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Abstract. Using the recently completed JILA 2. The Instrument

absolute gravity meter, we made an absolute
gravity survey which covered 12 gites in the
United States. Over a period of 8 weeks, the
instrument was driven a total distance of nearly
20,000 km to sites in California, New Mexico, is allowed to fall freely inside a vacuum cham-
Colorado, Wyoming, Maryland, and Massachusetts. ber. By accurately measuring the arrival times
The time spent in carrying out a measurement of a subset of the interference fringes, the ac-
at a single location was typically 1 day. A celeration of the falling object is calculated.
measurement accuracy of around 1 x 1077 m/s2 This provides a measure of the local acceleration
{10 pGal) is believed to have been obtained at due to gravity in terms of the laser wavelength
each of the sites. and the frequency of the rubidium standard, which
is used in the timing electronics.

To minimize nongravitational forces on the
falling object, it is surrounded by a servocon-
trolled motor—driven chamber which moves vertical-
ly inside the main vacuum system. The dropping
chamber effects the release of the falling object
and then tracks it (without physically coming in-
to contact with it) during the measurement. As a
result, the falling corner cube 1s shielded from
drag due to the imperfect vacuum. The falling
chamber also provides an electrically conducting
shell surrounding the dropped object so that ex-
ternal electrostatic fields do not affect the
measurement. In addition, the purely mechanical
character of the release removes the necessity
for having any sort of magnetic support or re-
lease mechanism that night resunlt in a residual
magnetic force during the measurement.

At most sites that were visited, the entire
operation of unloading, assembling the instru-
ment, acquiring the data, disassembly, and re-

Figure 4 illustrates the principle of the in-—
strument 's operation. A Michelson interferometer
determines the position of a cormer cube, which

1. Introduction

We have recently completed an absolute gravity
survey at 12 sites in the United States (see Fig—-
ures 1 and 2). Eight sites had been previously
occupied by other absolute instruments, and four
were new sites chosen because they were near lo-
cations in which other measurements relevant to
the study of geodynamics were made.

The new instrument (see Figure 3), described
elsewhere in detail [Zumberge et al., 1982;
Faller et al., 1979], consists of a freely fall-
ing corner cube reflector whose downward accel-
eration is measured interferometrically with
a stabilized He-Ne laser. This technique for
making gravity measurements has been used suc-
cessfully by several other researchers [Arnautov
et al., 1979; Cannizzo et al., 1978; Faller,
1965; Guo et al., 1983; Hammond and Faller, 1967;
Hammond and I1iff, 1978; Murata, 1978; Sakuma,
1974}, We have made a considerable effort to
minimize the size and complexity of the instru-
ment to facilitate its rapid deployment without
sacrificing accuracy. In our recently completed
survey, which was the instrument's first trial
involving a series of successive measurements at
a nymber of different locations, an accuracy of
100" m/s2 (10 pgal) is believed to have been ob-
tained while the necessary site occupation time
was generally less than 1 day.
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Fig. 3.
Denver site.

Normally, the large dewar (seen in
foreground) 1is left ia the truck.

loading required less than 1 day. The vacuum
chanber was pumped continuously, even during
transport in a small truck. This eliminated the
pump~down time that would otherwise have been
necessary preceding each measurement. At three

. sites, mechanical problems inside the dropping

chamber needed attention, and as a result, the
vacuunm was lost. This usually meant an overnight
delay to obtain a good vacuum after the problem
was corrected.

When no such difficulties were encountered,
the operation proceeded smoothly and rapidly.
After unloading, two half-racks of electronics
~cntaining all of the necessary data acquisition
and control electronics were connected and in-
terfaced with the mechanical components, which
included an interferometer base, a long-period
isolator {Rinker and Faller, 1983}, and an evacu-
ated dropping chamber. These three components
required ninimal mechanical alignment. Under
no mal conditions, the time needed to get the in-
strument setup and running was 2 hours. Although
gravity data were available immediately following
the instrument's assembly, thev were generally
rejected because of known instrumental biases
that can result from temperature transients. To
insure quality gravity measurements, the instru-—
ment had to remain passive for an hour or so
after its initial setup and testing. During this

time,the laser, the lang-period isolator, and
the pressure in the vacuum chamber equilibrated
with the new temperature environment.

7499

The period over which actual measurements were
taken varied among the sites from several hours
to as long as 1 day. Since a data set of 150
drops can be taten in 10 min, the statistical
uncertainty is cutweighed by systematic effects
after a few hours of measurements. Disassembly
and reloading required approximately 1 hour, as
did the transfer of the absolute value from the
measurement height to the floor using a relative
gravimeter.

3. Results

Table 1 lists the results from the absolute
gravity survey. Included in this list are
earlier data from two measurecents at a site in
Denver, Colorado, and the original measurements
from our lab at JILA. The result from one of the
12 sites, Great Falls, Montana, has been omitted.
Floor motions at this-site, evidenced by analysis
of both the long-period isolator signal and time
shifts related to the dropped object's position
in its fall as well as other unfavorabhle charac-
teristics of the surroundings resulted in a mea-
surement uncertainty that we believe is at least
an order of magnitude larger than obtained else-
where.

