The rotational spectrum of the CD₂ radical studied by far infrared laser magnetic resonance spectroscopy^{a)}

P. R. Bunker, Trevor J. Sears, and A. R. W. McKellar

Herzberg Institute of Astrophysics, National Research Council of Canada, Ottawa. Ontario, Canada KIA OR6

K. M. Evenson

National Bureau of Standards, Boulder, Colorado 80303

F. J. Lovas

National Bureau of Standards, Washington, D.C. 20234 (Received 7 March 1983; accepted 22 April 1983)

We report the detection of 17 pure rotation transitions in the ground vibronic state of the CD_2 radical using far infrared laser magnetic resonance spectroscopy. Fitting the data using an effective rotational Hamiltonian yields values for the three rotational constants, seven centrifugal distortion constants, the three electronic spin-rotation, and two electronic spin-spin parameters. We also fit this data, and $CD_2 v_2$ band data (published separately), using the semirigid bender Hamiltonian and obtain the effective bending potential function for CD_2 . Combining this with previous CH_2 results enables us to predict the rotation bending energy levels of CHD. We also report here the detection of two further rotational transitions in the v_1 excited vibrational state of CH_2 .

I. INTRODUCTION

Recently, high resolution infrared laser magnetic resonance spectra of gas phase CH_2 in its ground \bar{X}^3B_1 state have been obtained.¹⁻³ Analysis of these data has yielded, among other things, values for the equilibrium geometry and the height of the barrier to linearity.⁴ The fine and hyperfine splitting parameters have also been determined for the ground vibronic state² and fine structure parameters for the ν_2 (bending) excited state.³ It was possible, using this data, to make predictions⁴ of the spectra of CD_2 and ${}^{13}CH_2$. These predictions facilitated LMR measurements of the ν_2 band of ${}^{13}CH_2$ which were subsequently made.⁵ The present paper reports the detection and assignment of the far infrared LMR spectrum of CD₂, and in the following accompanying paper⁶ the diode laser spectrum of part of the ν_2 band of CD_2 is reported.

In this paper we report the detection of 17 pure rotation transitions in the ground state of CD_2 and we analyze them using both the effective rotational Hamiltonian and (with the inclusion of the ν_2 band data⁶) the semirigid bender Hamiltonian, as was done for CH₂ in Refs. 2 and 3. Comparison of the parameters obtained here for CD₂ with those obtained previously for CH_2 is of interest, and enables us to predict the rotation-bending energy levels of CHD. We also report here the detection of two more rotational transitions in the ν_1 excited vibrational state of CH₂. The data obtained here, and in Ref. 6, augment those obtained previously for CH_2^{1-3} and $^{13}CH_2^{5}$ and, in another accompanying paper, ⁷ all this rotation-vibration data is fitted using the nonrigid bender Hamiltonian to provide an $X^{3}B_{1}$ potential surface that is a refinement of that determined before⁴ in which only CH₂ data was used.

All the spectra were recorded at the NBS Boulder Laboratory using the far infrared LMR spectrometer described previously.² The CD_2 radicals were produced in the far infrared cavity by a flowing reaction between perdeuterated methane and fluorine atoms; the fluorine atoms were produced by flowing F_2 in helium through a microwave discharge. Optimum signal strength was obtained with partial pressures of 50 Pa He, 1 Pa F_2 , and 0.5 Pa CD_4 (where 1 Pa \approx 7.5 mTorr).

Before beginning the search the frequencies of appropriate CD_2 rotational transitions were calculated using the CD_2 term values predicted by Jensen, Bunker, and Hoy.⁴ These predictions were made using the potential surface obtained by fitting the eigenvalues of the nonrigid bender Hamiltonian to the experimentally measured^{2,3} rotation and rotation-vibration intervals for CH_2 . Using far infrared laser lines close to these predicted frequencies strong spectra were detected, and these were assigned to CD_2 with some confidence on the basis of their closeness to the theoretical predictions, the chemistry of their production, and on their nuclear hyperfine structure (when present). Subsequent detailed analysis, reported below, confirmed the assignment.

Examples of spectra recorded using the 107.5 μ m CD₃OD laser line are shown in Figs. 1-3. The spectrum shown in Fig. 1 was obtained with the electric vector of the laser radiation parallel to the magnetic field direction (i.e., in π polarization), and that shown in Fig. 2 with it perpendicular to it (σ polarization). In Fig. 3 a scan through a strong resonance at 0.3401 T in π polarization is shown; the magnetic field modulation amplitude and sample pressure were both reduced to obtain this spectrum. The resonances in Figs. 1-3

. . . .

- ----

70/01 1 4 - 1000

0004 0000/00/454044 00000 40

1 04-1- DL

II. EXPERIMENTAL DETAILS AND RESULTS

^{a)}Work supported in part by NASA contract W-15047.

FIG. 1. Laser magnetic resonance spectrum of CD_2 obtained with the 107.5 μ m (92.9906 cm⁻¹) laser line of CD_3OD in parallel polarization. These resonances are various Zeeman components of the $3_{21} - 3_{12}$ rotational transition (see Table II).

are assigned as components of the $3_{21} - 3_{12}$ rotational transition, and the saturation features (inverse Lamb dips) show the expected quintet and singlet hyperfine structure. For most of our spectra the nuclear hyperfine structure was not well resolved.

In all nearly 200 resonances were assigned to components of 17 rotational transitions. The laser lines used are given in Table I and a complete list of the resonances is given in Table II. The assignments were made, with the help of the nonrigid bender predictions,⁴ using a desktop calculator and plotter to draw Zeeman spectrum plots as described previously.¹⁻³

III. ANALYSIS OF RESULTS

A. Using the effective rotational Hamiltonian

The effective rotational Hamiltonian for a vibrational level of the ${}^{3}B_{1}$ state of CH₂ was discussed in Ref. 2, and we use the same Hamiltonian for CD₂. We have not

attempted to analyze the fragmentary and poorly resolved nuclear hyperfine structure. The Hamiltonian involves rigid rotor, centrifugal distortion, electronic spin-spin interaction, electronic spin-rotation interaction, and Zeeman effect terms as given, respectively, in Eqs. (2), (3), (4), (5), and (7) of Ref. 2.

