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ABSTRACT 

Coincident w i t h  the I n s t a l l a t i o n  of a new measurement system, the  
Nat ional  Bureau o f  Standards has a l so  developed a new phllosophy fo r  
t he  generat ion of both UTC(N6S) and atomlc bime, TA(NBS). Several 
bene f i t s  have resu l ted  from t h i s  new d i rec t i on .  F l r s t ,  a more 
uniform UTC(N6S) scale was achfeved I n  order  t o  meet t h e  (ncreaced 
requirements of our users. Second, Improved rynchroni r a t i o n  o f  
UTC(NBS) w i t h  UTC ( Universal Time Coordinated) has been achjflyed. 
The frequency s t a b i l i t y  of UTC(NBS) 4s t y p i c a l l y  about 1 x 10 fo r  
averaging times o f  one day and longer and synchronism I s  now main- 
t a ined  t o  w i t h i n  about 1 microsecond o f  UTC i n d e f i n i t e l y .  Prevlously 
f i v e  microseconds was a r e a l l r t l c  goal. Th i rd ,  a new Kalman t y p e  
a lgor i thm with more robust  performance I s  used t o  generate TA(NBS) 
t o t a l l y  independent of t he  generation o f  UTC(NBS). TA(NBS) i s  s t i l l  
steered i n  r a t e  toward t h e  frequency given by the NBS primary f r e -  
quency standards. Fourth, a s i g n i f i c a n t l y  improved working t ime and 
frequency reference i s  r e a d i l y  avai lable.  This  reference supports 
the research and development of new frequency standards, and also 
supports our ea1 i b r a t i o n  services. This fmproved t h e  and frequency 
reference i s  constructed by computing UTC(NBS) i n  f i n a l  form every 
two hours. A real- t ime output s ignal  i s  then steered i n  frequency - 
t o  keep i t s  t i m e  within a few nanoseconds o f  the o f f i c i a l l y  computed 
value. And f i f t h ,  a very s tab le  frequency reference i s  obtained by 
using a l l  o f  t h e  c locks ava i l ab le  i n  the NBS c lock ensemble. This 
t i m e  scale -- denoted AT1 -- i s  used f o r  a l l  o f , t h e  NBS frequency 
s t a b i l i t y  c a l i b r a t i o n s ,  and i s  a l so  used t o  generate UTC(N6S). This 
new approach has been tes ted  f o r  more than a year and t h e  r e s u l t i n g  
improvements have now been documented. 

- -  

INTRODUCTION 

As of WD 45195.5 (14 Aug. '82) NBS has been generating three t ime scales: 
UTC(NBS), TA(NBS), and AT1. Frequency steps introduced i n  the past t o  synchronize 
UTC(NBS) w i t h  UTC were  object ionable t o  some of t he  NBS's more sophist icated 
users. These steps have been reduced by an order of magnitude and the  frequency 
s t a b i l i t y  and the t ime accuracy o f  the new UTC(NBS) have been improved by about an 
o rde r  o f  magnitude. With the ' i n t roduc t i on  o f  a new measurement system (1) w i t h  a 
measurement p r e c i s i o n  o f  about 1 picosecond, UTC(NBS) i s  computed every two  hours, 
and a rea l - t ime c lock  i s  kept w i th in  a few nanoseconds o f  t h i s  computed t i m e .  The 
coo rd ina t i on  of UTC(NBS) i s  accomplished with a one year t i m e  constant so t h a t  the 
monthly frequefgy steps introduced t o  maintain synchronizat ion are of the order of 
one p a r t  i n  10 comparable t o  the  order o f  t h e  noise and hence are imperceptible. 
Coordinat ion w i t h  UTC has been enhanced by more than an order o f  magnitude by 



"leap seconds". as needed l n  order t o  keep UTC w i t h l n  0.9 seconds o f  t h e  earth time 
scale  UT1. 

Synchronlring t o  UTC presents two challenglng log i s t i c  problems: 1) In the past 
. the measurement noise using the Loran-C navigation chain as t h e  time transfer 

mechanism required averaging times of the order o f  several months before the 
I i n s t a b i l i t i e s  of state-of-the-art clocks began t o  appear. Wfth GPS sa t e l l l t e s  

used i n  common-view, t h a t  measurement noise becomes negligible f o r  sample times of 
a few days and longet. However, t h i s  technique is  currently only available t o  a 
small se t  of t i m i n g  laboratories. 2) There have been indications tha t  either. the 
propagation noise and/or temperature coefficients I n  the clocks Involved f n  ' t h e  
generation of TAI may be causing an annual variation t o  appear. The BXH is  paying 
s t r i c t  attention to  the temperature envfronment o f  the  clocks involved i n  order t o  
reduce any potential e f fec t  f rom t h a t  source. While t h i s  problem i s  being worked 
out ,  NBS has adopted a steering servo technique w i t h  a one year time constant i n  
order t o  average o u t  any annual term which may be present.. T h i s  servo technique 
has been applied since November 1982, and the improved performance i s  i l lustrated 
i n  Figure 2. The GPS s a t e l l i t e  data used i n  common-view between Boulder, CO and 
Paris ,  France has only been available since July 1983. As more o f  this data 

