Ll

-

Metrologia 10, 87—98 (1974)
© by Bpringer-Verlag 1974

Determination of Velocity Distributions
in Molecular Beam Frequency Standards from Measured Resonance Curves

Stephen Jarvis, Jr.
National Bureau of Standards, Boulder, Colo. 80302, USA

Abstract

It is shown that the Ramsey resonance curves for most
atomic beam machines can be conceived as depending on two
distributions of velocity, g (V) and & (V), the second being a
correction for beam width.

An analysis and computer t£rogmm are described which
permit one to obtain g, ¢ and the nominal microwave power
parameter from three or more measured Ramsey resonance
curves at properly spaced power levels whose ratios are known.
The determination from the functions (g, £) of bias errors due
to second order Doppler shift, cavity phase difference, and
cavity pulling is described.

The method may also be used to improve an experimen-
tally obtained velocity distribution (i.e., one obtained through
the pulse technique); to provide the proper function &; and to
provide diagnostic checks of the measurement technique and
the validity of the model chosen for the transition probability.

The method is applied to the NBS frequency standard.
Error estimates indicate that it is feasible by microwave
power shift measurements to evaluate the total bias error due
to the above sources to within one part in 102,

L. Introduction

This paper deals with aspects of accuracy evalua-
tion of molecular beam frequency standards of Ram-
sey type. Sources of error in the accuracy of such
standards have been discussed by several authors
{1—8]. For the high precision standards with which
we shall specifically deal, the largest uncertainties,
with which this paper is concerned, are in the errors
caused by the cavity phase difference § between the
second and the first resonant cavity fields, and the
second-order Doppler shift (DS) due to the difference

V2

vx—v=—vx—20—2

between the laboratory-measured frequency vx in the
cavities and the driving frequency » experienced by the
atoms with velocity V.

The bias, or accuracy error, due to DS and é, as
well as § itself, can be estimated with sufficiently high
precision to be acceptable in state-of-the-art frequency
standards only from a rather good knowledge of the
velocity distribution g (V) of the detected atoms in the
particular mode of operation. Furthermore, while the
bias due to DS can be computed directly from g(V),
the bias due to §, as well as § itself, necessarily in-
volves an accurate measurement of the resonant
frequency shift between two operating modes (e.g.,
two power levels, beam reversal, or narrow-band
velocity filtering), from which 4 and its associated
bias can be determined from the velocity distributions
associated with the two modes.
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The paper deals largely with the determination of
o (V), and its use in the estimation of § and DS based
on power shift measurements.

An experimental method has recently been re-
ported [7] which permits direct determination of the
velocity distribution ¢ (V) of detected atoms. Rf
power is applied to the cavity in short pulses of length
7 at & frequency vp. Those atoms which are driven in
both cavities and generate a Ramsey resonance com-
ponent in the detected signal are those whose time of
flight 7't between the cavities is close to 1fv,. Since

L ™ (a=1,2..),

Tl: 7 == —v;— Py
fixing », selects for detection those atoms whose velo-
cities are close to

vDL,%VDL,-..

This multiplicity in % is a minor problem in precision
beam standards for which the velocity distributions
are typically rather narrow. A somewhat more diffi-
cult problem is presented by the window width AV
around ¥V of contributing atoms due to the finite
cavity width and the finite pulse length 7, so that the
distribution gx (V) obtained by this method is actually
a mean of the true distribution over the window AV.
The methods described in this paper can make use of
ox (V) obtained by this experimental method to ob-
tain more precise estimates of g (V).

If the window width AV is negligible, the pulse
method leads to the interrogation of monovelocity
beams, for which the bias due to DS is immediately
known. The cavity phase difference  and its associated
bias are easily obtained from a measurement of the
resonance shift between two selected velocities (two
pulse frequencies »p). For non-negligible window widths
AV, these results can be corrected for the windowing
effect from a knowledge of p (V).

In Section II (A), the determination of Ramsey
resonance patterns gy (4, b) obtained from known
beam optics, §, and power parameter b is described.
The effect of beam optics is shown to be describable
in terms of two functions of velocity, [p (V), & (V)]
In Section II (B), we assume that the distributions
o (V), £(V)] are known either by pulse technique
measurements or by the analytical techniques of Sec-
tion ITIL. The problem of determining § and the biases
due to 6 and DS from power shift measurements is
reduced to the calculation of two mean velocities (Vp,
Vp) and the determination of the power parameters
used. The velocities (Vp, V) depend on the functions
fo (V), & (V)], the cavity power parameter b, and the
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frequency modulation width v and mode (square
wave, sinusoidal) used to determine the center of the
Ramsey resonance peak. The bias due to cavity pul-
ling is shown to depend on & third mean velocity V.

Section III describes an analysis and computer
program for the determination of [g (V), & (V), b]
from a set of Ramsey resonance curves taken at differ-
ent power levels whose ratios are known. The method
can be used for an independent determination of these
quantities, for controlled improvement of experimen-
tal determinations of these quantities, and as a diag-
nostic test of the assumptions involved in the theory
used in Section II.

Section IV describes the application of these
methods to the accuracy evaluation of the NBS
frequency standard NBS-5.