The computer $\operatorname{program}^2$ used in the fitting was based on that described by Barnes *et al.*¹⁸ and it sets up the matrix of the Hamiltonian operator in a fully coupled prolate symmetric top basis set which is truncated at a point empirically found to cause negligible change in the eigenvalues of interest. In the present case the basis set included all states up to and including matrix elements with $\Delta N = \pm 2$ and $\Delta K = \pm 2$. In the fit of the eigenvalues of this Hamiltonian matrix to our data we adjusted 15 parameters; the refined values of these parameters, and their standard errors, are given in Table III. The standard deviation of the fit is 5.2 MHz and the (observed-calculated) values for all the assigned

FIG. 2. Same as in Fig. 1, but with perpendicular polarization of the laser radiation relative to the Zeeman field.

I Cham Physe Vol 79 No 3 1 August 1983

FIG. 3. One Zeeman component of the $3_{21} - 3_{12}$ rotational transition of CD_2 , showing saturation dips due to partially resolved hyperfine structure.

TABLE I. Far infrared laser lines used to observe LMR spectra of $\mbox{CD}_2.$

	Laser wavelength	Laser wave number	
Lasing gas	(µ m)	(cm ⁻¹)	CD ₂ transitions
СН ₃ ОН	570.6	17.526 3752	$1_{11} - 2_{02}$
CD3OD	298.7	33.474377 ^b	$2_{11} - 2_{02}$, $1_{10} - 1_{01}$
CH_2F_2	287.7	34.762374°	$2_{11} - 2_{02}; \ 3_{12} - 3_{03}$
CD_2F_2	248.1	40.305 013 ^d	$1_{11} \leftarrow 0_{00}$
СH ₂ OH	242.5	41.241758°	1 ₁₁ - 0 ₀₀
CH2DOH	206.7	48, 382 240 ^f	$2_{12} - 1_{01}$
CD₃OH	180.7	55.327940^{a}	$3_{13} - 2_{02}$
СН₃ОН	170.6	58.624765	4 ₂₂ - 5 ₁₅
CH_2F_2	166.6	60.012827°	$3_{22} - 4_{13}$
CD3OH	144.1	69.387647 ⁸	$2_{21} - 3_{12}; 5_{15} - 4_{04}$
CH2DOH	108.8	$91,896.764^{t}$	$4_{22} - 4_{13}$
CD3OD	107.5	92, 990 646 [°]	$2_{20} - 2_{11}; \ 3_{21} - 3_{12}$
¹³ CH ₃ OH	103.5	96,636 268 ^h	$3_{22} - 3_{13}; 4_{23} - 4_{14}$
¹³ CH ₃ OH	85.3	$117, 209532^{h}$	$3_{22} - 2_{11}$

^aF. R. Petersen, K. M. Evenson, D. A. Jennings, J. S. Wells, K. Goto, and J. J. Jimenez, IEEE J. Quant. Electron. 11, 838 (1975).

- ^bE. C. C. Vasconcellos, A. Scalabrin, F. R. Petersen, and K. M. Evenson, Int. J. IR Mm Waves 2, 533 (1981).
- ^cF. R. Petersen, A. Scalabrin, and K. M. Evenson, Int. J. IR Mm Waves 1, 111 (1980).
- ^dE. C. C. Vasconcellos, F. R. Petersen, and K. M. Evenson, Int. J. IR Mm Waves 2, 705 (1981).
- ^eF. R. Petersen, K. M. Evenson, D. A. Jennings, and A. Scalabrin, IEEE J. Quant. Electron. 16, 319 (1980).
- ^fA. Scalabrin, F. R. Petersen, K. M. Evenson, and D. A. Jennings, Int. J. IR Mm Waves 1, 117 (1980).
- ⁴R. J. Saykally, K. M. Evenson, D. A. Jennings, and F. R. Petersen (in preparation).
- ^hJ. O. Henningsen, J. C. Petersen, F. R. Petersen, D. A. Jennings, and K. M. Evenson, J. Mol. Spectrosc. 77, 298 (1979).

resonances are included in Table II. The electron spin g factors were fixed at the values predicted by Curl's relation⁹ and the (small) rotational g factors at values predicted from simple theory.⁸

In the fit all the varied parameters are well determined and the only off-diagonal correlation coefficient greater than 0.9 is that between $\frac{1}{2}(B-C)$ and $\delta_{\mathbf{x}}$ which was 0.9953. As with the fit² for CH₂ a large number of centrifugal distortion parameters are necessary because of the bending flexibility in this molecule, but the problem is less severe in CD₂ than in CH₂ because the (000) vibrational level is lower in the potential well. Also as for CH₂ we could not assign any resonances involving transitions to levels with $K_a > 2$ and, therefore, we could not determine $\Phi_{\mathbf{x}}$. This parameter was fixed at a value obtained from a fit using the nonrigid bender Hamiltonian.⁷

In the effective Hamiltonian fits^{2,3} for CH₂ there was no need to include centrifugal distortion corrections to the spin-spin and spin-rotation interactions, and this is equally true for CD₂. For the vibronic ground state the values obtained for D and E, the dominant fine structure parameters, are compared with those obtained for CH_2 and $^{13}CH_2$ in Table IV, and we see that D is smaller in CD_2 than in CH_2 , whereas E is larger. The increase in E can be understood since CD_2 is somewhat more bent in the (000) state than CH₂ and E is zero for a linear molecule. The spin-rotation parameters $\epsilon_{aa},\,\epsilon_{bb},\,\,{\rm and}\,\,\epsilon_{cc}$ are all well determined although they make a much smaller contribution to the observed fine structure splittings. When compared to their values for CH_2 it is evident that they scale as the corresponding rotational constants, as might be expected from simple theoretical arguments.

We tried extensively to find transitions involving $K_a = 3$ energy levels, but without success. The number of available far infrared laser lines is very limited for frequencies greater than 100 cm⁻¹ where most CD₂ transitions involving levels with $K_a \ge 3$ occur, and this

TABLE I. Observed resonant fields of LMR transitions in the ground state of CD₂.

