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Abstract 
It ia shown that the Ramsey resonance m e a  for most 

atomio beam maohinea can be conoeived aa depending on two 
Mbut ione  of velooity, e (V) and 6 ( V ) ,  the second being a 
oorreotion for beam width. 

An analyeia and oomputer rog" are deaoribed which 
permit one to obtain e, and &e nominal microwave power 
parameter from three or more measured Rtuneey mnanoe 
ourvea at pryerly epaoed power levels whom ratios are hown. 
The determuLa tion from the funotione @. E )  of biaa errors due 
to second order Doppler ahift, cavity phase diEerence, and 
oavity pulling is dearribed. 

The method may also be uead to improve an experimen- 
tally obtained velocity distribution (i.e., one obtained through 
the pnlee technique); to provide the proper funotion 6; and to 
provide diagn&io oh& of the meawrement technique and 
the validity of the model chosen for the hansition probability. 

The method ie applied to the NBS frequenoy ehndard. 
Error eetimrrtee indioate that it is fessible by microwave 
power ahift m e " e n b  to evaluate the total biaa error due 
to the above ~olvcea to within one part in IO=. 

I. Introduction 
l'hii paper deals with aspects of accuracy evalua- 

tion of molecular beam frequency standards of Ram- 
sey type. Sources of error in the accuracy of such 
s tandad  have been discussed by several authors 
[1-6]. For the high precision standards with which 
we shall specifkally deal, the largest uncertaihties, 
with which this paper is concerned, are in the errors 
caused by the cavity phase difference 6 between the 
second and the first resonant cavity fields, and the 
second-order Doppler shift (DS) due to the difference 

P 
=2cz v ~ - v = - v  

between the laboratory-measured frequency vx in the 
cavities and the driving frequency v experienced by the 
atoms with velocity V.  

The bias, or accuracy error, due to DS and 6 ,  as 
well as 6 itself, can be estimated with sUf6ciently high 
precision to be acceptable in state-of-the-art frequency 
standards only from a rather good knowledge of the 
velocity distribution e (V)  of the detected atoms in the 
particular mode of operation. Furthermore, while the 
bias due to DS can be computed directly from e ( V ) ,  
the bias due to 6, as well as 6 itself, necessarily in- 
volves an accurate measurement of the resonant 
frequency shift between two operating modes (e.g., 
two power levels, beam reversal, or narrow-band 
velocity filhring), from which 6 and its associated 
bias can be determined from the velocity distributions 
associated with the two modes. 
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The paper deals largely with the determination of 
e ( V ) ,  and its use in the estimation of 6 and DS based 
on power shift measurements. 

An experimental method has recently been re- 
ported [7] which permits direct determination of the 
velocity distribution e (V) of detected atoms. Rf 
power is applied to the cavity in short pulses of length 
t at a frequency vp.  Those atoms which am driven in 
both cavities and generate a Ramsey mnance  com- 
ponent in the detected signal are those whose time of 
flight Tf between the cavitiea is close to l /vp.  Since 

L n  
v 4 '  

TI=-=- ( n = i , 2 , . . . ) ,  

fixing vp  selects for detection those atoms whose velo- 
cities am close to 

This multiplicity in n is a minor problem in precision 
beam standards for which the velocity distributions 
are typically rather narrow. A somewhat more difli- 
cult problem is presented by the window width AV 
around V of contributing atoms due to t.he finite 
cavity width and the finite pulse length z, so that the 
distribution ex ( V )  obtained by this method is actually 
a mean of the true distribution over the window AV. 
The methods described in this paper can make use of 
ex (V) obtained by this experimental method to ob- 
tain more precise estimates of e ( V). 

If the window width AV is negligible, the pulse 
method leads t0 the interrogation of monovelocity 
beams, for which the bias due to DS is immediately 
known. The cavity phase difference 6 and its associated 
bias are easily obtained from a measurement of the 
resonance shift between two selected velocities (two 
pulse frequencies vp) .  For non-negligible window widths 
AV, these r e sub  can be corrected for the windowing 
effect from a knowledge of e (V) .  

In  Section JI (A), the determination of Ramsey 
resonance patterns gx( l ,  b)  obtained from known 
beam optics, 6 ,  and power parameter b is described. 
The effect of beam optics is shown to be describable 
in terms of two functions of velocity, [e (V), 5 ( V ) ] .  
In  Section JI (B), we assume that the distributions 
[e ( V ) ,  6 ( V ) ]  are known either by pulse technique 
measurements or by the analytical techniques of Sec- 
tion DII. The problem of determining 6 and the biases 
due to 6 and DS from power shift measurements is 
reduced to the calculation of two mean velocities (VD, 
V,) and the determination of the power parameters 
used. The velocities ( VD,  Vp) depend on the functions 
@ ( V ) ,  5 ( V ) ] ,  the cavity power parameter b, and the 

V p  L ,  g v p  L ,. . . 



88 5. Jarvis, Jr.: Determination of Velooity Distribution8 in Moleoular Boam Frequency Standards 

frequency modulation width vh[ and mode (square 
wave, sinusoidal) u ~ e d  to determine the center of the 
Ramsey reaonanoe peak. The bias due to cavity pul- 
ling ia shown to depend on a third moan velocity V g ,  

Section IXI describes an analysis and oomputor 
program for the determimtion of (V), E (V), b] 
from a aet of Ramsey resonance c u r v ~  taken at m e r -  
ent power levels whose ratios are known. The method 
can be u88d for an independent determination of these 
quantities, €or controlled improvement of experimen- 
tal determinations of these quantities, and aa a diag- 
nostic test of the assumptions involved in the theory 
used in Section Ll. 

Section IV deecribes the application of these 
metho& to the accuracy evaluation of the NBS 
frequency standaxd NBS-5. 