11. Theoretical Background

A. Ramsey Resonance Curve and the Velocity Distribu-
tion

In an atomic beam frequency stendard of Ramsey
type, with cavities No. 1 and No. 2 separated by a
distance I, an atom with velocity ¥ which sees field
strength parameters (b;, b,) in the two cavities at
driving frequency » has a probability of changing
state (transition probability) [6]

P (l’ V, bl, bz’ 6)

where A = 27 (¥ — #,) (this has the opposite sign from
Ramsey’s usage), 7, i8 the atomic resonance frequency,
and d is the phase lead of the second cavity over the
first. When the field strength parameters differ little
from each other and from a common value b over the
portions of the resonant cavities traversed by the
detected atoms, we write

bh=b(1—«), e «1,6=1,2. (21)
The transition probability assumes the form (see
Appendix)
P4, V, by, by, 8)=Py(2,7V,b,9)
- (El+ Ez) PE (Z'! V: b, 6)
to the first order in the €, when

(2.2)

< L
P,(4, V,b,8)=%3 Kq(4,b)cos (7‘ + y.qé)
=1

8
Pe(d V,8,8)= 3> Mg (A b) cos (-L7 + Ws)

g=1
. [ L
+ N, (4, b) sin (—T,‘L + Wé) 2.3)
The first of these is equivalent to Ramsey’s equation
V. 44, [6]. The coefficients Kg, Lq, Mg, Ny, ppgq are
given in Table 1; ! is the effective width of each re-
sonant, cavity.

A . . .
When 5 < 1 in each cavity, i.e., near resonance,

Eq. (2.3) reduce to the simpler form
P, (4, V,b,8)=2sin® <-2-£.—b) cos? § (}'—VI—'- -+ (5)
2Ib\ . [4lb AL
Pe (}», V, b, a) =<—V——~) sin (-'—V—) cos? %" (—V— -+ 6)(24)
In most beam tubes, due to precise mechanical
and electrical adjustment, § is small (milliradians),

the second order Doppler shift is small (v is close to the
laboratory driving frequency »y), and the cavity win-

dows, centered on a field maximum, are small enough
that the e; are small for all rays that reach the detector.
Then with regard to the resonance patterns experi-
mentally measured, gx (Ax, b), where Ax = 25t (vx — %),
we may neglect the phase 4, and replace Ax by 2 in
Eq. (2.2). We shall retain the first order terms in &;.

The detectable beam is usually quite narrow, so
that all detected atoms may be considered to have
been emitted with the same oven velocity distribution
ox (V). But as a result of beam optics and interfering
surfaces, those emitted from different points on the
emitter at different angles will be detected only for

very different velocity ranges. Let p be a parameter
vector denoting position and angular coordinates of
launch of stoms from the emitter face. For each
velocity V, we must distinguish four trajectory types
which may reach the detector: for atoms in a given
state § (j = 1, 2, depending on the sign of the magnetic
moment), there are those (k= 1) that reach the detec-
tor only if transition occurs between the deflecting
magnets (probability P), and those (k= 2) that reach
the detector only if transition does not occur (prob-
ability (I — P). Atoms which reach the detector in
either case or neither case generate a -background
signal independent of 4, and can be ignored. (They do,
of course, affect stability by generating additional shot
noise). We shall assume that the detected current gp
(Ax, b) is the same as the measured Ramsey resonance
curve gy (Ax, b) to within a scale factor s (b) and a
baseline shift ¢ (b). :

For each velocity V, and for each (j, k), there is a

;-domain R*(V) of ray source parameters for de-
tectable rays. The atoms reaching the detector then
generate the current:

oo b)=FdV ox (V) - 5.
0 j=1

{I dp P, V.5 (5, V), by (3, V) 8)  (2:5)
217
+f dplt= P V.5 (@ V), by (5, V), )

2 (7)

Ignoring the A-independent term (unity) in the last
integral, and letting @ (p, V) be a support function
on #(V), (@% = 1 if peR’*, 0 otherwise):

oo b)=:deeu (V) [f dp @* (. V)

PGV b @ V)b VO] (26)

where
- 2 — —
Q* (p, V) =j§][Q“ @ V) —-@%(p V). (2.7)

Then from Eq. (2.2), with e (p, V) = €,(p, V) + € (p, V).
we obtain from (2.6):

ap (4 ) =°§dV {0 (V) 2 (V) Po (3, V, b, 8)

—ou (V) ge (M) P, V, 5,8} (28)

where:
g (V)= dp@* (p, V) 2.9)
e (V)= [dp@* (7 V) e (p, V). (2.10)



8. Jarvis, Jr.: Dotermination of Veloolty Dintributions in Molecular Beam Froquenoy Standarda 89

-
These latter integrals, over the region Z (V, p) of
detectable rays, may bo calculatod from “ray-tracing”’
techniques (i. e., studioes of the trajectories of the atoms)
if the magnetic field and geometrio structure of the
beam machine are adequately known.

Defining then the two velocity ‘‘distributions’ of
detected atoms:

e(Vy=eu(V)q (V) ,
EV)=em(V)ge (M),

the measured Ramsey resonance curve, to within
scaling factors s (b), ¢ (b), must be:

(2.11)

& (5) gx (Ax, b) + c(b)=°°}dV{e (V) Py (@, V, b, )

—&E(V) Pe(A, V,0,0)}. (2.12)

It should be noted from this development that the
addition of & (small) constant ¢,:to € can be ab-
sorbed as a multiplicative factor on b and e; re-
ferring to (2.1),

€¢

bt (er+ o) = [(4 ~ e0) B [1 - 1=

We may then fix a scale for the parameter b by re-
quiring:

]5 B(L—ed).

v

JdVE(V)=0. (2.13)
0

It should be noted further that, from Eq. (2.7), @*
may be negative if k= 2 type atoms exceed k= 4 type
for some velocity V. This could lead to negative
values for g (V), but none have yet been experimen-
tally determined or resulted from the techniques of
Section III. The assumption gy (V) independent of
ray could easily be dropped by including gm (V, 1.;) in
the integrals (2.9, 2.10); the result of this paper is
unaffected. The present approach permits identifica-
tion with on-going ray trace studies, which determine
90 g€ -

In Section I, Eq. (2.12) is used as the starting
point in a method described for determining the velo-
city distributions [o( V), & (V)] from Ramsey resonance
curves measured at power parameter settings (b, b,,
b;) for which the ratios b,/b, and b,/b; are known.