Laser Resonant line field		As	signment		ObsC	Calc.		
$(cm^{-1})^a$	(T) ^c	N _{Ka} Kc	J	M ;	(MHz)	(G)°	TRd	Int ^e
17.5267	0.34570	111-202	2-3	1- 1	-0.1	0.0	2,72	2
17.5267	0.41810	111-202	2 - 3	2-2	-4.5	2.0	2.31	1
17.5267	0.42550	1 1 1 - 2 0 2	2 - 1	-1 - 1	-0.9	0.4	2.41	1
17.5267	0.38050	111 - 202	2-3	-1 - 2	-4.9	2.0	2.47	3
17.5267	0.49110	111 - 202	2-3	1-2	-1.š	0.6	2,36	2
33.4744	0.22991	211 - 202	1-2	1 - 1	- 8.3	-1.8	-4.64	47
33,4744	0.27011	211 - 202	1-2	00	-0.0	-1.4	-4.72	39
33.4744	0.041.94	211 - 202	3 - - 2 3 2	2 - 2	- 2. 0	- 2. 2	- 2.52	31
33,4744	0.041.24	110-101	1-2	1 = 0	-0.0	0.0	1.33	01 205
33 4744	0.05259	110 - 101	1 2	0	-0.1	0.1	1.08	200
33 4744	0 346 87	110 - 101	2-1	0 - 1	-2.0	2.6	0.76	200
33, 4744	0,83341	110-101	$\frac{1}{2}$ - 1	1-0	- 0, 9	5.2	0.17	464
34, 7624	0.29956	211 - 202	2-1	0 0	7.2	-1.6	4.54	37
34. 7624	0.361 95	211 - 202	2 - 1	-11	5.1	-1.0	5,02	48
34.7624	0.59740	211 - 202	2 - 3	-11	7.9	-3.1	2.56	30
34.7624	0.62787	211 - 202	2-3	-2 - 2	4.9	-1.9	2.64	18
34.7624	0.24255	211 - 202	2 - 1	2 - 1	10.8	- 2, 3	4.68	46
34.7624	0.29325	211 - 202	2-1	1-0	9.4	-2.1	4.51	40
34.7624	0.22359	312 - 303	2 - 4	1-1	1,5	0.7	- 2, 23	9
34.7624	0.33057	312 - 303	2-4	0 - 0	2.5	1.1	- 2.38	3
34.7624	0.27027	312 - 303	3 - 3	-3 - 2	21.5	12.5	-1.72	79
34.7624	0.27207	312 - 303	2-4	0 - 1	1.1	0.5	-2,32	18
34.7624	0.27683	312 - 303	2-4	-1 - 2	2.0	0.6	-3.26	16
34.7624	0.29695	312 - 303	43	4 - 3	- 8. 2	8.3	0.98	152
34.7624	0,32655	312 - 303	2-4	-21	4.3	1.6	- 2, 75	13
34.7624	0.33168	312 - 303	2-4	10	2.2	0.8	- 2.69	14
34.7624	0.345 51	312 - 303	2-4	-1 0	2.6	1.0	- 2.46	44
34.7624	0.36712	312-303	4-4	3 - 4	2.6	1.1	- 2,42	33
40.3030	0.34197	111 - 000	0-1	$0 \rightarrow 1$	0.4	0.1	- 5.37	49
41.2410	0.33976	111 - 000	2 - 1	-1 - 1	3.6	-0.1	2.69	57
41.2418	0.05842	111 = 000	0 - 1	0 - 1	0.1	-1.5	3 40	346
41 2418	0.33977	111 + 000	2 - 1	1 0	4 4	-1.6	2 69	58
48.3822	0.00340	212 - 101	$3 \rightarrow 2$	-22	-1.6	1.7	0.91	797
48, 3822	0.00700	212 - 101	3-2	-1 - 1	-1.6	3.7	0.43	1276
48.3822	0.17734	212 - 101	3-2	0-0	-1.8	4.6	0.38	1409
48.3822	0.18278	212 - 101	2 - 1	-11	6. 4	2.4	2.64	283
48.3822	0.80272	212 - 101	2 - 1	0 — 0	-1.9	10,5	0.18	1154
48, 3822	0.00140	212 - 101	3 - 2	-1 - 2	3.8	-2.0	1.86	159
48.3822	0.00222	212 - 101	3-2	01	-1.1	0.8	1.39	479
48.3822	0,00336	212 - 101	3 - 2	1 - 0	-1.2	1.5	0.92	956
48.3822	0.00674	212 - 101	3-2	2 - 1	-1.3	2.8	0.46	1594
48.3822	0.06803	212 - 101	1 - 2	-1 - 2	-1.1	0.3	3.27	125
48,3822	0,15090	212 - 101	2-1	01	-6.0	2.0	2.94	53 705
48.3822	0.19713	212 - 101	3-2	-1 0	-1.3	1.2	1.07	553
48,3822	0.534.80	212 - 101	3-2	2 1	-0.6	- 5. 6	-0.10	2205
40,3822	0.00361	212 - 101 313 - 202	2-3	1 0	-3.4	11.9	0.28	0 00 35
55,3278	0.301.20	313 - 202	2-3		-0.1	0.0	- 4 5	100
55 20/2	0.40100	213-202	4-3	-2	-10.9	31 7	- 2.35	1085
55 3074	0 293 80	313-202	2-3	1 - v	-10.0	0.4	-1 97	25
35 3279	0 298 2	313 - 202	4 - 3	2 — S	-0.1	0 0	- 2. 58	23
55.3279	0.36276	313 - 202	2-3	-21	-0.2	-0.1	- 2, 90	6-
55.3279	0.36343	313 - 202	2 3	0 1	1.5	0.6	-2.79	28
55,3279	0.35523	313 - 202	2-3	-1 0	6.1	0.0	- 2, 33	111
58, 8242	0.02260	422-515	5 - 5	-53	17.8	7.4	-2,28	14
56.3248	0.0254°	422-315	5 5	-44	- 4. 4	- 2. 1	-2,15	
38,6248	0,03030	422 - 515	2-5	-32	-4.0	- 2. 0	-1.36	9
58,6248	0,03610	422-515	3 5	-2 2	-10.S	-5,9	-1.84	-
38.6 2 48	0.04130	422-515	3 - 5	-11	-2.7	-1.6	-1,71	
58,6248	0,15970	422-515	5 5	-22	0.2	0.1	-1,28	3
58.624C	0.27940	422 - 515	5 5	- 3 3	0.0	0.3	-1.58	1-
58.6248	0.03410	422-515	35	-21	-7.4	-3,9	-1.93	
58,6248	0,07020	423 - 518	5 5	0-1	- 2. 3	-2.2	-1.08	