The uncertainty stated for each site is a one
sigma estimate of the absolute accuracy based on
a root summed square incorporation of four terms.
The first is a 4 x 1078 w/s? (4 pGal) uncertainty
from .nstrumental effects which include nongravi-
tational forces, optical path effects, and timing
accuracy. The second term is a 5 x 1078 m/s2
(5 pGal) uncertainty from possible errors in the
laser wavelength. Apalysis of the data to date
indicates that the laser we used in the March
1982 Denver measurement and the Kresge lab mea-
surement may be the source of a 1 to 2 x 107
m/s? (10 to 20 uGal) systematic error. Results
from these sites have accordingly been assigned
larger uncertainties.

The next term in the uncertainty comes from
the transfer done with a relative gravity meter
from the effective absolute measurement height
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Fig. 4. Schematic of absolute gravimeter.
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. TABLE 1. Gravity Values Transferred to the Floor
Result, Uncertainty, Gradient,
Date Site m/s? 10-8 B n/s? 106 /52
(108 pGal) (uGal) (uGal/cm)
April 4-10, 1981 JILA 9.79 608 562 7 2.39
May 2-4, 1981 JILA 9.79 608 569 6
June 6-12, 1981 JILA 9.79 608 566 7
July 1-6, 1981 JILA 9.79 608 573 7
Dec. 1i-15, 1981 JILA 9.79 608 569 10
Feb. 1-25, 1982 JILA 9.79 608 557 12
April 14-15, 1982  JILA 9.79 608 573 9
Dec. 16-17, 1981 Denver 9.79 598 322 12 2.92
March 1, 1982 Denver '9.79 598 302 12
March 21, 1982 Holloman AFB 9.79 139 615 8 2.99
March 26, 1982 Vandenberg AFB 9.79 628 137 9 3.44
. March 27, 1982 Lick Observatory 9.79 635 503 9 4.42
March 29, 1982 Owens Valley 9.79 444 410 8 2,93
April 1, 1982 Kresge Lab 9.79 560 457 13 2.65
April 7, 1982 Pinyon Flat 9.79 284 081 11 2.88
April 9, 1982 Goldstone 9.79 444 216 9 2.47
April 16, 1982 Sheridan 9.80 208 952 9 2.58
April 28-29, 1982 NBS, Gaithersburg 9.80 103 259 9 3.25
Hanscom AFB, AFGL  9.80 378 697 8 3.07

May 1, 1982

The JILA results differ slightly from previously published values because
a more recent gradient measurement has been used in the transfer to the floor.

of 1.1 m to the site floor. This 5 x 1078 n/s?
(5 pGal) contribution is a pseudoerror in cases
where the data will be used to look for changes
in gravity with time using the same instrument
because subsequent measurements will be done at
the same height. It also exaggerates the overall
error when comparisons are made with results from
other absolute instruments, since the effective
measuring heights are usually comparable. Never-
theless, this error term has been included be-
cause it is a valid source of uncertainty when
the absolute data are used in conjunction with
relative gravity surveys whose measurements here-
tofore have been made at the floor level.

The last term used to calculate the uncertain-
ties in Table 1 is the statistical error based on
the random scatter in the measurements at a par-—
ticular site. The statistical uncertainty or
standard error E is calculated from

E = g//N=1

where g 1s the standard deviation in the results
of sets of 150 drops and N is the number of data
sets taken; g varies among the sites from 4 x
1078 /52 (4 pGal) to 1.5 x 1077 m/s? (15 puGal),
and N ranges from 5 to 22,

4, Discussion

It should be noted that uncertainties from in-
strucental effects are based on the exhaustive
search made in our JILA laboratory for systematic
errors. The environments encountered at some of
the sires were less favorable than that of the
laboratory. This was especially true in regards
to temrcerature stability. Temperature transients
are known to cause temporary shifts in the mea-

... sured value of g when the temperature changes are

Our feeling is that an overall uncertain-
ty estimate of around 1 x 107/ m/s2 (10 pGal)

at each of the sites is reasonable. However,
only through a continued program of instrumental
evaluation, both in the lab and in the field, can
this estimate of the accuracy be substantiated.

Only two sites have been visited more than
once by the JILA absolute gravity meter: the JILA
lab in Boulder and the absolute site in Denver.
The two Denver measurements disagree by 2 x 1077
n/s? (20 pGal) and are separated in time by only
2.5 months. The disagreement is close to a sig-
nificant level and is probably due to errors in
the particular laser used that have subsequently
been identified.