B. Bias Errors for Sinusoidal and Squarewave
Frequency Modulation

The center of the resonance curve gx (Ax, b), may
be located experimentally with very high precision by
(slow) square-wave or sinusoidal modulation of the
laboratory driving frequency »x and servo techniques
based on the assumption that gp (1x, b) is symmetric
about the peak. Thus it is essential to know how far
removed this peak is from the atomic resonance ;.

Because of the DS effect, the cavity frequency »
seen by atoms with velocity V differs from the labora-
tory measured frequency:

V2
‘V:Vx(i—i——ﬁ).

Since vy is very close to the atomic resonance over the
Ramsey resonance curve 1/2b « 1, this can be written:

y= 2”0*; ) (2.14)

v=1x+ Viyp,

10+

In the modulation method, v« (£) is fixed to be a
center frequency ve on which is superposed a periodic
frequency vy (¢}, which is very symmetric:

T
vy (f) = — M (H— 7)
where T is the modulation period. Thus:
y()=vet+ru )+ Vig. (2.15)

The detector current, Gp (f, »c), reflecting this
modulation, is fed into a linear filter ¥ designed to
produce a null output when v is adjusted to make:

Go(t+ 5 %e)= On tve).

For squarewave modulation (SQ),

_ [¥xe, first half-cycle
vy (f) = [ — ¥y, second half-cycle

and ZLgq forms a time-average of the difference
Gn(t+ 5 %) = Gn (&, 50).
For sinusoidal modulation (SS),

™M (i)= Y sin.Qt,.Q: 2.7!.’/T ’

and Pgs generates a time-average second-harmonic
amplitude:

T
[ ¢ sin Q¢ Gp (t, ve) -
0

We shall assume that vy satisfies the condition

27;“ < 1, and use the simplified form, Eq. (2.4), for

the transition probability to define P,, P of Eq. (2.8).
Then defining:
4 lb) 2 1]

o* (V,b)= o (V) (1—-c0s— -2 e mysntl

| 4
(2.16)

we may expand Gp(t) to first order in the small
quantities (4, y, 6):

A= ve—w

Go(t, ve) = 0J?dV o* (V, b) cos? 1/2
0
[*2—?711 B+ V2+v () + 6]

- TdVQ* (V, b) cos? ("_L_”“_(Q>
0

17
—alL [dVe* (V,b)sin
0

2nLvn (\[ 4 4
(—“‘—V )[—V'+V¢+—2ﬂL].
After Z-filtering, the first term vanishes, while filtering
of the second term gives an expression for the offset 4:

A (b, vyg) = ve— o= — oty Vi — 20 T (2.47)
where:
_ W
V2D (b, ‘VM") = /—5 (2.18)
\v/
, 1
Vo (b.ow) = 755
\7V
and

2 Lvu(t)

(F(V))s}odl’g*(V,b)F(V).z’{sin >
0

} . (2.19)
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For squarewave modulation, we have:

(Vmy= 2T dV g* (V, b) V™ sin ZEC (2.20)
0
For sinusoidal modulation, we have:
(Fmy= 21V o (V. ) V™Py (7, a0,
0
1 @ . . 27!L'Vuc .
Dy (V,vue) 7,-6[ sin Q1 sin ( 7 sin Q )
27 L yuo
- Jl( A ) 2.21)

in terms of the Bessel function J, (2).

The presentation so far given lends itself easily to
the inclusion of cavity-pulling error. We assume the
cavity power parameter b used in the development is
related to an external power parameter by

b=bx(1—%2)

to within an undetermined scale factor with |#Z 4 | <
1 over the Ramsey resonance. The parameter & has

the form:
__ tal' (Vo - Iloav) 27{
T 14 Qzuv (Vo —~Veav) 2n

where vcav i8 the cavity resonant frequency, Qcav the

cavity Q. To first order, Eq. (2.1) is
b=bi(1——%1). (2.22)

Then in Eq. (2.8), we replace g= (V) by ¢e(V)+ 204

¢, (V). Noting that #Z A is independent of p, the
preceding calculation gives for (2.17) the extended
form

%z

A (b, vye) = ve— Y

vo L) By
=37V~ 5 VB (2.23)
where
; ()
16a b1 ({ dPe(V) Bs (V, ) —— 57—
VB (bva") = vV
P

with

_ vau () nLvx (t)
¢B=$|vu° cos? —— ‘
For squarewave modulation:

Pp = 2 cos? (-n—L-Vvi:)

For sinusoidal modulation:

T aLy .
¢B=—;Tj'dtsin’.thosz( an sm.Qt)
0

1t v, 2nLvK~)

=22 WLt V
2x Ly

+0o(5m)

Once velocity distributions [p (V), £(V)] are
known, the coefficients [Vp (b, var), Ve, V5 (b, v}l
for the bias [Eq. (2.17)] are easily computed by numer-
ical integration.

If the bias shift (vlc— v%;) between two different
power levels (or two modulation widths) is measured
experimentally, Eq. (2.17) [or (2.23) if cavity-pulling
is significant and & is known) can be used to determine
the phase shift d, and hence the bias of each of the

center frequencies #'¢ and #%, and the bias at any
other power level for which the ratio /b, is known.