TABLE II (Continued)

Laser Resonant		Assignment ^b			ObsCalc.			
$(cm^{-1})^2$	(T) ^c	N _{Ka} K _c	J	M J	(MHz)	(G) ^c	TR^d	Int ^e
58.6248	0.10740	422-515	5-5	-12	0.6	0.7	- 0, 39	8
58,6248	0.13480	422 - 515	5-5	2-3	-3.4	-2.7	-1.25	28
58,6248	0.19330	422-515	5-0	-23	3.2	2.6	-1,25	22
58 6248	0.21110 0.34070	422-515	5 5	-34	- 2.0	- 4. 1	-1.30	40
58 6248	0.34970	422 - 515 422 - 515	55	4 5	-1 1	-0.7	-1 66	79
60.0128	0.08870	322 - 413	2 - 4	-22	5.2	-2.7	1.92	52
60.0128	0.10810	322-413	2 4	-11	4.4	-3.1	1.42	123
60.0128	0.13080	322-413	2-4	0 0	1.0	-0.9	1,06	179
60.0128	0.13450	322-413	<u>4</u> +- 4	₹ 4	4.7	-2.8	1.68	41
60.0128	0.14390	322-413	3 - 4	3 - 3	-3.8	3.2	1.18	118
60,0128	0.15050	3 2 2 - 4 1 3	2 - 4	1 - 1	- 2.5	2.9	0.89	199
60.0128	0.15690	322 - 413	2 - 4	2-2	1.0	-1.1	0.93	177
60,0128	0.20050	322 - 413	4	-22	-7.3	-2.3	-3.22	7
60,0128	0.21660	322 - 413	4-0		-18.2	- 6.7	- 2, 73	10
60.0128	0.01010	322 - 413	2	-23	10.5	- 5. 5	2.00	164
60 0128	0.11430	322-413 322-413	2-4	-11	2.7	-2.0	1 35	158
60.0128	0.13090	322 - 413	3-4	$3 \leftarrow 4$	3.2	-1.9	1.69	134
60.0128	0.13850	322 - 413	2 - 4	1 0	1.6	-1.6	1,00	1 21
60.0128	0.14140	3 2 2 - 4 1 3	2-4	0-1	1.2	-1.3	0.95	74
60.0128	0.14460	3 2 2 - 4 1 3	24	2-3	- 8, 8	7.2	1.21	151
60.0128	0.14900	3 2 2 - 4 1 3	2 - 4	1 - 2	2.0	- 2.1	0.98	118
60.0128	0.15860	3 2 2 - 4 1 3	2 - 4	2 - 1	1.8	- 2. 2	0.84	75
69.3876	0.16169	$2 \ 2 \ 1 - 3 \ 1 \ 2$	1 - 4	0 0	-10.4	8.4	1.24	35
69.3876	0.37702	2 2 1 - 3 1 2	3-2	-11	0.3	-0.1	2.68	35
69.3876	0.386.00	2 2 1 - 3 1 2	34	2-2	-0.2	0.1	2.48	55
69.3876	0.00878	221 - 312	32	- 2 2	3.3	-1.4	2.30	57 74
69 3876	0.03308	221 + 312 221 - 312	1 2	1 - 0	- 9.1	-12.0	-0.81	68
69 3876	0.164.50	515 + 404	5-5	5 5	-0.4	-0.2	-1 84	386
69.3876	0.52266	515 - 404	5	-44	-17.7	7.2	2.46	163
91.8968	0.14160	$4\ 2\ 2 \leftarrow 4\ 1\ 3$	4 4	-43	-1.6	-1.5	-1.05	1133
91,8968	0.20670	4 2 2 - 4 1 3	54	5 ← 4	-1.7	1.3	1.27	1148
91.8968	0.22830	4 2 2 - 4 1 3	35	0 - 1	4.1	1.6	- 2.55	309
91,8968	0.25540	4 2 2 - 4 1 3	3 5	-1 - 0	3.7	1.4	-2.60	272
92,9906	0.23486	$2\ 2\ 0\ -\ 2\ 1\ 1$	2 2	-1 1	3.5	0.8	-4.54	729
92.9906	0.21504	2 2 0 - 2 1 1	2-2	-1 - 0	3.7	0.8	-4.58	1167
92.9906	0,22150	220-211	2-2	0 - 1	2.8	0.6	-4.51	1453
92.9906	0.220000	220 - 212	2-2	-21	1,2	0.4	-4.30	405
92.9906	0.24750	220-211	22	1 1 1 0	-, - -	0.7		970 1114
92.9906	0.260.65	220-211	0 ''	· - · ·	3 1	0.0	- + 15	1098
92,9906	0.38674	220 - 211	2	2 1	4.5	2.0	- 2, 49	661
92.9906	0, 433.84	220 - 211	2-2	-12	3.3	1.5	- 2,45	373
92,9906	0.47371	$2 \ 2 \ 0 \leftarrow 2 \ 1 \ 1$	2-3	2 - 0	1.9	1.1	- 2.62	243
92.9906	0,027.08	$2 \ 2 \ 1 \leftarrow 3 \ 1 \ 2$	3 — 4	- 3 → - 3		- 0, C	2,17	1459
92.9906	0,033 54	321-312	3 4	-22	- .)	- 0, 4	1.50	1524
95,6909	0,04840	2 2 1 2 1 2		2 — — — — — — — — — — — — — — — — — — —	3 . 8		- 1, 23	411
92.9908	0.05335	022+022	2 4 	-11	- 4 S	0.C	2.94	682
92,9906	J.V7046	0.01-010	04		2.3		-1.39	7223
92,9906	0,0.208	331		ن س ر	19. 4 1 1	1, u 	08 5.54	2204
92,0000	0, 288 26	4 2 1 - 2 1 2					-0.15	430
92.9906	0.34010	321-312		2- 2	~ 2.4	19.7	-0.17	3670
92.9906	0.01897	821-812	2		-1.3		2.46	187
92,9906	0,01374	321 - 312	2	·) ('		-0.4	1.90	601
92.9966	0.02728	021-012	2 - 4	2- 1	1	0.1	2.20	1003
92,9906	0,03037	3 21 + 312	4-2	-21	1,3	0,5	-3,38	786
92,9906	0.03478	3 2 1 + 3 1 2	3	-12	0.2	<u>- 2.</u> J	1.61	1330
92.9906	0.03478	321 - 312	2	1-2	- 9.5	0.3	1,54	1850
92.9906	0.03867	321 - 312	3-4	-3 - 2	9.5	-0.3	1.55	1037
92,9906	0.04429	321 - 312	S 4	S- 2	0.4	- 0, 3	1.70	1929
92.9906	0.04506	321 - 312	4-2	-1- 0	1.3	0,6	-2.28	1795
a7. aane	0.05223	321 - 312	÷ ;	1 - 0		0.7	-2.19	1506