. - becomes available the smoothness and synchronization accuracy 'of UTC(NBS) should 
continue to  improveZl4Theoretical estimates 4 ndicate t h a t  frequency s t ab i l i t i e s  i n  
the range of 1 x 10 may be maintained for sample tfmes from one day t o  a month 
and longer for  UTC(NBS). Synchronization accuracies should  drop well below a 
microsecond as annual term problems i n  the clocks and i n  the propagation are  
solved. 

The most stringent users of UTC(NBS) desire i t  t o  be as smooth and accurate as 
possible. Time steps t o  synchronize i t  t o  UTC would be objectionable. Excellent 
frequency s t ab i l i t y  and time accuracy can be obtained simultaneously by inserting 
imperceptible frequency steps (of the same s i r e  as the noise) on a monthly basis 
i n  order t o  s teer  i t  toward UTC. Prior t o  t h i s  new procedure for steering UTC(NBS), 
only annual frequency steps were inserted. They were sufficiently large so t ha t  
they became objectionable t o  NBS's most stringent users such as the NASA Deep 
Space Network. Table 1 l is ts  the steering corrections published i n  the NBS Time 
and Frequency Bulletin, yielding the resu l t s  shown i n  Figure 2. 

The Time Scale TA(NBS) 

The NBS goal i s  t o  smoothly syntonize TA(NBS) w i t h  the frequency given by the NBS 
primary frequency standard -- currently NBS-6. TA(NBS) i s  a proper time scale i n  
the sense of general r e l a t iv i ty  -- i ts  time being determined only by the clocks 

. and standards in the NBS laboratories. Since frequency steps are  objectionable 
fo r  t h i s  time scale, frequency syntonization i s  achieved for  @(NBS) by inserting 
frequency d r i f t  of the order of the  noise ( 5 1 par t  i n  10 per year). The 
frequency d r i f t  inserted is computed u s i n g  an algorithm (4) which uses the per- 
iodic calibrations of the primary frequency standards. The relationship between 
the frequencies of TA(NBS) and UTC(NBS) are  l i s t ed  i n  the r i g h t  column of Table 1. 

The algorithm used i n  generating TA(NBS) employs the same clock data used i n  
genera t ing  t h e  o the r  two time scales. However, t h e  algorithm has been developed 
us ing  Kalman f i l t e r  and prediction techniques (5). The noise model fo r  t h e  clocks 
< n  the ensemble used t o  generate the NBS time scales is composed of two coefficients: 
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a coeff ic lent  whlch gives the level of white nolre frequency modulatlon (FM) and 
coef f ic ien t  which gives the random walk FM. A maximum likelihood parameter e s t i -  
mation procedure I s  used t o  estimate these coeff ic ients  fo r  each o f  the clocks. 
The i r  values are l i s ted  i n  Table 2. A t e s t  f o r  whiteness o f  the residuals has 
been conducted t o  assess the goodness of t h e  model. The tes t  was afflrmatlve 
indicating the model is  s t a t i s t i c a l l y  adequate t o  describe the behavior of the 
clocks i n  the NBS ensemble, 
Equation 1 gives the relationship of these coeff ic ients  t o  the "Allan VarlanceIf. 

A A 

where the sample time r nr , r i s  the measurement and prediction interval and 
a and u are  measures of t h ?  magnitude of the rms prediction error i n  the clock 
o6er an qnterval ro f o r  the white noise FM and the random walk noise FM respec- 
t i.vel y . 
The Time Scale AT1 

AT1 is  a basic time and frequency metrology tool for  the Time and Frequency Div- 
i s ion  of NBS. I t  i s  a l s o  used as a s tab le  frequency reference for  remotely mea- 
suring.and calibrating clocks as well as f o r  measuring and calibrating clocks sent 
t o  the NBS. 