[il. Analytical Determination of Velocity Distributions
from Resonance Curves

In this section we shall describe an analysis and

computer program which can be used to determine the
distributions [o (¥), £ (V)] and the power parameter
b from measured Ramsey resonance curves only. This
amounts essentially to inversion of Eq. (2.12) considered
as & Fredholm integral equation of the first kind
with an unkhown parameter b.
" The purpose of such & program is threefold. First,
in the absence of a px (V) experimentally determined
[£ (V) cannot be measured], the program provides
both ¢ (V) and £ (V) with very little ambiguity when
resonance curves are carefully recorded at three or
more power levels whose ratios are carefully set and
which are sufficiently distinct: for example, near
optimum power, and above and below this level by a
few dB.

Second, if a measured distribution g, (V) is avail-
able, the program can be used to improve the accuracy
of ox (V), determining & (V) and a nominal value of b
(assuming ! is known), and provide a critical diagnosis
of the measurement procedure.

Third, it provides a check on the validity of the
model chosen for the transition probability. That is,
if {o (V), & (V)] cannot be found to fit the resonance
curves to whithin acceptable limits, one must suspect
the presence of spectral impurities, extraneous transi-
tions, microwave leakage into the drift region or some
other problem. Such a result would put in doubt biases
estimated from the simple transition probability and
any velocity distribution.

Because U= 1/V is the natural variable in the
oscillating functions of the transition probability and
in (uniform field) ray-tracing, we have defined:

Vg (V)= R(D)
V2E (V)= E (U)

and written the integral in Eq. (2.42) in the form:
. s (b) gx (A, b) + ¢ (b)
= [4U [R (U) Py (3, V,5,0)
Un

(3.1)

(3.2)

—E(U) Pe(4, V,b,0)]
neglecting the cavity phase shift 4 and the second

order Doppler shift »— vz. Here U= ng and Ug=

71; are given cutoffs to be determined by trial-and-
error. (Estimates can be provided by ray-tracing,
pertial or complete measurements of gx (¥), or by
judicious guessing).

For chosen N, setting Uy = Uy and Ungey = Um,
we set at equal intervals kin U:

(on U])' A | UN()) UN(H—])

discrete values, and assume R (U) and E (U) vanish
at the endpoints. Interpolating R (U) and E (U) by
second-order spline functions (with minimum rms
second derivative), we do the integrals exactly, so that
we obtain the forms:
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8(B)gx (4, 0)+ ¢ (b)= ZRtPt)»bH"EtQt(}L b)

i=1
(3.3)
with known (P, @Qy), unknown (R, ).
We also discretize A:

A=0,An=m—1) A%, (m=1, M),

in equal steps i* spanning the major portion of the
Ramsey resonance. Given Ramsey data {gx (4., B? b),
a=1, N }for §=1,..., Ngare interpolated quadrati-
we assume the ratios B =—%—are
given. Then in an obvious notation, Eq. (3.3) takes
the discrete form:

cally over {im};

3ﬂgmﬂ+ cﬁ_gmﬂ
ZRt Pré+ B, Q.

i=1

950 =

In principle, we wish to determine (R, Ey, %, ¢)
which minimize the error:

& =5 6,
A=1
M
5= 5t I

m=1

ggvﬁ)z
subject to the constraints of normalization:

Z W¢Ri=1, Z Wi Ej=
t=1 i=1

which for Simpson rule weights Wy ($h, §h, $5,...)
are equivalent to:

Vi Vu

faVo(M)=1, [aVE(WV)=

VL VL
The latter normalization, as pointed out earlier, fixes
a scale on the unknown power parameter b.

It is well known that the solution of the above
problem may be expected to show instabilities,
worse as the “‘kernel” (P, @) is smoother. This diffi-
culty can be removed by a method due to Twomey
{8], which amounts to adding to &% terms which
require the solutions (R, E) to be smooth in some
sense, or to lie close to a given function. The addition
of such terms may reduce the quality of fit; i.e.,
(6%)min may increase, but normally this effect is very
small while the solutions are greatly stabilized. In
fact, in the ideal case, the loss of fit quality may well
lie within the uncertainties in the given curves gy
(4, ¥%), so that the added terms merely permit the
choice of “reasonable” solutions from the class of
solutions which fit the g7 to within their uncertain-
ties. The amplitude of the smoothing parameter re-
quired will depend on the fraction of frequency range
of the resonance curves used.

When &% is expected, and optiniization with respect
to (s?, ¢#) is carried out, it has the form in matrix
notation:

6F=RA°R4+ 2RBE+ ECPE.

Smoothness can be imposed on R and E by adding
to this error a term analagous to

FEav [ (V) (3.4)
L
or
Sfau (R () (3.5)
L
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where ¢ is a paramcter which when increased, in-
creases the smoothing effect. We have, in fact, added
to &€
(¢, R AR R+, B A% B) tr (3 4°|N,)
f
where
U\Np (U \N
(AR)y = (4F)y= (-U—:) <7:) " (68— 0
— 46—, 1+ 6i—ji2) -
Here the matrix is the second difference effect, Np= 0
is analogous to (3.5), Np = 3 is analogous to (3.4), and
84, 5 is the Kronecker delta. The trace is included for

scaling purposes.
Furthermore, we have added:

LEIEt (3 AN,
A

where I is the unit matrix; this permits us to make the
individual values E;— 0 by choosing large {3. (Note
that the smoothness condition plus the normalization
WE =0 can also force E;— 0). If E is to have the
physical meaning of describing the effect of cavity
window width, we must expect it to be small compared
with R.

When in addition, a measured curve gy (V) is
available, we may require that R not differ much
from Ry = VZpx (V). Or,if the given curve g¥ (V)
has been generated by triangular windowing of the
true (unknown) velocity distribution gx (V),

RY =w Ry w

we may require that w R & not differ much from RY
too much. We have added then to ¢ also:

(Lo R A4° R+ & R AY B tr (S CIN,)
B

where the matrices (A°, 4¥) are easily derived errors
from Ry and RY. When {, is made sufficiently large
(e.g.~ 10%), R— R,.