TABLE II	(Continued)
----------	-------------

Laser	Resonant field		Assignment	b	Obs. –	Calc.	<u></u>	
$(cm^{-1})^{a}$	(T) ^c	NKcKc	J	M_{J}	(MHz)	(G)°	TR ^d	Int ^e
92.9906	0.05731	321-312	3-4	01	-0.4	0.4	0.94	3232
92.9906	0.06174	3 2 1 - 3 1 2	3 - 4	-2 1	0.4	- 0.5	0.90	2994
92.9906	0.06780	321 - 312	3 - 4	-32	3.6	2.6	-1.39	1527
92,9906	0.07220	321 - 312	2-4	2 - 3	0.4	-0.4	1.04	2892
92,9906	0.07220	321 - 312 321 - 312	3	-1 - 2	-1.3	-1.1	-1.38	2152
92,9906	0.08362	321 - 312 321 - 312	4-4	4 - 3	0 4	-04	-1.19	1842
92,9906	0,09803	321 - 312	$\frac{1}{4} - 2$	2 - 1	0.6	0.6	-1.09	1891
92,9906	0.16577	321 - 312	3 4	-1 0	2.6	-12.1	0.22	5 488
92,9906	0,16577	3 2 1 - 3 1 2	3 4	1 - 0	- 2.0	9.2	0.21	5471
92.9906	0.21821	321-312	3-4	-2 - 1	1.5	8.8	-0.17	4724
92,9906	0.24266	3 2 1 - 3 1 2	3 4	01	0,5	3.2	-0.15	5717
92.9906	0.28690	3 2 1 - 3 1 2	4 - 2	1-2	2.1	9.7	-0.21	2811
96.6363	0.33980	322 - 313	2 - 2	$-1 \leftarrow -1$	-5.4	1.0	5.29	255
96,6363	0.56940	322 - 313	3-2	2-2	-1.0	0.4	2.69	183
96.6363	0.63970	322 - 313	3-4	-33	-2.1	0.8	2,73	294
90,0303	0.64370	322-313	24	-22	-3.9	1.5	2.70	042 192
96 6363	0,75730	322 - 313	22	0 - 1	-11 4	2.0	5 14	399
96 6363	0.328.80	322 - 313 322 - 313	2 - 2	-1 - 0	- 11, 4	1 2	5 17	423
96,6363	0.33200	322 - 313	2 2	1 - 0	- 8, 8	1.7	5.18	495
96.6363	0.56150	322 - 313	2 - 4	01	- 2. 2	0.8	2.74	171
96.6363	0.56880	322-313	3 - 2	1-2	-3.5	1.3	2.69	209
96,6363	0.63860	322-313	3 2	0-1	-0.8	0.3	2.66	197
96.6363	0,17930	4 2 3 - 4 1 4	3-4	3 - 3	-3.7	- 0. 9	-4.28	253
96,6363	0,18880	423 - 414	3-4	2-2	1.6	0.4	-4.44	354
96,6363	0.20020	4 2 3 - 4 1 4	3 4	1 1	13.1	2.9	- 4.56	326
96.6363	0.21040	423-414	3-4	0-0	-3.4	-0.7	-4.62	208
96,6363	0.48980	423 - 414	5-4	3 3	-1.9	-0.8	- 2.46	273
90,0303	0.48980	423 - 414	35	3 - 3	-7.6	- 2.0	- 2.96	103
90.0303	0.60100	423 - 414	5-4	-33	0.7	2.7	- 2.30	565
96 6363	0.18860	423 - 414	3 - 4	3-4	-4 0	-10	-3.92	130
96,6363	0.18860	423 - 414	3-4	2 - 1	8.2	1.8	-4.52	162
96.6363	0.20320	423 - 414	3 4	1 - 0	9.3	2.0	-4.56	263
96.6363	0.20740	423-414	3 - 4	0-1	0.1	0.0	-4.63	138
96,6363	0.21140	423 - 414	3-4	-1 - 0	0.7	0.2	-4.63	277
96.6363	0.21300	4 2 3 - 4 1 4	3 4	-2 1	- 2.0	- 0. 4	-4.51	336
96.6363	0.21590	423 - 414	3 - 4	-32	0.1	0.0	-4.31	318
96.6363	0.21760	4 2 3 - 4 1 4	3-4	0 1	- 2. 0	-0.4	-4.55	298
96,6363	0,22570	423-414	54	-43	2.8	0.7	-3.97	260
96.6363	0.23160	423 - 414	3-4	-1 - 2	2.4	0.6	-4.40	233
96,6363	0.27370	423 - 414	54	- 5 4	-3.1	-1.2	-2.61	194
96,6363	0.44560	423 - 414	5-4	2 = 3	-0.8	-0.3	-2.43 -2.41	201
96 6363	0.550.80	423-414	5-4	-2 - 3	1 7	0.7	-2.41	297
96,6363	0.67270	423 - 414	4-4	-43	-0.2	-0.1	- 2, 59	181
117, 2095	0,093 20	322 - 211	4-2	1 1	5.3	1.1	-4.82	1543
117.2095	0.09610	3 2 2 - 2 1 1	4 - 2	0 0	6.5	1.4	-4.77	2955
117,2095	0.10630	322 - 211	4 — 2	-1 1	0.1	0.0	-4.43	2839
117.2095	0.160 00	322-211	4 - 2	-2 2	-1.8	-0.7	- 2.54	1578
117.2095	0.21000	322-211	3 - 2	2-2	-4.3	-1.8	- 2. 41	1486
117.2095	0.246 20	3 2 2 - 2 1 1	3-2	-1 - 1	0.5	0.2	- 2.47	1357
117.2095	0.09510	322 - 211	4-2	2 - 1	1.6	0.3	-4.84	41 23
117.2095	0.09770	322 - 211	4-2	$1 \leftarrow 0$	- 2. 2	-0.5	-4.78	3583
117 2090	0.10470	322 - 211	4 - 2 4 - 2	-21	-1.5	-0.3	-4.41	1640
117 2035	0.13760	322 - 211	4-2	-3 2	-1.2		- 4.40 - 9.51	1072
117 2095	0 20864	322-211	4 2	3- 2	-3.0	-1 9	- 2. 34	1913
117.2095	0, 245 27	322 - 211	3-2	-21	-3.2	-1.3	- 2. 46	1744
117.2095	0.23714	322 - 211	4-3	2 - 1	- 4. 5	-1.6	- 2, 77	1396