II. Theoretical Background 
A.  Rummy Resonance Curve and the Velocity D h t d u -  

t h  

In an atomic beam frequency standard of Rammy 
type, with cavities No. 1 and No. 2 separated by a 
distance L, an atom with velocity V which sea  field 
strength parameters (bl, bL) in the two cavities at 
driving fiequeency Y has a probability of changing 
state (transition probability) [6 J 

where A I 2 R (v - vo) (this has the opposite sign from 
Ramsey’s wage), v,, is the atomic resonance frequency, 
and b is the phaae lead of the second cavity over the 
hit. When the field strength parameters differ little 
from each other and from a common value b over the 
portions of the resonant cavities traversed by the 
detected atoms, we write 

P (2, v, b,, b,, 8) 

to the first order in the et, when 
R 

Po (A,  V, b, 8 )  = $2 K,  (A, b) cos (* + h 6 
Q’ 1 

+ N ,  (A, b) sin (+ + 1 
The first of these is equivalent to Ramsey’s equation 
V. 44, [SI. The coefficients K,, L,, N,, N,, pq are 
given in Table I; 1 is the effective width of each re- 
sonant cavity. 

When << 1 in each cavity, i.e., near resonance, 
Eq. (2.3) reduce to the simpler form 

A 

Po (A,  F’, b ,  a) = 2 sinz (y) cose (q 4- 8) 
I L  

P E  (A,  v, b, 8 )  =(?) sin (T) cos2 4 (T + d ) ( 2 4  

In most beam tubes, due to precise mechanical 
and electrical adjustment, 6 is small (milliradians), 
the second order Doppler shift is small (Y is close to the 
laboratory driving frequency yX), and the cavity win- 

doars, centered on a field ninsimum, axe small ellough 
that the E( axe sinall for all rays that roach tho detector. 
Then with regard to the resonance patterns experi- 
mentally measured, gx (Ax, b), whore A, = 2n (vx  - vo), 
we may neglect the phase 6, and replace A, by I in 
Eq. (2.2). We shall retain the Grst order terms in Q. 

The detectable beam is usually quite narrow, so 
that all detected atoms may be comkbred to liuve 
been emitted with the same oven velocity distribution 
ex (V). But as a result of bean1 optics and interfering 
surfaces, those emitted from different points on t.he 
emitter at different angles will be detected only for 
very Merent velocity ranges. Let p be a parameter 
vector denoting position and angular coordinates of 
launch of atoms from the emitter face. For each 
velocity V, we must distinguish four trajectory types 
which may reach the detector: for atoms in a given 
state j (j = 1,2, depending on the sign of the magnetic 
moment), there are those (k E 1) that reach the detec- 
tor only if transition occurs between the deflecting 
magneta (probability P), aod those (k= 2) that reach 
the detector only if transition does not occur (prob- 
ability (1 - P). Atom which reach the detector in 
either case or neither case generate a background 
signal independent of I ,  and can be ignored. (They do, 
of course, affect stability by generating additional shot 
noise). We shall assume that the detected current 9~ 
(Ax, b) is the same aa the m e a s d  % m y  resonance 
curve gr (Ax, b) to within a scale factor s (b) and a 
baseline shift c (b). 

For each velocity V, and for each ( j ,  k), there is a 
;-domain g j k ( V )  of ray source parameters for de- 
tectable rays. The atoms reaching the detector then 
generate the current : 

+ 

00 2 

0 1‘1 
gD (A, b ) =  JdVpM ( V )  - -1. 

-+ 
+ I dp [I - P (2, V ,  b, G, V, b, c, v), 611) 
d‘(V) 

Ignoring the ?.-independent + term (unity) in the last 
integral, and letting Qk (p, V) be a support function 
on Wik( V), ( Q j k  5: 1 if & 9 j k ,  0 otherwise) : 

g D ( A , b ) = I d V e x ( V ) ~ d p Q * ( p ,  V )  
+ - +  a3 

-+ 9 
-+ 

(2.6) 

(2.7) 

* p (1, V ,  b, ( P ,  VI, b, ( p ,  VI, 811 
where -t 

2 

Q* 6, V )  = 1 [Q” (P, V )  - &” G, VI1 . 
I - ]  ~ 4 --c 

ThenfromEq.(2.2),withE(p, V ) = E ~ ( P ,  V)+E,(P, V ) ,  
we obtain from (2.6): 

where : 



-+ 
Thosg latter i nhpah ,  ovor tho rogion (V,  p )  of 
detectat~lo ray#, may bo crtloulatd from "raytracing" 
techniquM (i.o,,atudia of the trajectories of the atoms) 
if ths magnetic fiold and geometric structure of the 
beam machine are adequately known. 

Defining then the two velocity "distributiom" of 
detedeci atoms: 

the measured % m y  mmnce curve, to within 
scaling factors 8 (b), c (b), must be: 

8 (b) BX (AX, b) + c (b) = 7 d V  (e Po 0, J', b, 4 
0 

- 5 ( V )  PE (1, v, b, 4) - (2.12) 

It should be noted from this development that the 
addition of a (small) mmtant c o . t o  E< can be ab- 
sorbed aa a multiplicative factor on b and E{; re- 
ferring to (%I), 

b (1 - (E< + 00)) = [ ( I  - GO) b] 1 - 2 E b' (1 - E{') . [ 1-%I 
We may then fix a scale for the pmmeter b by re- 

T d V l ( V ) = O .  (2.13) 

It should be noted further that, from Eq. (2.7), &* 
may be negative i f k =  2 type atom ex& k= 1 type 
for some velocity V. This could lead to negative 
vdues for e (V), but none have yet been experimen- 
tally determined or resulted from the techniques of 
Section 3;II. The assumption (V) independent of 

quiring : v 

0 

ray could easily be dropped by including ear (V, 2 in 
the integrals (2.9, 2.10); the result of this paper is 
unaffected. The present approach permib identifica- 
tion with on-going ray trace studies, which determine 
90, PE - 

In Section III, Eq. (2.12) is used aa the starting 
point in a method described for determining the velo- 
city distributions [e( V), 6 ( V ) ]  from Ramsey reaonance 
m e a  measured at  power parameter settings (bl, b2, 
ba) for which the ratios bl/b2 and b,/b3 are known. 