One further parameter is introduced. Since R is
expected to provide a reasonably good fit even when
E =0, and since we must finally invert a matrix of
dimension [dim (R) + dim (E)], it is both desireable
and practical to reduce the dimensionality of £ to
Np < N,. We define ET of dimension Ng on equally
spaced points (U%, U¥.. ., UJE;,EH) where U = Uy,
and U§ 4, = Un, taking Ef}Eﬂ =0,and assume E (')
is adequately given by second-order spline interpola-
tion of ET (U). This leads to an interpolation opera-
tor:

E=TEF
which gives £ when ET is known.

Finally then, we determine (R, £) by minimizing
over (R, EX, n,, n,) the complete quadratic form:

&7 (R, Er, 1, b)

+ o (W R— 1)+, (W I') EX

where (#,, 7,) are Lagrange multipliers for normaliza-
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tion terms. Noto that £y == £y = 0 is to be taken when
no experimental px (V) is used.

In the Program, DOPLR, R, is found first assum-
ing "= 0 in &7 for comparison purposes, and then
the full solution (R, E) is found. For both results,
(Ry, 0) and (R, E), (using E= E"I), the rescaled

fitting error:
oﬂm - (,ﬁ
= ghn— (25 )

and its rms value:

eﬂ 1 M s 2]%_

rR= [-M—mzl(em) |

are computed. The ¢ and its rms over f, e}, are our
principle diagnostic tools for evaluating the fitting
quality for different values of the parameters involved.

IV. Applications

The method described in Section IIL has been
applied to NBS-5 in two different geometries, and to a
commercial beam tube. For simplicity, we shall discuss
the results for the most recent NBS-5 alignment’ only.

Fig. 1 shows Ramsey resonance curves measured
at (nearly optimum) power parameter b, (assumed
unknown), at a 4 dB higher power level (b*), and at a
6 dB lower power level (b—), respectively. (b is propor-
tional to the square root of the power): The minimum
division on those graphs is 0.1 cm; the originals can be
read to 0.05 cm, and the experimental error in the mea-
surement should be less than this. We shall describe
the fit of approximants to these resonance curves in
centimeters.

Fig. 2 shows the wvelocity distribution gy (17)

(unnormalized) obtained by “the pulse  method
using & velocity window of about 0.1 .V (r =
0.1) 7).

We shall discuss first the determination of the
distributions {gg (V), ¢ (V), & (V)] obtained indepen-
dent of knowledge of gx ( V), in order to show the effect
of program parameters.

Outer bounds for velocity cutoffs may be estimated
from, say, oven temperature, resonance half-widths.
or ray-tracing. The estimates are not critical. as they
can be improved by trial-and-error. We have taken
Vi= 100 m/s, V= 600 m/s as initial estimates.

On each of the resonance curves, we have chosen
M = 22 points equally spaced at frequency intervals
of 5 Hz from the center (the first point at the center),
spanning 105 Hz on one of the symmetric wings.
(Any visible asymmetry in the curves is a warning
that the theory used in this paper is inapplicable.)

We have used N =3 for the velocity exponent
in the smoothing operator to define more sharply the
teriical low velocity cutoff.

Figs. (3and 4) show the resulting g, (V) {£ (V)] = 0)
for £, = 10 and {, = 10 with Ny= 23, b,= 24000 s—1.
The instabilities for {;= 10 are evident, while for
¢, = 103, a very smooth curve is obtained. The rms
fitting errors e}, are respectively 0.0846 and 0.1117 cm.
These are too large to be consistent with the measure-
ment accuracy of the resonance curves.

Retaining 4, = 10° to assure a stable solution, we
swept by, obtaining the following errors:

ON-AXIS ALIGNMENT

Fig. 1. Ramsey resonance records for NBS-5 on-axis alignment at nominally optimum power Pg, 4 dB above and 6 dB below.
Finest division 0.1 cm. Calibration. 12.00 Hz/em
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by 1074 e (cm)

2.2 0.0862
2.25 0.0788
2.3 0.0805 (4.1)
2.35 0.0920
2.4 0.1117

This gives a tentative best fit estimate of b, = 22500 s—1.

Fixing b, = 22500 s-1, other parameters remaining
the same, we test for the correct low velocity cutoff
V1, with the following results:

Vi (mfs) e} (em)
100 0.0788
140 0.0714
165 0.0712 4.2)
175 0.0607
185 0.0613
190 0.0777
195 0.1044
200 0.1381

At first the fitting error decreases, as the estimating
points for g, (V) are concentrated more in the region
of significant contribution, but after Vi= 185 m/s,
the error rapidly increases, indicating that we are cut-
ting off portions of the important velocity range. We
fix a conservative cutoff at V= 175 m/s.

With that value for Vi, and with by= 22500 s-?,
the smoothing pressure £, with the following results:

4 e} (cm) Fig. No.

101 0.0474 5

10° 0.0481 6

10t 0.0489 7 (4.3)
102 0.0509 8

103 6.0607 9

We note that the stability of the result rapidly im-
proves as we move from {, = 10~ to 10%, the latter
showing essentially no instability, while the fitting

ox (V)

I IR
j N

200

A

500 600

0 100 300 400

V (m/s)

Fig. 2. Unnormalized velocity distribution for NBS-5 on-axis
alignment obtained by pulse technique

error changes slowly. At ¢, = 108, the fitting crror
takes a significant jump, indicating that oversmoothing
{loss of resolution in p (V)] is occurring. For the re-
maining tests, we use {, = 10% as a best compromise.
{(An earlier alignment of NBS-5 [9] has a two-humped
velocity distribution, yet there was still a clear distinc-
tion between values of {; large enough to reduce the
instability noise, but small enough to show the well-
defined double hump.)

