS-4 
NBS-4 
NBS-4 

NBS-4 
NBS-4 
NBS-4 

NBS-5 

NBS-5 

NBS-4 

0 
+ 0.1 
- 1.2 
- 1.4 

0.2 
- 6.2 
- 2.6 

5 
3 

? 
3.5 
2.5 
2.5 
2.5 
2.5 
2.0 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

- 
8.7 
1 
1 
0.4 
1 
0.4 
0.6 
0.1 
0.5 
0.6 
0.7 
0.5 
0.5 
0.5 
0.7 
0.5 
0.5 
0.5 

0 
0.1 

- 0.8 
- 0.9 
- 0.5 
- 1.4 
- 1.9 
- 1.7 
- 2.1 
- 1.7 
- 1.9 
- 1.9 
- 1.8 
- 1.5 
- 1.7 
- 1.3 
- 1.1 
- 1.0 
- 1.1 

5’ 
4.5 
3.0 
2.9 
2.6 
2.6 
2.2 
1.8 
1.4 
1.3 
1.3 
1.3 
1.3 

2 
3 2.1 

5 4 
6 2.5 

5 
2 

6 
7 
8 
9 

10 

- 1.2 
- 2.7 

2.8 
2 

- 0.1 
- 2.7 
- 1.7 
- 1.8 
- 0.2 
- 2.3 
+ 0.4 
- 0.0 
- 1.0 
- 1.4 

2.8 
2.8 
2.8 
2.8 
2.8 
2.8 
2.8 
2.8 
2.8 
2.8 

11 
12 
13 
14 
15 
16 
17 
18 
19 

1.2 
1.2 
1.3 
1.2 
1.2 
1.2 
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standard, near-optimum long and short term stability 
as well as accuracy of the time scale may be realized. 
Of course, if a systematic frequency drift is observed 
over a sustained period in the reference standard, a 
compensating frequency drift should be subtracted. 
The coefficient for this drift could be determined by a 
linear least squares fit to the frequency. The apparent 
decrease in the frequency drift of AT,(NBS) which 
occurred about August 1973 was coincident with a 
change of procedure. At this date we began once a 
month to  adjust to  zero the voltage applied to  the 
varicap of the quartz oscillator in the commercial 
cesium standards. This procedure was initiated for each 
commercial cesium standard which was a member of 
the NBS clock ensemble. 

If the step-in-frequency approach were used then 
the recommended step size of appropriate sign would 
be given by: 

(15) 
T 

Idyl =,O!/ . (z=zA),  

where T is the time since the last calibration and zA 
is an estimate of the servo attack time depicted in 
Fig. 1. If a frequency ramp were already built in the 
description of the time scale, one may choose to vary 

A?/  the ramp by an amount __ to accomodate the step T 
size given by Eq. (15). Now if the frequency drift, D, 
is adequately removed then tA becomes longer and 
(lye (y = ZA) becomes smaller according to the model 
depicted in Fig. 7 - resulting in an even more uniform 
time scale. 

Conclusions 
We have shown that it is possible to have both an 

accurate and a stable atomic time scale based on an 
optimum realization of the SI second. This realization 
is obtained by applying optimum filtering techniques 
to  the averaging of calibrations of a suitable reference 
standard. The calibrations are obtained from primary 
frequency standards. A two- to  threefold accuracy 
improvement was obtained over that for an individual 
caIibration when the accuracy algorithm developed in 
the text was applied to  the NBS Atomic Time Scale 
Primary Frequency Standards system. 

The time scale UTC(NBS) used to control the time 
and frequency signals broadcast by the NBS radio 
stations, WWV, WWVH, and WWVB, is kept 
nominally synchronous with the UTC scale generated 
by BIH. As of January 1975 we found that the second 
used in generating UTC(NBS) was too short by 
6.9 1.2 parts in 1013. Using UTC(NBS) as a transfer 
scale and Loran-C [5] as the mode for comparing time 
intervals, we estimate that the second used by the 
BIH in generating TAI and UTC to be also too short, 
but by about 9 & 2 parts in I O l 3  during the fall of 1974. 
During the same period of time the Physikalisch 
Technische Bundesanstalt (PTB) in the Federal 
Republic of Germany measured the TAI and UTC 
second to  be 10 parts in 1013 too short with respect to 
their primary standard. The NBS value accounts for a 
1.8 x I O - l 3  fractional frequency correction needed to 
account for the “gravitational red shift” due to  the 
elevation of the NBS, Boulder, laboratories above the 
BIH. During the fall of 1973 the primary standards of 
NBS, the National Research Council (NRC) in Canada, 
[24] and PTB were used to calibrate the TAI and UTC 

second and measured i t  to be too short by IO, 10, and 
11 parts in I O l 3  respectively [IS]. 

Also, if NBS-4, NBS-5 and the PTB and NRC 
primary standards are compared via TAI as the 
reference standard, the standard deviation of their 
comparison values is about 1 x IO-l3, which is in good 
agreement with the accuracy derived using the 
accuracy algorithm developed in the text. 

The second used in generating the time scale 
AT(NBS) was brought into agreement with the NBS 
“best estimate” of the SI  second as of 1 January 1975 
(MJD 42413). Starting with this date and using the 
accuracy aIgorithm in the text an effort will be made 
to cause AT(NBS) to be as accurate and stable (over 
any sample time) as reasonably possible. In  contrast, 
the time scale AT,(NBS), used in the text as the 
reference standard for comparing calibrations, uses a 
second determined by a time scale algorithm [ZO] 
which combines the times of an ensemble of com- 
mercial clocks - totally independent of calibrations 
with the NBS primary frequency standards. 
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