B. B h  Error8 for S~nmoidal and Squurewave 
Frequency Modulath 

The center of the resonance curve gx (Ax, b), may 
be located experimentally with very high precision by 
(slow) square-wave or sinusoidal modulation of the 
laboratory driving frequency vr and mrvo techniques 
based on the assumption that gD (Ax, b) is symmetric 
about the peak. Thus it is essential to know how far 
removed this peak is from the atomic resonance yo. 

Becauee of the DS effect, the cavity frequency v 
seen by atoms with velocity V differs from the labora- 
tory measured frequency: 

v = V x ( 1 + g ) .  

Sinca vx is very close to the atomic resonance over the 
Ramsey resonance curve 1/2b << 1, this can be written: 

v =  r x +  V 2 y  , 7+) 2 2 (2.14) 
2c2 . 

10' 

111 the modulation method, v x  (t) is fixed to 1~ t L  
center froquency vC on which is superposod a periodic 
frequency v M  (t), which is vary symmetric: 

YM ( t )  = - VM ( t  + +) 
whore T is the modulation period. Thus: 

V ( t )  = V c +  %'M ( t )+ Vg l/J. (2.15) 
The detector carrent, GD ( t , vc ) ,  reflecting this 

modulation, is fed into a linear filter 9 designed to 
produce a null output when vc is adjusted to make: 

6lp-k T ,  9 VC = UD (t, YC) - 
For squarewave modulation (S Q), 

I v,, first half-cycle 
VM (4  = { - vy , second half-cycle 

c D ( 1 +  y, vc) - GD (t,  v c ) .  

and 2 ' s ~  forms a time-average of the difference 
T 

For sinusoidal modulation (SS), 
( t ) =  v,.sinQt,iR= 2 ic /T ,  

and 9 8 s  generates a t,ime-average second-harmonic 
amplitude : 

T 

0 
J dt sin iRt GD (t, v C )  . 

We shall assume that VM satis6es the condition 
1, and use the simplified form, Eq. (2.4), for 2 n v r  

b 
the transition probability to define Po, PE of Eq. (2.8). 
Then defining: 

416 e * ( V , b ) =  e ( V )  (l-cosy .--~((V)sin- v 
(2.16) 

we may expand Q D ( ~ )  to first order in the small 
quantities (A, y, 6) : 

G&, vc) = J dV e* (V, b) cos2 1/2 

4 z b )  2: 
A E v C - V O  

m 

0 

m 
= J dV p* ( V ,  b) COS' 

0 
m 

- n L J  dVe* (V, b) sin 
0 

After 2'-filtering, the first term vanishes, while filtering 
of the second term gives an expression for the offset A : 

(2.17) YO 6 d ( b ,  VM.) = Yc - 2'0 = - - V2D - ___ 2 c 2  2 z L  Vp 
where : 

and 
m 

(P ( V )  )E J dV c* ( V ,  b) F ( V ) 9  
0 

(2.18) 

(2.19) 
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For squarewave modulation, we have : 
2n L vu. m 

0 
(Vm)= 2 j dVe* ( V ,  b)  Vm e i n 7 .  (2.20) 

For sinusoidal modulation, we have: 
4) 

( V"' ) = 2 J d V e* ( V ,  b)  V"'@p ( V ,  YX), 
0 

lm 
cDP(V,yM.)= q;Jdtsin1;2tsin ( 2n L vu. sinat) 

0 

2n L VYO 
= Jl(+ (2.21) 

in terms of the Beasel function Jl (2). 

The preaentation so far given lends itself eaaily to 
the inclusion of cavity-pulling error. We " n e  the 
cavity power parameter b used in the development is 
related to an external power parameter bx 

to within an undetermined scale factor with I B A I < 
1 over the Rttmsey reaonance. The parameter 3Y has 
the form: 

b -  b , ( l - - a A )  

where vaV is the cavity resonant fiequency, Qcav the 
cavity Q. To first order, Eq. (2.1) is 

Then in Eq. (2.8), we replace qE (73 by qE ( V )  + 2 bA 
qo (7). Noting that 9i?A is independent of ;f, the 
pmxding calculation givea for (2.17) the extended 
form 

b t = b x ( I - q - - 3 Y A ) .  (2.22) 

Ll (b ,  Ygdo) 3 Yc - Yo 
' 

with 

For squarewave modulation: 

For sinusoidal modulation : 

V 2n L vw. 

Once velocity distributions [e ( V ) ,  ( V ) ]  are 
known, the coefficients [VD (6, YMO) ,  Vp, VB (6, v ~ a ) ]  
for the bias @3q. (2.17)] are easily computed by numer- 
ical integration. 

If the bias shift ( ~ 1 ~ -  Y ~ ~ )  between two different 
power levels (or two modulation widths) is measured 
experimentally, Eq. (2.17) [or (2.23) if cavity-pulling 
is sign&cant and a is known) can be used to dctermine 
the phase shift 6, and hence the bias of each of the 

contsr frequencies vlC nnd vat, and the bias at  any 
other power level for which the ratio bib, is known. 

111. Analytioal Determinatioii 01 Volodty Dlstributione 
from Roeonmoo CWVOR 

In  this eection we RhaU dsscribe an analysis and 
computer program which can be used to determine the 
distributions ( V ) ,  i (V)] and the power parameter 
b from measured Ramsey resonance c w e s  only. This 
amounts essentiallyto inversion of Eq. (2.12) considered 
tm a Fredholm integral equation of the first kind 
with an unkhown parameter b. 

The purpose of such a program is threefold. First, 
in the absence of a ex (V)  experimentally determined 
[E ( V )  cannot be measured], the program provides 
both e ( V )  and 6 (F) with very little ambiguity when 
resomnce CWM are carefully recorded a t  three or 
more power levels whose ratios are carefully set and 
which are sufficiently distinct: €or example, near 
optimum power, and above and below this level by a 
few dB. 