To test that for Vi =175 m/s and J;= 102 b, is
still & near optimum estimate, we obtain the following
results.

bols ek
22000 0.0555
22500  0.0504 (4.4)
23000 0.0553
8
6 N
L // \\
N [ \Y
S
« /
0 AVAV
-2
-4
0 100 200 300 400 500 600
V (m/s)

Fig. 3. Computed ¢ (V), for £ (V) = 0, Ny = 23, b = 24000577,
2 =10, VL =100 m/s, Vg = 600 m/s

[. /N
\

S 2
h
a, / \

0 v i

-2

-4

0 100 200 300 40O S00 600

V {ml/s)

Fig. 4. Computed ¢ (V) as in Fig. 3, but with {; = 10?, show-
ing effect of smoothing parameter
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300 400 600

Vi{mis)

0 100 200 500

Fig. 5. Computed ¢ (V), for £ (V) = 0, N, = 23, b=22500871,
Vo= 175 m/s, Ve = 600 m/s, {; = 0.1

8
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22 AN
o /
-2
-4
0 100 200 300 400 500 600
V{mls)
Fig. 6. Asin Fig. 5, with {; = 1
8
6 /\
4 \\
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< 2
0
-2
-4
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Fig. 7. As in Fig. 5, with {; = 10
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,, [\
N

0
-2
-4
0 100 200 300 400 500 600
V (m/s)

Fig. 8. As in Fig. 5, with {; = 10°

The influence of the number of velocity points N,
is shown by the following, with Vp= 175 m/s, b,=
22500 s-1, {; = 10%:

N, ed

19 0.0530

21 0.0515 (£.5)
23 0.0504

Thus N, = 23 seems to define g, (V) in adequate detail.
The estimate for b, is the same for these three cases to
within Ab= 50 s—1. The distributions g, (V) obtained
for these cases are indistinguishable. That for Ng= 23
is shown in Fig. 8.

The best estimate obtained to this point then
00 (V), [£(V)=0], for Vy=175m/s, by= 22500 st
£, = 10? (see Fig. 8), has e} = 0.0509 cm. The worst
errors {over m) to the three Ramsey curves are:

. /N

e(v)

0 100 200 300 400 500
V {m/s)

600

Fig. 9. As in Fig. 5, with {, - 10
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p (96— g%) worst

1 —0.008

2 —0.089 (4.6)
3 +0.122

These crrors still appear to be unacceptably large
compared with the uncertainties in the measured
values gy (4, bF).

On the other hand, if we accept the measured curve
ox (V), using the measured cutoff Vi= 162.7m/s
(Va retained at 600 m/s), our program interpolates
quadratically on N, = 23 intermediate points, g1 (¥),
shown in Fig. 10. Setting {¢= 10* caused the function
o1 (V) to be reproduced as the solution (very high
fitting-pressure). Minimum rms fitting error occurs
for b, near 23000/, as shown below:

b(s)  ef

22500  0.2094

23000  0.1901

23500  0.1804 4.7
24000  0.1830

For g1 (V), we estimate by= 23640 s-1. This fitting
error to resonance curves runs as high (over m) as
0.470 cm, which is much too large. Thus the distri-
butions {g1 (V), £ (V)= 0] are inconsistent with the
measuren resonance curves. due presumably to meas-
urement errors and windowing in ox (V) and to a
lesser extent the interpolation o1 gx (V) to o1 (V). As
we shall see this inconsistency does not lead to large
errors in bias estimation.

Having now established that, if £ = 0 then Vi =
175 mfs, A, = 10%, are near optimum parameters and
lead to the best fit g, (V) for by= 225600/s, we shall
examine what happens if £ (V) is obtained from £ (U),
on spline interpolates of the N g-point vector ET (UT).
Two questions should be answered. First, is § (V) a
significant addition to the analysis, or are we merely
adding free parameters? Second, if £ (V) should in
fact be included, does it significantly effect calculations
of biases due to § and DS, and hence the accuracy
evaluation of the beam tube ?

| VAN

S ‘
S
0
-2
-4
0 100 200 300 400 500 600
V (m/s)

Fig. 10. Normalized N, = 23 quadratic interpolation gy (V) of
measured distribution of Fig. 2

19 Meatrolovia

Toward the first question, we can contribute some
affirming results for the NBS-5 study. Now & (V)
should, on the average, be small compared to o (V),
so that A, and A3 must be large enough to force this. In
fact, we have taken i, and A3=0, noting that the
interpolation to Ng small already smoothes, and the
results we obtain are already small enough to be accep-
table.

Let us fix V=176 m/s, 4, = 103, and oxamine
the fitting errors while keeping the total number of
free parameters Ny+ Np= 24 fixed. However, for
£ (V) = 0, the optimum value of b, is affected, so
that we must look also for best fits in b,. We find for
(NVo/Ng) values:

b(s7Y) e} (cm)

NJ/Ng=21/3 23500 0.0262
24000 0.0255 4.8)
24500 0.0378

from which we estimate b, = 23780:
b(s™) e} (cm)

NoNg=19/5 22500 0.0274
23000 0.0258 4.9)
23500 0.0252

from which we estimate b, = 23680/s. These should be
compared with results (4.4) for Ny==23, Ng=1
(§=0), and with (4.7) for the measured distribution.

For the No/Ng= 21/3 case, using b,= 23780/s, we
find the worst fitting errors: e = 0.0233 cm.