AT1 4s automatically computed every two hours. The computation algorithm uses an 
"optimum" weighted se t  of the data from each o f  the clocks i n  the NBS ensemble. 
The time differences are measured w i t h  a precision of the order of a picosecond. 
A two-parameter representation of the noise character is t ics  is  also used i n  this 
algorithm. There i s  a one-So-one correspondence between these two parameters and 
the  two parameters referenced above. (See Table 2) The values of these para- 
meters, thei r re1 at5 onships, and how the a1 gori thm works i s  described e l  sewhere 
(9). 

To evaluate a clock such as AT1 which i s  designed t o  be better than the best  clock 
available i s  a very d i f f i c u l t  task. However, there are ways t o  estimate the 
frequency s t ab i l i t y  of ATl: First, by simulation, using the clock models estimated 
from the maximum likelihood approach; second, by measuring against an independent 
clock, e i ther  remote or local; t h i r d ,  by us ing  the  three corner-hat (10) technique 
w i t h  t h r e e  nominally comparable and independent clocks or time scales. One f u r t h e r  
t w i s t .  on the l a s t  option i s  t o  permute three separate algorithms around three 
independent clock ensembles, a1 lowing one t o  independently estimate the perfor- 

, mance of each of t h e  algorithms and each of t h e  ensembles. The data available 
were only sufficient t o  perform the f i r s t  two options. 

Figure 3 shows the frequency s t a b i l i t y  model f o r  each of the clocks i n  t h e  NBS 
ensemble. Once the model elements had been estimated us ing  the maximum likelihood 
technique, each clock was simulated and then processed through the AT1 algorithm 
as i f  t h e  da ta  were r ea l .  The computed time could t h e n  be compared aga ins t  perfect  
( t rue)  time since the data were simulated. Two d i f fe ren t  sets were simulated and 



processed and the rerul t l  ng frequency stab4 11 ty  1 i d1 c ted bv t h  squares tn . 
t h i s  figure. One estimates t h a t  for  sample times ranging f r o i a b o u t  one day t o  
about a mont_14the. s tabf l f ty  of A T 1  so computed should be of t h e  order of or below 
about 1 x 10 . 
Using the second option and the GPS common-view technique we have measured the 
frequency stability o f  AT1 versus UTC(USN0 MC) an operational time scale provided 
by the U.S. Naval Observatory. The time difference so deduced i s  shown i n  Figure 
4 f o r  the period July through October 1983. The a (‘I) analysis of these data i s  
shown-in Figure 5 w i t h  and without an apparent fre&pgy d r i f t  being removed. The 
frequency d r i f t  i s  t iny -- amounting t o  only -8 x 10 per day. For sample times 
of one, two, and four days, the s t a b i l i t y  values are probably s ignif icant ly  contam- 
i n a t e d  by measurement noise. A probable proper-$plusion from this  data set i s  
t h a t  both time scales are be t te r  than about 2 x 10 

Because of the previously determined white phase measurement noise present when 
u s i n g  the GPS i n  common-view technique (11). i t  is appropriate t o  use the modified 
o (T) analysis technique (12). Using t h i s  technique, Figure 6 shows A T 1  versus 
b&h UTC(USN0 MC) and UTC(OP),  the time scale provided by the the  Paris Observa- 
tory. Because of a frequency step introduced i n  UTC(0P) during the above analysis 
period, a stable period pr ior  t o  this  step during July 1983 was analyzed. 

- f i g u r e  6, the measurement noise is  limiting for sample times o f  one and two days 
but  fo r  sample times of from 4 t o  32 days i t  appea-rf4that none o f  the above three 
sca les  has ins tab i l i t i es  worse than about 1 x 10 f o r  mod. u (‘I) and for the 
analysis period covered. Assuming f l icker  noise FM as t h e  s t a d l l i t y  model and 
t ranslat ing to  u (‘I) increases the ins tab i l i ty  value by only a factor  of about 
1.2. 

for  4 days - -  < f < 1 month. 

In 

Y 

Recently some repair work was performed on the NBS prototype passive hydrogen 
maser (PHM4). Because of t h i s  repair  work t h e  maser was not included i n  the NBS 
computation o f  A l l .  This provided an opportunity t o  use the maser as an Indepen- 
d e n t  local reference t o  measure the s tab i l i ty  of A l l .  Because of the maser’s 
excellent white noise FM character is t ics ,  I t s  absence from the time scale computa- 
t i o n  increased the over-all white noise FM level o f  AT1 as compared t o  Figure 3. 
Even so, as shown i n  Figure 7 ,  the  long term stabi-l&fy o f  A T 1  versus the passive 
maser i s  s t i l l  very good -- o f  the  order o f  1 x 10 for  sample times of one t o  
four days. The s t ab i l i t y  of A T 1  versus UrC(USN0 MC) from Figure 5 i s  plotted for  
comparison -- i t  should be noted tha t  t h i s  data is  contaminated by measurement 
noise. 
s t a b i l i t y  of A T 1  i s  be t te r  than 2 x 10 
t o  a month. 