^aSee Table I.

^bThe assignment given for J is that with which the given M_J level correlates at zero field.

· · · · · · · ·

 $^{\circ}1 T \equiv 10^4 G.$

^dCalculated tuning rate in MHz/G.

*Calculated relative line intensity, including Boltzmann factor for 300 K.

Rotation	A <u>3</u> (B+C) <u>3</u> (B-C)	37.786863(63) ^a 3.962178(16) 0.26747(10)
Centriiugal distortion	Δ_K Δ_{NK} \dot{c}_N \dot{c}_K \dot{c}_K $\dot{\Phi}_K$ Φ_{KN} Φ_{NK}	$\begin{array}{c} 0.560\ 215(17) \\ -\ 0.496\ 40(98)\times 10^{-2} \\ 0.929\ 5(71)\times 10^{-4} \\ 0.272\ 8(54)\times 10^{-2} \\ 0.226\ 4(28)\times 10^{-4} \\ 0.019\ 6^{\circ} \\ -\ 0.243\ 7(19)\times 10^{-3} \\ -\ 0.143(30)\times 10^{-5} \end{array}$
Spin-spin	D E	0.776484(96) 0.040592(66)
Spin-rotation	⁶ аа ⁶ ьь	$0.0286(37) \times 10^{-2} - 0.2607(15) \times 10^{-2} - 0.2077(24) \times 10^{-2}$

TABLE III.	Molecular parameters for the ground
$ ilde{X}^3B_1$ state of	$i CD_2 (in em^{-1}), a$

^aParameters not included here were fixed at zero, except for g factors fixed at theoretically estimated values (see the text).

^bThe numbers in parentheses are one standard error from the least-squares fit in units of the last quoted digit.

^cFixed at the value obtained from a fit to nonrigid bender (Ref. 7) energy levels.

TABLE IV. Comparison of spin-spin interaction parameters of isotopic forms of CH_2 for the vibronic ground state (in cm⁻¹).

	D	E
¹² CD ₂ (this work)	0.7765(1)	0.04059(7)
¹² CU ₂ (Ref. 2)	0.7784(1)	0.03991(4)
$^{13}CH_{2}$ (Ref. 5)	0,7801(13)	0.041 76(53)

TABLE VI. Parameters for the (100) excited vibrational state of $CH_2(\tilde{X}^{3}B_1)$ (in cm⁻¹).²

Parameter ^b	Value
A	69.00031(20)
B	8, 281 18(20)
С	7.10202(9)
D	0.78544(88)
E	0.04202(38)
ϵ_{aa}	0.0021(7)
e bb	-0.00379(27)
€ _{cc}	-0.00361(26)

^aFrom a fit to the data of Table V of this paper and Table V of Sears *et al.* (Ref. 2). Because of the limited number of observed rotational transitions and the possibility of perturbations in this vibrational state, the precise values of these parameters are not very meaningful.

^bAll the centrifugal distortion parameters were fixed at their ground state values [see Table III of Sears *et al.* (Ref. 2)].

makes it difficult to conduct a systematic search. For example, the Q-branch transitions $3_3 - 3_2$, $4_3 - 4_2$, etc., should occur⁷ at approximately 146 cm⁻¹. Although some LMR signals were obtained using a laser line at 141.8 cm⁻¹, they could not be assigned to rotational transitions in CD₂.

Although not part of our study of CD_2 we have, since publishing Ref. 2, found some resonances due to the rotational transitions $1_{10}-1_{01}$ and $2_{12}-1_{01}$ for CH_2 in the ν_1 excited vibrational state, and it is convenient to report them here. The positions of these resonances are given in Table V. Previously we detected resonances due to the transitions $2_{11}-2_{02}$ and $3_{12}-3_{03}$ for CH_2 in the ν_1 state (see Table V of Ref. 2). Combining this data

TABLE V. New observed transitions in the (100) excited vibrational state of CH2.2

Laser line	Resonant field		Assignment		ObsCalc.
(cm ⁻¹)	(T)	N _{KaKc}	J	М	(MHz)
60,012827°	0. 027 84 ^c	$1_{10} - 1_{01}$	2 - 2	-21	- 5
	0.02894		2 - 2	1 2	- 5
	0,031 29		2 - 2	0-1	- 8
	0.031 29		2 - 2	-1 - 0	- 3
	0.29296		2 - 2	-1- 0	- 6
	0.51914		1 - 2	1 - 0	0
	0.92160		1 - Û	-1 0	-11
88. 863 420ª	0. 236 31	$2_{12} - 1_{01}$	2 - 2	-11	-14
	0.29856		2-2	-22	- 26
	0.46924		2-2	1- 1	-10
	0.59954		3-2	-1 - 1	+ 36
	0.646 22		2-1	-11	- 5
	0.13586		3 — 0	-1 0	+32
	0.21173		2 - 2	01	-15
	0.28995		2 - 2	1 0	-15
	0.34305		2-2	-1- 0	- 2
	0.41485		2-2	-21	- 28
	0.48697		2 - 2	0-1	-12
	0.49177		2 - 2	2-1	+14
	0.63482		3 - 2	0 1	+ 46

*See also Table V of Sears *et al.* (Ref. 2). *166.6 µm laser line of CH₂Fy. ^c1 T = 10^4 G. ^d112.5 μ m laser line of CH₂DOH. for ν_1 state CH_2 we determine the effective Hamiltonian parameters given in Table VI.