Second, if a measured distribution ex ( V )  is avail- 
able, the program can be used to improve the accuracy 
of ex ( V ) ,  determining 6 (V) and a nominal value of b 
(assuming 1 is known), and provide a critical diagnosis 
of the mectsurement procedure. 
Third, it provides a check on the validity of the 

model chosen for the transition probability. That is, 
if ( V ) ,  [ ( p)] cannot be found to fit the resonance 
curves to whithin acceptable E t a ,  one must suspect 
the presence of spectral impurities, extraneous transi- 
tions, microwave leakage into the dr i f t  region or some 
other problem. Such a result would put in doubt biases 
estimated from the simple transition probability and 
any velocity distribution. 

Because U =  i / V  is the natural variable in the 
oscillating functions of the transition probability and 
in ( d o r m  field) raytracing, we have dehed:  

V 2 g  ( V I =  R (m (3.1) 
V 2 [  ( V ) =  E (U) 

8 (b )  gx (A,  a) + G (b) 

and written the integral in Eq. (2.12) in the form: 

= y d U  [R ( U )  Po (A,  V ,  b, 0) (3.2) 
OB 

- E (u) PE (1, v, b, 011 
neglecting the cavity phase shift 6 and the second 
order Doppler shift Y- vx .  Here UL = - and UH = 

- are given cutoffs to be determined by trial-and- 
error. (Estimates can be provided by ray-tracing, 
partial or complete measurements of ex (P), or by 
judicious guessing). 

For chosen No, setting Uo U L  and U N ~ ~  = UH, 
we set a t  equal intervals h in U :  

1 
VL 

1 
VH 

(UO, u,, . . . I  UNO, UNOfJ 

discrete values, and assume R ( U )  and E (G) vanish 
at the endpoints. Interpolating R ( U )  and E ( U )  by 
second-order spline functions (with minimum rms 
second derivative), me do the integrals exactly, so that 
we obtain the forms: 



s 0 

(I ( b )  gx (A, b) + c ( b )  = 2 Rt Pi (A 0 )  + Et Qi (2, b)  

with known (Pi ,  Qi), unknown (Ri, Et). 

i =  1 
(3 .3)  

We also discretize A :  
A, = 0, A, = (m - 1) A*, ( m  = 1, M )  , 

in equal steps A* spanning the major portion of the 
Ramsey resonance. Given Ramsey data, {gx (Aa, Ba b ) ,  
a = 1, N,}  for ,9 = 1,. . . , No are interpolated quadrati- 
a l l y  over (A,,,}; we assume the ratios BS =--are 
given. Then in an obvious notation, Eq. (3.3) takes 
the discrete form: 

6 P  
b 

8 g;d + co = g;r.B 

g f = 2 R t P y @ + E i Q p .  
i =  1 

In principle, we wish to determine (Rt, Et, 68, cS) 
which minimize the error: 

"8 
80 = 288, 

88 f 2 (88 g p  + c8- g0"B)Z 

8 - 1  
31 

m- 1 

subject to the constraints of normalization: 

which for Simpson rule weights Wc (,+ h, 
are equivalent to : 

h, 6 h,. . .) 

VL VL 

The latter normalization, as pointed out earlier, fixes 
a scale on the unknown power parameter b. 

It is well known that the solution of the above 
problem may be expected to show instabilities, 
worse as the "kernel" ( P ,  &) is smoother. This diffi- 
culty can be removed by a method due to Twomey 
[SI, which amounts to adding to cRo terms which 
require the solutions ( R ,  E )  to be smooth in some 
sense, or to lie close to a given function. The addition 
of such terms may reduce the quality of fit; Le., 
(CP)~,,, may increase, but normally this effect is very 
small while the solutions are greatly stabilized. In  
fact, in the ideal case, the loss of fit quality may well 
lie within the uncertainties in the given curves g, 
(A, bs), so that the added terms merely permit the 
choice of "reasonable" solutions from the class of 
solutions which fit the g,"' to within their uncertain- 
ties. The amplitude of the smoothing parameter re- 
quired will depend on the fraction of frequency range 
of the resonance curves used. 

When &S is expected, and optimization with respect 
to (@, c') is carried out, it has the form in matrix 
notation 1 

6 8 =  R A' fi+ 2 R Bo E +  E C' E 
Smoothness can be imposed on R and E by adding 
to this error a term analagous to  

or 

where [ is a parameter which when increased, in- 
creases the smoothing effect. We have, in fact, added 
to 8°C: 

(5,  R A R  R+ C2 E A E  E )  tr  (2 -@/No) 
P 

where 

-461i-jl.I t d I i - j l . 2 ) .  

Here the matrix is the second difference effect, N ,  = 0 
is analogous to (3.5), ATp = 3 is analogous to (3.4), and 
&, j is the Kronecker delta. The trace is included for 
scaling purposes. 

Furthermore, we have added: 
c3 E I E t r  (2 AP/N,,) 

P 

where I is the unit matrix; this permits us to make the 
individual values El+O by choosing large t3. (Note 
that the smoothness condition plus the normalization 
W E  = 0 can also force Ei+ 0). If is to have the 
physical meaning of describing the effect of cavity 
window width, we must expect it to be small compared 
with R. 

When in addition, a measured curve gx (F) is 
available, we may require that R not differ much 
from R, 5 V z  ex ( V ) .  Or, if the given curve ( V )  
has been generated by triangular windowing of the 
true (unknown) velocity distribution ex ( V ) ,  

RZ = w R X t Z  

we may require that w R 22. not differ much from RF 
too much. We have added then to dC also: 

(CI R A " R +  c5 R A" R )  tr (2 C@/So) 
o 

where the matrices (A", A") are easily derived errors 
from R,  and Rg. When c4 is made sufficiently large 
(e.g.- IO4) ,  R+ R,. 