A conservative conclusion frofnlhhe data shown i n  Figure 7 i s  tha t  the 
for  sample times i n  the  range of one day 

To t e s t  i f  t h e  steering of  UTC(NBS) was affecting the long  term s t a b i l i t y ,  UTC(NBS) 
was measured against UTC(USN0 MC) via GPS i n  common-view and no s ignif icant  change 
i n  the u (‘I) diagram resulted compared t o  t h a t  obtained i n  Figure 5 .  
apparent% also say that14he time scales UTC(NBS) and/or UTC(USN0 MC) have stabil-  
i t i e s  better than 2 x 10 

One can 

f o r  sample times from a few days t o  a month. 

Conclusion 

The new NBS time scale measurement system (1) coupled w i t h  t h e  time scale algor- 
i t h m  research (13) has provided NBS w i t h  a solid foundation fo r  developing the 



t i m e  scales (JlC(NBS), TA(NBS), and AT1 as c q l a i n e d  above. A11 t h ree  scales have 
frequency s t a b i l i t i e s  of t he  order of 1 x 10 
month. UTC(NBS) I s  synchronlzed t o  UTC, and TA(NBS) i s  syn ton lz td  t o  the  NBS 
"best  est imate" of t he  frequency g i v t n  by t h e  NBS pr imary frequency standards 
( c u r r e n t l y  NBS-6). AT1 provides s ta te -o f - the-ar t  frequency s t a b i l i t y  f o r  sample 
t imes of the order  o f  one day and longer  wi th  t h e  a b i l i t y  t o  include and t o  c a l f -  
b r a t e  c locks o f  d iverse as w e l l  as o f  s ta te -o f - the-ar t  qua1,ity. As new and b e t t e r  

I c locks  are  added, All, UTC(NBS), and TA(NBS) w i l l  contlnue t o  improve i n  t h e i r  
I frequency s t a b i  1 { t i e s .  

for  sample t ines from ont day t o  a 

With the advent o f  GPS used i n  the  common-view measurement mode, t h e  f u l l  frequency 
s t a b i l i t y  and accuracy o f  the  above t ime scales 1s ava i l ab le  a t  a remote user's 
l o c a t i o n  fo r  sample times o f  about 4 days and longer (14). Th is  measurement i s  
about a fac to r  o f  20 t i m e s  b e t t e r  than us ing Loran-C. With t h i s  measurement 
technique, no t  on l y  w i l l  the  t ime d i f f e rence  UTC(USN0 HC) - UTC(N8S) be known i n  
near  r e a l  t ime t o  an accuracy o f  about 10 ns (3) ,  b u t  a lso  it i s  an t ic ipa ted  t h a t  
UTC(NBS) w i l l  be able t o  maintain synchronlzat ion w i t h  UTC, which i s  ca lcu lated 
t w o  months a f t e r  t he  f a c t ,  w i th  an accuracy o f  about 100 ns. 
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NBS4 
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8 
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(days 
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2.11 2.76 3.66 
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Figure 2. Universal Time Coordinated (UTC) minus UTC(NBS) v i a  Loran-C. 
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Figure 3. 
estimates o f  the s t a b i l i t y  of NBS.AT1 and UTC(N6S) v i a  the NBS algorithm. 

Frequency s t a b i l i t y  models of c l o c k s - i n  NBS ensemble. The squares are 



DRY (MJD) 
Figure 4. USNO master clock, UrC(USN0 MC), minus UTC(NBS) v i a  GPS.in common-view 
(July through October 1983). 

UTC (USNO MC) VS. NBS, AT1 
-12 

s 
t 
< 

x -1: < r 
c3 
v1 
H 

- 1  

via GPS SV9 COMMON-VIEW 

+- DRIFT REMOVED 

- 0 

5 6 7 
(seconds) LOG TAU - 

Figure 5.  
frequency dr i f t  removed. 

Frequency stability of UTC(USN0-MC) vs' AT1 with and without an apparent 
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Figure 6. Frequency s t a b i l i t y  of NBS.AT1 vs. lJTC(USN0-MC) and UTC(0P) v i a  GPS i n  
common-view using the modified u (1) analysis technique. 
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Figure 7. The frequency s t a b i l i t y  Of NBS.AT1 VS.  a passive hydrogen maser and vs. 
UTC(USN0-MC) v i a  the GPS i n  common-view technique. 