Data gathered over a year's time from our lab-
oratory site provide an indication of the instru-
ment's long-term stability. Figure 5 is a plot
of gravity averages in our lab. Over the I-year
period in which these data were obtained, the
apparatus was repeatedly disassembled, modified,
and transported (in one case, to another conti-

rapid.
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TABLE 2. Intercomparison Results of Absolute Gravity Measurements

JILA AFGL IMGC
1981 1982 1979 1980 1977 1980
Holloman AFB
Result, cm/s? 979. 139 615 979. 139 600 979. 139 600 979. 139 584
Date March 21 July 6 May 14 and 31 June 2-3
Gradient, uGal 2.99 2.85 2.85 3.14
g-g h=1 m +12 +11 +11 -34
Vandenberg AFB
Result, cm/s2 979. 628 137 . 979. 628 190
Date March 26 June 3-4
Gradient, pGal 3.44 3.21
g-g h=1 m -38 +38
. - Lick Observatory

Result, cm/s2 979. 635 503 979. 635 503 -
Date March 27 June 6-8
Gradient, uGal 4,42 4,15
g-g h=1 m ~-13 +13

JILA
Result, em/s? 979. 608 568 979. 608 565 979. 608 585 979. 608 498
Date April-Dec. Feb.-April Oct. 18-23 May 26-27
Gradient, pGal 2.39 2.39 2,28 2.32
g-g h=l m +10 +6 +38 ~54

Sheridan

Result, cem/s? 980. 208 952 980. 208 912 980. 208 964 980. 209 007
Date April 16 July 18-19 Oct. 13-16 June 12-14
Gradient, uGal 2.58 2,32 2.44 2.56
g-Z h=1 m -17 =31 +9 +40

NBS
Result, cm/s? 980. 103 259 - 980. 103 257
Date April 28-29 March 13-14
Gradient, uGal 3.25 3.25
g-g h=1 m +1 -1

AFGL
Result, cm/s2 980. 378 697 980. 378 685 980. 378 685 980. 378 659
Date May 1 2 yr ave. 1 yr ave. Oct. and Dec.
Gradient, uGal 3.07 2.97 2.97 3.02
g-g h=1 m +17 +5 +5 -26

Denver
Result, cm/s2 979. 598 322 979. 598 302 979.598 277 979. 598 268
Date Dec. 16-17 March 1 April 27-29 Oct. 16-19
Gradient, nGal 2.92 2.92 2.92 2.94
g-g h=l m +30 +10 -15 -25

Each entry consists of the reported floor value in Gal without a Honkasalo correction
[Honkasalo, 1964], the date of the measurement, the gradient in uGal/cm used to transfer to the
floor from the effective measuring height of the particular instrument, and a comparison term in
uGal. The comparison term was calculated by transferring all of the values to the nominal height
of 1 m using the reported gradients and then differencing each result from the mean of all the
adjusted results at that site. This decreases the contribution to the discrepancies from
differences in the measured gradients. AFGL's value at JILA is transferred to the common site
using —16 pGal. JILA's value at AFCL is transferred to the common site using -28 pGal. The AFGL
gradient was used in transferring this value to the l-m nominal height.

nent and back). The standard deviation of these Table 2 coczpares the results obtained bv
averages is only 6 x 1078 (6 pGal). This high the JILA instrument with those of the Air Force
degree of repeatability indicates that the prob- Geophysics Lahoratorv (AFGL) and the Istituto di
lem of drift that is almost always present in Metrologia "G. Colonnetti™ (IMGC) [Yarson and
relative gravity meters is not present in the .. Alasia, 1978, 1980]. All three instruments re-

absnlute meter. port typical accuracies of 1x1077 m/s2 (10 pCGal),
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so most of the intercomparisons between any two
fustruments should agree within about 1.4 x 1077
/52 (14 pGal). This is true at some sites but
sot at others. Some of the differences could be
due to real gravity changes because simultaneous
measurements have rarely been made. Our method
of transferring the measured values to a common
reference height of 1 m could also contribute
slightly to the calculated differences, but we

do not have enough gradient data to compute the
transfers in any better way. It is more likely,
however, that the discrepancies are due to sys-
tematic errors in one or more of the instruments
that are as yet unrecognized. The results of the
AFGL instrument have been biased by some 8 x 1077
mn/s?2 (80 pGal) since February 1981 due to unknown
reasons (J. Hammond, personal communication,
1982), so the comparisons made with that instru-
ment since that date have been omitted.

Compared with both the IMGC and the AFGL in-
struments, the JILA instrument is in its infancy.
However, the rate with which it can acquire data
is sufficiently high that a large number of ex-
periments have already been done with it to de-
tect systematic errors and to date we have found
no error sources that could account for the dis-
crepancies seen at some of the sites.

5. Conclusions

Because of its sensitivity to both vertical
position and mass distribution, gravity data can
provide a powerful and unique contribution to the
ztudy of crustal dynamics. In the past, inadequa-
cies in the long-term stability of existing rela-
tive gravity meters and the difficulties involved
with transporting and operating absolute gravity
meters have raised questions concerning their use-
fulness to investigations of tectonic motions.

The success of this survey with the JILA absolute
gravity meter, however, demonstrates that the ac-
curacy needed to detect small changes in gravity
resulting from tectonic motions is now available
in an easily portable and durable type of appara-
tus.
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