One further parameter is introduced. Since R is 
expected to provide a reasonably good fit eren when 
E= 0, and since we must finally invert a matrix of 
dimension [dim ( R )  + dim ( E ) ] ,  i t  is both desireable 
and practical to Feduce the dimensionality of E to  
hTE 5 No.  We define Er of dimension SE on equally 
spaced points ( U g ,  Uf . . . , U;,+,) n here Uf = C r ~  
and UZEfl = U H ,  taking E$E+l = 0, and assume E ( r )  
is adequately given by second-order spline interpola- 
tion of Er ( U ) .  This leads to an interpolation opera- 
tor : 

which gives E when Er is known. 

over ( R ,  Er, vl, q2)  the complete quadratic form: 

~ = r ~ r  

Finally then, we determine (R, E )  by minimizing 

l?T ( R ,  Er, V I >  7 2  ' b)  
Xf i  

8 = 1  
= R ( 1  A p +  5 ,  A R +  [dA"+ ; j A u )  R 



.. 

tion t 4 ~ m ~ .  K C J ~  t h u t  i4 =: la + .  0 in to IJO tukorl wlien 
no oxprimcmtnl ax ( V )  i H  usud. 

In  tho Program, IIOI'LR, It, is found fimt &mum- 
ing fP= 0 in &'T for comparison purposes, arid then 
thc full solution (R, E) is found. For both results, 
(E, ,  0) and (R, E), (using E = E r r ) ,  the rescaled 
fitting error: 

e i =  q ~ - -  (7-) g#m - 5 , 

and its rms value: 

are computed. The e$ and its rms over @, e:, are our 
principle diagnostic tools for evaluating the fitting 
quality for different values of the parameters involved. 

IV. Applications 
The method described in Section 111 has been 

applied to NBS-5 in two different geometries, and to  a 
commercial beam tube. For simplicity, we shall discuss 
the retlulfs for the most recent NBS-5 alignment'only. 

Fig. 1 shows Ramsey resonance curves measured 
at (nearly optimum) power parameter bo (assumed 
unknown), at a 4 dB higher power level (6+), and a t  a 
6 dB lower power level (b-), respectively. (b is propor- 
tional to the square root of the power): The minimum 
division on those graphs is 0.1 cm; the originals can be 
read to 0.05 cm, and the experimental error in the mea- 
surement should be less than this. We shall describe 
the fit of approximants to these resonance curves in 
centimeters. 

Fig. '.' H h w N  the vc4ocit.y clistril)iitiott pA ( 1 - 1  
(uiiiiormuli.ml) ol)tuincd I>y tho pdsc iiict\wi 
using a velocity window of dioiit 0.1 . \' ( r  = 
0.1) [7]. 

We shall discuss first the determination of the 
distributions [e, ( V ) ,  e (J'), ( ( V ) ]  obtained indepen- 
dent of knowledge of ex ( V ) ,  in order to  show the effect 
of program parameters. 

Outer bounds for velocity cutoffs niay be estimated 
from, say, oven temperature, resonance half-widths. 
or ray-tracing. The estimates are not critical. as they 
can be improved by trial-and-error. \Ye have taken 
V L  = 100 m/s, V H  = 600 m/s as initial estimates. 

On each of the resonance curves, we hare chosen 
M = 22 points equally spaced at frequency intervals 
of 5 Hz from the center (the first point at the center), 
spanning 105 Hz on one of the symmetric wings. 
(Any visible asymmetzy in the curves is a warning 
that the theory used in this paper is inapplicable.) 

We have used N ,  = 3 for the velocity exponent 
in the smoothing operator to define more sharply the 
tcriical low velocity cutoff. 

0) 
for = 10 and c1 = I O 3  with A', = 23, 6, = 24000 s-l. 
The instabilities for cl= 10 are evident. \rhile for 

IO3,  a very smooth curve is obtained. The rms 
fitting errors e% are respectively O.O%G and 0.11 17 cm. 
These are too large to be consistent a ith the measure- 
ment accuracy of the resonance curves. 

Retaining A,= IO3  to assure a stable solution. we 
swept bo, obtaining the follou-ing errors: 

Figs. (3and4) show the resulting?, (1') [t ( V ) ]  

+ .., 
. .  

. . .  

P =  'OPT 

I- 
P - POpT - 6dB 

O N - A X I S  ALIGNNENT 

Pig. 1. Ramsey resonance records for NBS-5 on-axis alignment a t  nominall)- optimiim power Po, 4 dB above and 6 dR below. 
Finest division 0.1 mi. Calibration. 12.00 Hz/cm 
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2.2 0.0862 
2.25 0.0788 

2.35 0.0920 
2.4 0.1117 

2.3 0.0805 (4.1) 

This gives a tentative best fit estimate of bo = 22500 s-l. 
Fixing bo = 22500 s-l, other parameters remaining 

the same, we test for the correct low velocity cutoff 
VL, with the following results: 

VL (m/s) (cm) 
100 0.0788 
140 0.0714 

175 0.0607 
185 0.0613 
190 0.0777 
195 0.1044 
200 0.1381 

165 0.0712 (4.2) 

At first the fitting error decreases, aa the estimating 
points for eo ( V )  are concentrated more in the region 
of significant contribution, but after V,= 185 m/s, 
the error rapidly increases, indicating that we are cut- 
ting off portions of the important velocity range. We 
fix a conservative cutoff a t  VL= 175 m/s. 

With that value for VL,  and with bo = 22500 s-l, 
the smoothing pressure C, with the following results: 

51 e: (cm) Fig. No. 

10-1 0.0474 5 
10" 0.0481 6 

IO2  0.0509 8 
10a 0.0607 9 

10' 0.0489 7 (4.3) 

We note that the stability of the result rapidly im- 
proves as we move from cl= 10-1 to IO2, the latter 
showing essentially no instability, while the fitting 

0 100 203 300 400 500 600 
V ( m / s )  

Fig. 2. Unnormalized velocity distribution for NBS-5 on-a.sis 
alignment obtained by pulse technique 

crror changes slowly. At cl = 109, the fitt.ing wror 
takes a significant jump, indicating that oversmoothing 
(loss of resolution in e ( V ) ]  is occurring. For the. re- 
maining tests, we use tl = lo2 as a best compromise. 
(An earlier alignment of NBS-5 191 has a two-humped 
velocity distribution, yet t.here was still a clear distinc- 
tion between values of c1 large enough to reduce the 
instability noise, but small enough to show the well- 
defined double hump.) 