B. Using the semirigid bender Hamiltonian

As with CH_2 it is of interest to fit the rotation bending transition wave numbers of CD_2 using the semirigid bender Hamiltonian.¹⁰ The data for the fit are obtained from the results of this paper and of the following paper^S on the ν_2 band of CD_2 , after suppressing the fine structure; they are summarized in Table VII. The semirigid bender Hamiltonian treats the molecule as rotating and bending within an effective bending potential function with bond lengths that are allowed to vary with the bending angle. The effective bending potential function and the bond length function will vary with isotopic substitution and with excitation of the stretching vibrations ν_1 and ν_3 because of the effects of the averaging over the stretching vibrations.

By adjusting two parameters in the effective bending function V and two in the bond length function R, in the semirigid bender Hamiltonian, the least squares fit of the data in Table VII is obtained with

$$V/cm^{-1} = -6943.0(3.5)\rho^2 + 7514.4(3.1)\rho^4 - 2698\rho^6 + \bar{5}00\rho^8$$
(1)

and

TABLE VII. Experimentally derived zero-field rotation and rotation-vibration transitions in $CD_2(\tilde{X}^{3}B_1)$ with fine structure splittings removed (in cm⁻¹).

NKaKa	Observed	ObsCalc.°
(0,0,0) state ²		
$1_{11} - 2_{02}$	17,1920	-0.0251
$l_{10} - l_{01}$	33,5554	-0.0009
$2_{11} - 2_{21}$	34,1038	0.004c
3:2-303	34,9365	0.0125
$1_{11} - 0_{00}$	40,9556	-0.0002
$2_{12} - 1_{01}$	48.3728	-0.0034
$3_{13} - 2_{02}$	55, 5373	-0.0141
422-515	58.9443	υ.045:
$3_{22} - 4_{13}$	50,1329	-0.0407
$2_{22} - 3_{12}$	69 ,0155	-0.0163
$5_{15} - 4_{04}$	69.1425	= 0,0€01
4-2-4:5	92,0210	-0.0879
3 3	92.8054	-0.0100
$2_{20} - 2_{11}$	93, 5938	0.011.
$3_{22} - 3_{13}$	06.01 2 3	0.0364
÷23-+12	97.1310	0.0205
$3_{22} - 2_{11}$	117,4-58	0.01
ν_0 band ^o		
303-31	717.0699	0.0286
$4_{02} - 4_{13}$	715,7102	0.0184
505-51	713,9986	0,0033
605-015	711.9297	-0.0153
707-716	709.4992	-0.0359

^aFrom the present results.

^bFrom McKellar et al. (Ref. 6).

^cCalculated using the semirigid bender Hamiltonian (Ref. 10) with the V and R_{CD} functions as given in Eqs. (1) and (2).

TABLE VIII. Predicted CHD rotation bending energies in several (v_1, v_2, v_3) states using the semirigid bender Hamiltonia (in cm⁻¹).

N	K ₁	X,	(0,0,0)	(0,1,0)	(0,2,0)
0	0	0	0.00	367.16	1623.23
1	0	1	10.70	877.91	1634.05
	1	1	59,14	982.84	1890.40
	1	0	59.89	985.77	1891,52
2	0	2	32,11	899.41	1655,67
	1	2	79.77	1003.32	1910.84
	1	1	82,02	1006.10	1914.21
	2	1	214.55	1212.25	2227.12
	2	0	214.56	1212.25	2227.14
3	0	З	64.18	931.65	1688,12
	1	3	110.71	1034.04	1941.52
	1	2	115.21	1039,60	1948.24
	2	2	246,61	1244.39	2259.45
	2	1	246.65	1244.39	2259.53
	3	1	448.17	1516.08	2614.08
	3	0	448.17	1516.08	2614.08

$$R_{CD}/Å = 1.07395(92) + 0.0207(20)\rho^4$$
, (2)

where ρ is the supplement of the bond angle in radians, the numbers in parentheses are one standard error of the varied coefficients, and the coefficients of ρ^6 and ρ^8 in V were held fixed at the values³ for CH₂. The standard deviation of the fit to the 22 transitions is 0.030 cm⁻¹ and the (observed-calculated) values are given in Table VII. In this effective potential the equilibrium angle is 133.6° and the barrier to linearity is 1989.9 cm⁻¹.

We can use the results of this fit together with the results of the semirigid bender fit to the CH_2 data³ to predict the rotation-bending energy levels of CHD. To a good approximation the effective bending function in CHD will be the average of those for CH_2 and CD_2 , i.e., for CHD we have

$$V = -6989\rho^2 + 7536\rho^4 - 2698\rho^3 + 500\rho^8 .$$
(3)

For CHD we can take the CH bond length function to be the same as in CH_{2} , ² i.e.,

$$R_{\rm CH} = 1.0740 + 0.0239 \rho^4 , \qquad (4)$$

and the CD bond length function to be the same as in CD_2 . Using Eqs. 2 (C), and (4) in the semirigid bender Hamiltonian position the CHD rotation-bending term valties rived in Facto VIII.

These predictions for CHD, although not as precise as would be botained using the nonrigid bender Hamiltonian, thre nonetheless sufficiently precise to ald the experimental search for CHD spectra. The diagonalization of the nonrigid bender Hamiltonian for an ansymmetrical molecule (such as CHD) has yet to be computer programmed.