B (96— g%) worst (cm)
1 -—0.035
2 +0.028 (4.10)
3 —0.062
While for 19/5, b, = 23680/s: ef = 0.0252 cm.
p (96— g£) worst (cm)
1 —0.035
2 +0.034 (4.11)
3 —0.066
8
6
4 [\
N
~ 2
N
0 \
-2
-
0 100 200 300 400 500 600
YV {m/s)

Fig. 11. Computed [ (V), £ (V)], No/Ne = 21/3, b, = 23780871,
£ =10% Vi =175 m/s, Vg = 600 m/s
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These results should be compared to the results (4.€)
for the 231 (§ = 0) case.

The distributions (p, £) are plotted in Figs. 11 and
12 for optimal b, for the cases N,/Ng being 21/3 and
19/6 respectively. Clearly the curves ¢ (V) are sub-
stantially defined, and give a significant improve-
ment to the resonance curve fit over the 23/1 (£§=0)
case, which has an equal number of free parameters.
The shape of the & (V) curve is consistent with the
view that slower atoms, which are deflected more in
the focussing magnets, tend to lie elosest to the win-
dow edges of the resonant cavities, where the field
parameter reduction € is largest.

,, AN

0 100 200 300

V {m/s)

400 500 600

Fig. 12. Computed [o (V), & (V)], No/Nx = 19/5, b, = 2368057,
£, = 10%, Vi = 175 m/s, Vi = 600 m/s

We have shown that the addition of the second
distribution £ (V) does substantially improve the fit
of computed and generated resonance curves, and that
the function is well-enough defined by Ng equal to 3
or 5 to reduce the fit error in the case we have studied
to the level of measurement noise. We shall now discuss
the second question: does the introduction of & (V)
significantly effect the accuracy figure obtained by
bias measurements as described in Section 1T (B)?

We shall assume the frequency shift vj—vg is
measured when the power is changed from the upper
value (+4 dB) to the lower value (—6 dB), and neg-
lect any error in the measured ratios:

bt:b,y:b~ = 1.5850:1:0.8563.
Suppose, as a typical shift, we find:
vg—vg=3.0 (10)3 Hz,
and that the modulation width is known to be

(exactly) 20 Hz.

Results (4.12) are obtained for 4+ = v§—v, and
6 when the [p(V),&(V), by] are assumed in the
following cases:

Case 1: results (4.7), with ¢; (V), £ (V)= 0,
b= 23640 871,

Case 2: results (4.6), with g, (¥), § (V)= 0,
b, = 22500 5.

Case 3: results (4.8), with g (V), £ (V), NjNg=
21/3, b, = 23780 s-1.

Case 4: results (4.9), with g (¥), £(V); No/Ng=
19/5, by = 23680 81,

Case A+ (Hz) J (radians)

1 —0.00978  0.000277

2 —0.00823  0.000099 (4.12)
3 —0.00748  0.000031

4 —0.00754  0.000037

Finally, to answer the second question relative to
the particular case discussed, for g, (V) and the three
distributions obtained for N /Ng of (23/1, 21/3, 19/5)
at their respective best estimated for b,, the bias differ-
ences all lie within 2.3 (10)~12 of the cesium resonant
frequency. The addition of the function & (V) changes
the bias by about 0.8 (10)% as compared to the best
estimate for g, (V) with £= 0. Thus these refinements
are important only if accuracy better than 1.0 (10)~*
is required. (But see reference [10]).

Before we can consider the results obtained so far
to be of practical value for bias estimates to the 10-1*
level, it is important to consider the effect on the bias
calculation when certain experimental and analytical
parameters are uncertsin. We shall restrict ourselves
to the No/Ng= 21/3, {;=10% Vi=1756m/s, Vu=
600 m/s which has given the best result for No+ Ng=
24 at b, = 23780/s [see Results (4.8), (4.10), and (4.12,
case 3)]. We designate the resulting distributions for
this case [on (V), &n (V)] (see Fig. 11). They have been
obtained assuming the Ramsey resonance curves
were for power levels precisely 4 dB above and 6 dB
below the nominal 0 dB level, i.e. at:

bt= 3768951, b= 11918s-!.
The following table shows the results which would

have been obtained using (o, £n) With varying values
of the experimental parameters b*, b—, vyon, ¥*—v~:

b+ (s71) b= (s™) vaop(Hz)
37689 11918 20

37689 11918 21

37689 11918 20

37689 11782 20

38125 11918 20

(4.13)

yt—v~ (Hz) A+ (mHz) 9§ (urad)
—0.0030 —17.48 31.
—0.0030 —7.55 34.
—0.0031 —7.90 58.
-—0.0030 —7.47 30.
—0.0030 —7.47 5.

The changes in the (b+, ™) are 0.1 dB power changes.

Results (4.13) show that, for this case, uncertain-
ties in upper and lower power setting of 0.1 dB, in
modulation width of 4 Hz, and in the power shift
measurement of 0.1 mHz give maximum bias uncer-
tainty (accuracy) of less than 0.8 mHz, or fractionally
less than 0.8 x 10~13, These levels of experimental
control are considered feasible.
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We now consider the effect of an error in tho
“‘power setting relative to optimum power” in the
determination of (g, £). We suppose that g{ (8) cor-
responds to & +4.1 dB power level (instead of 4.0 dB
as assumed above). Results corresponding to (4.8) are
the following:

bt ef (cm)

N Ng=21/3 23000  0.0275
(Pof441dB) 23500  0.0243 (4.14)

24000  0.0318

from which we estimate by= 23400s-l. Using b,=
28400 s, we obtain the distributions [, (V), &p (V)]
which give fitting errors analagous to (4.10) ef=

0.0243 cm.
B (95— g8) worst (cm)
1 —0.038
2 —0.033 (4.15)
3 —0.061

Corresponding to results (4.13), using (pp, £p) leads
to the following uncertainty table:

b+ (871) b= (s71) vuop (Hz)
37087 11728 20
37087 11728 21
37087 11728 20
37087 11594 20
37515 14728 20

(4.16)
vt—w~ (Hz) 4+ (mHz) {(urad)
—.0030 —7.85 62.
—.0030 —7.93 65.
—.0031 —8.28 90.
—.0030 ~-7.84 61.
—.0030 —7.62 24.