= IO2 ,  bo is 
still a near optimum estimate, we obtain the following 
results. 

To 'test that for V L  = 175 m/s and 

b o b  ex 

22000 0.0555 
22500 0.0504 
23000 0.0553 

(4.4) 

V (m/s) 

Fig. 3. Computed e ( V ) ,  for 5 (V) s 0, KO = 23, b = 21000 s-l, cL = I O ,  V L  = 100 m/s, VH = GOO m/s 

8 

6 

4 - 
L 
4 2  
a. 

0 

-2  

- 4  

V ( m / s )  

Fig. 4. Computed ( L ' )  as in Fig. 3, but with i, = 103, shoa 
ing effect of snloothing parameter 
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Fig. 5. Computed e ( V ) ,  for [ ( V )  5 0, No - 2 3 , b  - 22500 
VL - 175 m/s, VH - 600 m/s, 5, = 0.1 

Fig. 6. As in Fig. 5, with c1 = 1 

0 100 200 300 400 500 600 
V ( m / s l  

Fig. 7. As in Fig. 5, with [, = 10 

6 

4 

1 L 2  
4 

0 

- 

-2 

-I.  
-0 100 200 300 400 500 600 

V ( m/s) 

Fig. 8. As in Fig. 5,wit.h c1 = 102 

The influence of the number of velocity points KO 
is shown by the follo\ring, with V L  = i76 m/s, bo = 
22500 s - ~ ,  c1 = 10': 

NO eR' 
19 0.0530 
21 0.0515 (4.5) 
23 0.0504 

Thus N o  = 23 seems to define eo ( V )  in adequate detail. 
The estimate for bo is t.he same for these three cases to 
within Ab = 50 s-1. The distributions eo ( V )  obtained 
for these cases are indistinguishable. That for So = 23 
is shown in Fig. 8. 

The best estimate obtained to this point. then 
eo ( V ) ,  [[ ( V )  = 01, for TIL = I75  mls, bo = 22500 s-* 
[,= 102 (see Fig. 8), has e g =  0.0509 cm. The worst 
errors (over m) to the three Ramsey curves are: 

1/ ( m / s I  

Fig. 9. -4s in Fig. 5,  with :: 103 
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1 -0.098 
2 -0.089 (4.6) 
3 +0.122 

Theee crrors still appear to  bo unacceptably largo 
compared with the uncertainties in the measured 

On the other hand, if we accept the measured curvo 
ex (V), using the measured cutoff V L =  102.7 m/s 
( V H  retained a t  000 m/s), our program interpolates 
quadratically on No= 23 intermediate points, e1 (V),  
shown in Fig. 10. Setting c4= 1W caused the function 
QI (1') to be reproduced aa the solution (very high 
fitting-pressure). Minimum rms fitting error occurs 
for bo near 23000/s, as shown below: 

values gx (I, aa). 

b (8-1) e$ 

22500 0.2091 
23000 0.1901 

24ooo 0.1830 
23500 0.1804 (4.7) 

For QI ( V ) ,  we estimate bo = 23640 8-1. This fitting 
error to resonance curves runs as high (over m) as 
0.470 cm, which is much too large. Thus the distri- 
butions [e1 (V), 6 (V) = 01 are inconsistent with the 
measuren resonance curvea. due presumably to meae- 
urement errors and windowing in ex (V) and to a 
lesser extent the interpolation 01 ex (V) to e1 (V). As 
we shall see this inconsistency does not lead to  large 
errors in biaa estimation. 

Having now established that, if E E 0 then V L =  
175 m/s, 1, = io2, are near optimum parameters and 
lead to the best fit eo ( V )  for bo= 22500/s, we shall 
examine what happens if E ( V) is obtained from E ( U ) ,  
on spline interpolates of the NE-point vector Er (Ur). 
Two questions should be answered. First, is 6 (V) a 
si@cant addition to the analysis, or are we merely 
adding free parameters? Second, if (V) should in 
fact be included, does it significantly effect calculations 
of biases due to 6 and DS, and hence the accuracy 
evaluation of the beam tube ? 

Toward the first question, we can contzibute some 
atffirming results for the NBS-5 study. Now (V)  
should, on the average, be small compared to e (V),  
so that A, and As must be large enough to foroe this. I n  
fact, we have taken 1, and As= 0, noting that the 
interpolation to 2 \ ; ~  small already smoothes, and the 
reaulta we obtain are nlrcady small enough to be aooep- 
table. 

Let us fix VL= 175 m/s, A,= IOo, and ostmine 
the fitting errors while keeping the total number of 
free parameters N o +  N E =  24 fixed. However, for 
E ( V )  # 0, the optimum value of bo is affected, so 
that we must look also for best fits in bo. We find for 
( N o / N ~ )  values: 

b (s-l) e$ (cm) 

N,/NE = 2113 23500 0.0262 

24500 0.0378 
24ooo 0.0255 (4.8) 

from which we est.imate bo = 23780: 
b (6-l) e$ (cm) 

N o / N ~ =  19/5 22500 0.0271 

23500 0.0252 
23000 0.0258 (4.9) 

from which we estimate bo = 236801s. These should be 
compared with results (4.4) for No= 23, N E =  1 
([= 0), and with (4.7) for the measured distribution. 

For the No/NE = 2113 case, using bo = 2378018, we 
find the worst fitting errors: e$ = 0.0233 cm. 