IV. SUMMARY AND DISCUSSION

We have reported here the detection and assignment of seventeen rotational transitions in the ground vibronic state of the CD_2 radical. Analysis of the spectra yields

TABLE II. Calculated energy levels for the ground vibronic state of CD_2 (in cm⁻¹).²

	F, °		F.
		·····	- v
0 ₀₀	-0,00570	•••	• • •
101	7.86621	8,18514	7.411 01
1 ₁₁	40,97206	40,83754	41,17559
1.2	41.503 Sl	41,321 81	41.78116
2_{02}	23.68216	24.025 01	23.51713
2_{1}	56.2474 5	56.44784	56,16148
2_{11}	57.829.00	57.97840	57.77410
2::	151.52452	151,19124	151.71357
2_{20}	151, 53078	151,19712	151.72205
3 ₀₀	47.40635	47.76388	47,30732
S_{12}	79.221.09	79.51723	79.14168
310	82,37146	82.61478	82.31323
3 ₂₁	175,306 08	175.31402	175.32445
323	175.33709	175.34406	175.35585
403	79,00881	79.376 96	78.94295
4_{14}	109,86073	110.20087	109.79983
÷10	115.09632	115.38261	115.05229
423	207.06232	207.21469	207.04817
- <u>1</u> 22	207.15468	207.30527	207.14110
5 ₀₃	118.45500	118.83167	118.41054
5 ₁₅	148.14734	148,51273	148,10281
5 ₁₄	155.98008	156.291 01	155.95010
5_{24}	246.75970	246.98862	246.74214
5 ₂₃	246.97368	247.19981	246.956 89

^aCalculated using the parameters of Table III. The energies are not reliable to the quoted precision of 0.00001 cm⁻¹, but differences corresponding to observed transitions (see Table I) should approach this accuracy.

^bFine structure levels are labeled according to F_1 for J=N+1, F_2 for J=N, and F_2 for J=N-1. The 0_{00} energy level is shifted slightly from zero by spin-spin interaction with the F_3 component of 2_{02} .

very precise values for the major molecular parameters appearing in the effective rotational Hamiltonian for the state. A fit to the data obtained here and in Ref. 6 using the semirigid bender Hamiltonian has also been made and this has allowed us to predict the rotationbending energy levels for CHD.

The electronic spin-spin parameters obtained from the effective Hamiltonian fit can be compared to those estimated from ESR experiments in low temperature matrices.¹¹⁺¹³ In such experiments the major parameter D was determined to be 0.76 cm⁻¹ with an error dominated by the perturbing effects of the matrix; this error is not very precisely known but the present result is within the expected undertainty. The parameter E represents the anisotropic part of the spin-spin interaction and it is not well determined in the ESR experiments because of averaging effects due to the nearly free rotation of the molecule about its a axis in the matrix. The observed difference between D for CH_{0} and for CD₂ (see Table IV) is an order of magnitude

larger than calculated by Langhoff and Kern, 18 whereas the change in E is a factor of 2 larger. We are not aware of any *ab initio* calculation of *D* or *E* for $^{13}CH_{\odot}$.

In Table IX we give the energies of some of the lowest rotational levels of the CD₂ radical calculated using the parameters given in Table III. In CH2 the proximity of the levels 4_{04} and 3_{13} , which are connected by an allowed electric dipole transition, permitted the observation of the transition by traditional microwave techniques.¹⁴ In CD_2 a much closer coincidence occurs between the $\mathbf{3}_{13}$ and $\mathbf{4}_{04}$ levels. The frequencies of the strongest fine structure components of the $S_{12} - 4_{04}$ transition are predicted to lie at around 5 GHz which is inconveniently low for conventional microwave spectroscopy. The transitions $2_{12}-3_{03}$ and $3_{05}-4_{14}$ are predicted to lie around 260 GHz in a suitable region for conventional millimeter-wave spectroscopy. They are inconveniently low for the far infrared LME technique used in the present work.

ACKNOWLEDGMENTS

We are grateful to Murray Bush and Per Jensen for help in some of the programming, and we also thank J. M. Brown and A. O'Keefe for assistance in taking some of the spectra.

- ¹T. J. Sears, P. R. Bunker, and A. R. W. McKellar, J. Chem. Phys. 75, 4731 (1981).
- ²T. J. Sears, P. R. Bunker, A. R. W. McKellar, K. M. Evenson, D. A. Jennings, and J. M. Brown, J. Chem. Phys. 77, 5348 (1952).
- $^3 T.$ J. Sears, P. R. Bonker, and A. R. W. McKellar, J. Chem. Phys. 77, 5363 (1982).
- ⁴P. Jensen, P. R. Bunker, and A. R. Hoy, J. Chem. Phys. 77, 5370 (1982).
- ⁵A. R. W. McKellar and T. J. Sears, Can. J. Phys. 61, 480 (1983).
- ⁶A. R. W. McKellar, C. Mamada, and E. Hirota, J. Chem. Phys. 79, 1220 (1983).
- P. R. Bunker and P. Jensen, J. Chem. Phys. 79, 1224 (1983).
- ^bC. E. Barnes, J. M. Brown, A. Carrington, J. Pinkstone,
- T. J. Sears, and P. J. Thistletnwaite, J. Mol. Spectrosc. 72, 86 (1978).
- ³R. F. Curl, Mol. Phys. 9, 535 (1965).
- ¹⁰ P. R. Burker and E. M. Landsberg, J. Mol. Spectrose, 67, 374 (1977).
- ¹¹B. R. Bicimell, W. R. M. Graham, and W. Weltner, Jr., J. Chem. Phys. 64, 3318 (1976).
- ¹⁰R. A.Bernnelm, T. Adl, H. W. Bernard, A. Songeo, P. S. Wang, R. Wang, L. S. Woot, and F. S. Skell, J. Chem. Phys. 64, 2747 (1976).
- $^{12}\text{E}.$ Wasseeman, V. J. Kuch, R. S. Hutton, E. D. Anderson, and W. A. Mager, J. Chem. Phys. 54, 4120 (1971).
- ¹⁴F. J. Lovas, R. D. Suencam, and H. W. Evenson, Astrophys. J. Lett. 237, 1181 (1980).
 ¹⁶S. R. Langachi and C. W. Lisch, Applications of Electronic Scinorum Depuis, in Mathematical Oberristry, edited ey H. F. Schnefer III (Plenum, New York, 1977), Vol. IV.