These curves (op, £») are scarcely distinguishable from
(ow, én) shown in Fig. 11. Referring to the first lines
of (4.13, 4.16), we see that the 0.1 dB upper power
level error leads to a bias change of less than 0.4 mHz.
The incremental changes in the remainder of (4.16)
are the same as in (4.13).

Finally, we check the effect of the smoothing
parameter, using £;= 10! (slight undersmoothing,
seo Figs. 9, 10) instead of {; = 10 Results correspond-
ing to (4.8) are the following:

b(s™Y) e} (cm)

NNg=21/3: 23000  0.0279

({, at 107) 23500 0.0225 (4.47)
24000 0.0231

from which we estimate b,= 23700 s~1. Using b, =
23700 s~1, we obtain the distributions [g; (V), & (V)],
which give fitting errors analagous to (4.10):

e} = 0.0218 cm

-~

i (go— 9%) worst (cm)

1 0.034

2 0.029 (4.18)
3 —0.055

Corresponding to results (4.13), using (g, &) leads
to the following uncertainty table:

12+

I (Y U (w7 ruon (Hz)
37502 11878 20
37662 11878 21
37562 11878 20
37662 11742 20
37997 11878 20

: (4.19)
vt—y- (Hz) 4+ (mHz) § (urad)
—0.0030 —17.58 38.
—0.0030 —7.65 41.
—0.0031 —8.00 65.
~0.0030 —7.57 37.
—0.0030 —17.26 11.

From the first lines of (4.13) and (4.19), we find the
error in choosing the smoothing parameter {, distin-
guishing Figs. 7 and 8 is only 0.1 mHz. The figure -
sequence 5-—9 and the e} values of (4.3) fix the
proper value of {, at least within a factor of 10. The
incremental changes in the remainder of (4.19) are
again essentially the same as in (4.43).

With those estimates, one can write the bias error
budget estimate for DS and cavity phase difference.

Error Source -Error in
4+ (mHz)
1. Ramsey curve power
level errors
Upper level 0.03 dB 0.11
Lower levél 0.03 dB <0.01
2. Computing/parameter
errors
Ng=3toNg=5 <0.10
01 factor of 10 0.10
Truncations <0.10
3. Bias experiment errors
Nominal power reset! 0.03 dB 40
Upper level set 0.03 dB 10
Lower level set 0.03 dB < .01
YMOD €rror 1Hz 07
Shift Measurement
(v+— v~) error 0.1 mHz 0.42
Total <1.03 mHz

The major source of uncertainty is the shift mea-
surement itself. The above is, of course, for data re-
lating to NBS-5. However, for other beam tubes we
may expect no significant difference to this error
analysis.

Y. Conclusions

We have shown that the Ramsey resonance curves
in atomic beam machines can be conceived as resulting
from velocity-averaging of two distributions of velo-
city, p {V) and £ (V), with their respective transition
probabilities, Py (4, V,b,8) and Pe (4, V,b,8) [see
Eq. (2.12)].

An analysis and computer program are described
which permit one to obtain g (V), & (¥), and a nominal
power parameter b, from three (or more) carefully

* Ability to reproduce a previous power setting; e.g., the
setting used in (1) above.
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Table 1

q L K, M, Ng : q
1 0 4851+ 80y 88C 28+ 86) 0 0
2 a —16 82 (2 —16 SC (84 8Fy S a8 3 0
3 2al 4y -85 8 . 4al& 0
4 di il -8FCMA-C) 48200 880 2Q0 sdsteQ -0 1
5 al--AL  88C@1+0) a82ZC & S 200 ~ASTC( Yy -
6 2al+ AL -28(1-C) 28O - )8 8 2@ S - O {
7 2al-AL -28:(1+C) ~28(1 O [+ )81 8T 2EST( )P -1
8 AL 482 (1-3¢Cy 48(1-30Cy8-128CC o 1
where a = (A + 4b%), d=40ba

8§ = ~2b/a, §=8(1-édfa)

C=- i, ¢ = - Céfa

measured Ramsey resonance curves at power levels
where ratios are known. The determination from the
functions (p, £) of bias errors due to second order
Doppler shift, cavity phase difference and cavity
pulling is described.

The methods are applied to the NBS-5 frequency
standard. Error estimates indicate that it is feasible
by microwave power shift measurements to evaluate
the total bias error due to the above causes to within
1.0 MHz, or 1.(10)3 y,.
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Appendix

Calculation of the transition probability follows
Ramsey’s formulation ([6], V.29 to V.37, V.44),
except that in Eqgs. V. 29 and V. 30 which refer to the
first cavity, we use a, and @,, (depending on b)),
while in Eq. V. 34, which refers to the second cavity,
we use a, and 6,. We obtain analogous to V. 34:

Co@t+ T)=1 3 (kg+ mge@T+Milyg

where the sum is over the four terms obtained from
8 =+1,8==+1, with

kg = sy5in 0, (1 + 5, cos 8))
mg= 8, sin 6, (1— s, cos §,)
lg=%7t(s1a,+ 8,0a9).

From this, the transition probability P is readily
expressed as a weighted sum of cosines. Expanding
this sum to first order terms in €, and €, leads directly
to Eqs. (2.2, 2.3) with the coefficients of Table 1.
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10. If the bias measurement is made between the power levels
+4 dB and 0dB, however, the addition of the function

£(V) may make a difference of 3.(10)~13, because the

coefficients Vp, Ve are rapidly changing near ( dB.
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