B (d- A) worst (cm) 
1 4 . 0 3 5  
2 +0.028 (4.10) 
3 -0.062 

While for 19/5, bo = 23680/s: e$ = 0.0252 cm. 

tJ (4- $79 ~ o = t  (cm) 
1 4 . 0 3 5  

3 -0.066 
2 +0.034 

8 

6 

4 

1 
- 2  =, 

0 

-2 

-4 7 

0 100 200 300 400 500 600 
V ( m k l  

Pig. 10. Normalized A', = 23 quadratic interpolation ( V )  of 
measured distribution of Fig. 2 

19 wetm1nuix 

(4.11) 

100 200 300 400 500 600 
V (m/s )  

Fig. 11. Computed [c ( V ) ,  5 ( i')], N,/A'E = 21/3, bo = 23780 s-1, (, = I O ? ,  VL = 173 m/s, VE = GOO m/s 
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Those reeults should be compared to the results (4.8) 
for the 23/1 ([= 0) case. 

The dietributions (e, l )  are plotted in Figs. 11 and 
12 for optimal bo for the oaeea No/NE being 2113 and 
19/6 respectively. Cloarly the ciirvee 6 ( V )  are sub- 
stantially defined, and give a signillcast improve- 
ment to the resonance curve fit over the 23/1 (t= 0) 
oaae, which has an equal number of free parameters. 
The shape of the E ( V )  curve is consistent with the 
view that slower atoms, which are deflected more in 
the focussing magnets, tend to lie closest to the win- 
dow edges of the reaonant cavities, where the field 
parameter reduction E is largest. 

Fig. 12. Computed [e (V),.t ( V ) ] ,  N,/Ns - 19/5, bo - 23680 S-', c1 - 109. VI, - 175 m/s, VXI - 600 m/s 

We have shown that the addition of the second 
distribution ( V )  does substantially improve the fit 
of computed and generated resonance curves, and that 
the function is well-enough defined by N E  equal to 3 
or 6 to reduce the fit error in the caae we have studied 
to  the level of measurement noise. We shall now discuss 
the second question: does the introduction of 5 (7) 
significantly effect the accuracy figure obtained by 
bias measurements as described in Section Il (B)? 

We shall aasume the frequency shift v$- v; is 
meaaured when the power is changed from the upper 
value ( +4 dB) to the lower value (-6 dB), and neg- 
lect any error in the measured ratios: 

Suppose, as a typical shift, we find: 

and that the modulation width is known to be 
(exactly) 20 Hz. 

Results (4.12) are obtained for A +  E v$-vo and 
6 when the [e ( V ) ,  E ( V ) ,  bo] are assumed in the 
foiloc-ing caaes : 

b+ : bo: b- = 1.5850 :I : 0.8563. 

vS- VC = 3.0 (IO)-' HZ , 

Case 1: results (4.7), with e ;  ( V ) ,  6 ( V )  = 0,  
bo = 23640 S-'. 

Caso 2: results (4.6), with eo (V), 5 (1 ' )  = 0. 

Caae 3: results (4.8), with e ( l'), 5 (i'), ArlWYE = 

Case 4: reeults (4.9), with e ( V ) ,  5 (1.); S o / S ~  = 

Case A +  (Hz) 6 (radians) 

bo = 22600 s-l. 

2113, bo = 23780 8- l .  

1916, bo = 23680 8-l. 

1 -0.00978 0.000277 

3 -0.00748 O.ooOo31 
4 -0.00754 O.ooOo37 

2 4 .00823 O.oooO99 (4.12) 

Finally, to answer the second question relative to 
the particular case discussed, for el ( V )  and the three 
distributions obtained for N o / N ~  of (2311, 2113, 1915) 
a t  their respective best estimated for bo, the bias differ- 
ences all lie within 2.3 (10)-ls of the cesium resonant 
frequency. The addition of the function 5 ( V )  changes 
the bias by about 0.8 (10)-ls as compared to the best 
estimate for eo ( V )  with E = 0. Thus these refinements 
are important only if accuracy better than 1.0 (10)-ls 
is required. (But see reference [IO]). 

Before we can consider the results obtained so frtr 
to be of practical value €or bias estimates to the 
level, it is important to consider the effect on the bias 
calculation when certain experimental and analytical 
parameters are uncertain. We shall restrict ourselves 
to the No/Ne= 2113, cl= IOa,  VL- 175 m/s, Vas = 
600 mls which has given the beat result for No + N E  = 
24 a t  bo= 23780/s [see Results (4.8), (4.10), and (4.12, 
carse 3)]. We designate the resulting distributions for 
this m e  [ e N  ( V) ,  5~ ( V)] (see Fig. 11). They have been 
obtained assuming the Ramsey resonance ewes 
were for power levels precisely 4 d B  above and 6 dB 
below the nominal 0 dB level, i.e. at: 

b+ = 37689 s', b-= 11918 s-' . 
The following table shows the results which would 
have been obtained using (QN, 6 ~ )  with varying values 
of the experimental parameters b+, b-, VMOD,  vf- v- : 

b+ is-l) b- (s-l) VMOD(HZ) 

37689 11918 20 
37689 11918 21 
37689 11918 20 
37689 11782 20 
38125 11918 20 

v+- v- (Hi) A +  (mRz) 6 ( p a d )  

(4.13) 

~- 

4 . 0 0 3 0  -7.48 31. 
-0.0030 -7.55 34. 
-0.0031 -7.90 58. 
-0.0030 -7.47 30. 

5. 4 . 0 0 3 0  -7.17 

The changes in the (bf, b-) are 0.1 dB power changes. 
Results (4.13) show that, for this case, uncertain- 

ties in upper and lower power setting of 0.1 dB, in 
modulation width of 1 Hz, and in the power shift 
measurement of 0.1 mHz give maximum bias uncer- 
tainty (accuracy) of less than 8.8 mHz, or fractionally 
less than 0.8 x 10-13. These levels of experimental 
control are considered feasible. 



M'c: now coneidor t h  offoot of an error in tho 
"power setting relativc to optimum powor" in t l i o  
dotormination of (e, 0. We suppose that &) (8)  cor- 
responds to a +4.1 dB power level ( i n ~ t e d  of 4.0 dB 
as assumed above). Rcsults oorreaponding to (4.8) are 
the following: 

2, (8-1) ex (cm) 

(P of 4.1 dB) 23500 0.0243 (4.14) 

from which we estimate bo= 23400 8-1. Using bo = 
23400 8-1, we obtain the distributions kp  (V), t2, ( V ) ]  
which give fitting errors analagous to (4.10) e$= 
0.0243 cm . 

ATo/N,q= 21/3 23000 0.0275 

24000 0.0318 

B (d- ss,) T"8 (cm) 
1 4 . 0 3 8  
2 -0.033 (4.15) 
3 -0.061 

Corresponding to results (4.13), using (ep, 62,) leads 
to the following uncertainty table: 

b+ ( 8 3  b- ( 6 3  YMOD (Hz) 
$087 11728 20 
37087 11728 21 
37087 11728 20 
37087 11594 20 
37515 11728 20 

v+- v- (Hi) d + ( m W  S((Uad) 

(4.16) 

-.0030 -7.86 62. 
--.0030 -7.93 65. 
-.0031 -8.28 90. 
-BO30 -7.84 61. 
-.0030 -7.52 24. 

These curves (ep, tP) are scarcely distinguishable from 
( e N ,  EN) shown in Fig. 11. Referring to the first lines 
of (4.13, 4.16), we see that the 0.1dB upper power 
level error leads to a bias change of less than 0.4 m&. 
The incremental changes in the remainder of (4.16) 
are the same a8 in (4.13). 

Finally, we check the effect of the smoothing 
parameter, using t1 = 10' (slight undersmoothing, 
see Figs. 9,10) instead of 5, = IO2. Results correspond- 
ing to (4.8) are the following: 

b (8-l) e$ (cm) 

(tl a.t io1) 23500 0.0225 (4.17) 

from which we estimate bo = 23700 s-l. Using bo = 
23700 s-1, we obtain the distributions [ec ( V ) ,  tc ( V ) ] ,  
which give fitting errors analagous to (4.10) : 

e: = 0.0218 cm 

y o / N E  = 2113 : 23000 0.0279 

24000 0.0231 

.+ 
B (90- d )  worst (cm) 

~~ 

1 0.034 
2 0.029 (4.18) 

Corresponding to results (4.13), using (ec, &) leads 
3 -0.055 

to the following uncertainty table: 

12. 

:17502 11878 30 
37602 11878 21 
37562 11878 SO 
37562 11742 20 
37997 11878 20 

o+- Y- (Hz) A+ (mHz) 
(4.19) 

6 (pad)  
--0.0030 -7.58 38. 
4.0030 -7.65 41. 
-0.0031 -8.00 65. 
4 .0030 -7.57 37. 
4 .0030 -7.26 11. 

From the first lines of (4.13) and (4.19), we h d  the 
error in choosing the smoothing parameter c1 distin- 
guishing Figs.7 and 8 is only 0.1mH.z. The figure 
sequence 5-9 and the eL values of (4.3) 6x the 
proper value of c1 a t  least within a factor of 10. The 
incremental changes in the remainder of (4.19) are 
again essentially the same as in (4.13). 

With those estimates, one can mite the bias error 
budget eatim&te for DS and cavity phase difference. 

Error Source -Error in 
A+ (mHz) 

1. Ramsey curve power 
level errors 

Upper level 0.03 dB 0.11 
Lower level 0.03 dB t O . O 1  

2. Computinglparameter 
errors 

N E =  3 t i 3  N E =  5 t0.10 
el factor of 10 0.10 
Truncations CO.10 

3. Bias experiment errors 
Nominal power reset' 0.03 dB .lo 
Upper level set 0.03 dB . I O  
Lower level set 0.03 dB < .01 

YM OD error 1 Hz .07 
Shift Measurement 
(v- Y-) error 0.1 mHz 0.42 

Total < 1.03 mHz 

The major source of uncertainty is the s l a  mea- 
surement itself. The above is, of course, for data re- 
lating to NBS-5. However, for other beam tubes me 
may expect no significant difference to this error 
analysis. 

V. Conclusions 
We have shown that the Ramsey resonance curves 

in atomic beam machines can be conceived as resulting 
from velocity-averaging of two distributions of velo- 
city, e ( V )  and 6 ( V ) ,  with their respective transition 
probabilities, Po (A, V ,  b, 6) and P, (A, V, b, 6) [see 
Eq. (2.12)]. 

I n  analysis and computer program are described 
which permit one to obtain e ( V ) ,  6 ( V ) ,  and a nominal 
power parameter bo from three (or more) carefully 

1 Ability to reproduce a previous power setting; e.g., the 
setting used in (1) above. 
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Table 1 

meaaured Ramscy resonance curves a t  power levels 
where ratios are known. The determination from the 
functions (e, l )  of bias errors due to second order 
Doppler shift, cavity p h w  difference and cavity 
pulling is described. 

The methods are applied to the NBS-5 frequency 
standard. Error estimates indicate that it is feasible 
by microwave power shift measurements to evaluate 
the total bias error due to the above to within 
1.0 MHz, or 1.(10)-ls yo. 

Hellwig for his valuable suggestions and encouragement. 
VI. AcM&eme&.  The author wishes to thank Helmut 

Appendix 
Calculation of the transition probability follows 

Ramsey's formulation ( [6 ] ,  V. 29 to V. 37, V. a), 
except that in Eqs. V. 29 and V. 30 which refer to the 
first cavity, we use a, and O,, (depending on bl) ,  
while in Eq. V. 34, which refers to the second cavity, 
we use a, and 0,. We obtain analogous to V. 34: 

C, (2 t + 5") = $ 2 (k, + mu e'" T+ d))ei lq 

where the sum is over the four terms obtained from 
8,= +_ 1, e,= f 1, with 

k, = s, sin 8, (1 + s, cos 8,) 
mq = s1 sin 8, (1 - s2 COS 8,) 
z Q = Q t ( s l a , + s , ~ , ) .  

From this, the transition probability P is readily 
expressed as a weighted sum of cosines. Expanding 
this sum to first order terms in E,  and E, leads directly 
to Eqs. (2.2,2.3) with the coefficients of Table 1. 
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