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F o r  centuries, people living along coastlines have noticed the diurnal and 
semidiumal fluctuations in the height of the sea. 

The connection between the moon and these tides was obvious, and, even 
before the formulation of any theory, quite satisfactory predictions of the ocean 
tides were published. Tidal tables were constructed by various undivulged 
methods, and these methods were often passed from father t o  son. 

I t  was less widely appreciated that the earth itself i s  subjected t o  tidal 
stresses and undergoes tidal deformations. I t  is the purpose of this paper to  
investigate these tidal stresses and t o  see how the deformations may be measured. 

The origin of the tides 
I t  is customary to  discuss tidal effects in terms of a tidal potential, but we 

can also derive the essential features using the force laws alone. 
We suppose initially that the moon is fixed directly over the earth’s 

equator and that the moon does not move (Fig. 1). We imagine the earth t o  be 
made u p  of a large number of point masses bound together. From Newton’s law 
of gravitation, we find that each point of the earth is attracted t o  the moon by a 
force given by 

F = GMm Jr2 
where G is a constant, M is the mass of the moon, m is the mass of the point, 
and r is the distance from the moon t o  the point. This force is always attractive 
as is shown in the figure. 

I t  is useful to  break these forces into two parts: a constant attractive force 
acting a t  the center of mass of the earth and a differential force which varies 
from point t o  point. The constant force is simply the gravitational attraction of 
the moon and the earth considered as point objects, while the differential force 
arises from the fact that different parts of the earth experience attractions of 
different magnitudes and directions. 

I t  is the constant force that binds the moon and earth together. An ob- 
server on the earth detects this force by observing the orbits of the moon and 
the earth. However, this force is the same for all parts of the earth and produces 
n o  internal stresses (we are neglecting small effects such as the stress induced 
in the earth by the variation of the centripetal acceleration from point t o  point). 

Since the differential force changes from point t o  point, it  induces stresses 
in the earth, and it is these stresses that are responsible for the tides both in the 
oceans and in the solid earth. These forces are shown in Fig. 2. The side of the 
earth closest to the moon experiences a greater attraction than the average force 
at the center of mass, and the differential force is attractive. The side opposite 
the moon experiences a force weaker than that experienced by the center of 
mass, and the differential force therefore points in the opposite direction. The 
differential forces along a line perpendicular to  the earth-moon axis have mag- 
nitudes that are comparable t o  the magnitude of the average force, but since 
their directions converge on the moon, they have components that point in- 
wards towards the center of the earth. 
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Fig. 1. A simple model of the interaction between the earth and the 
moon. The moon is assumed to be stationary in the earth’s equa- 
torial plane. The view is that of an observer located in space above 
the North Pole. The gravitational attraction at several points is 
denoted by the arrows. 

The detailed evaluation of the variation of the force 
from point t o  point depends on  the inverse square nature of 
the gravitational interaction. Since Coulomb’s law is also 
inverse square in nature, we expect that the tidal inter- 
action is analogous t o  electrostatic polarization when only 
one type of charge is present in an extended body placed in 
a nonuniform electric field. 

The forces shown in Fig. 2 would tend t o  deform the 
earth into a shape indicated schematically and with great 
exaggeration by the dotted line. As the earth rotates on  its 
axis, the deformation remains always pointed a t  the moon. 
From the point of view of an observer o n  the earth, a given 
point would trace out  the dotted curve once per day and 
hence every point on the earth would see two tidal peaks 
per day: one when the moon was at  its zenith and a second 
peak twelve hours later. 

The tidal deformation shown in Fig. 2 varies with 
latitude. The compression of the earth along a line perpen- 
dicular t o  the earth-moon axis in the equatorial plane is 
accompanied by a compression along the rotation axis of 
the earth (i.e., along a line connecting the North and South 
Poles). This axis is perpendicular t o  the plane of the figure. 
At the instant of time depicted in the figure, observers a t  
points A and B are displaced outward from the center of 
the earth, while those at  C and D are displaced inward. 
Observers a t  the North or South Poles would also be 
closer t o  the center of  the earth. Since the tidal distortion 
is positive on the equator and negative at  the poles, there 
must be a latitude where it is zero. Likewise, since it is 
positive directly under the moon and negative along a line 
perpendicular t o  this direction there must be a longitude 
where the distortion is zero. 

The moon is, in fact, rarely over the equator. Al- 
though this fact does not alter the tidal bulge from the 
point of view of an observer on the moon (who, in this 
simple model, always sees a cigar-shaped tidal bulge pointed 
straight a t  him), it  greatly changes the tidal deformation as 
measured by an observer on  the surface of the earth. 

If the moon is over the Northern Hemisphere, for 
example, an observer in the Northern Hemisphere will see 
a larger tidal deformation when the moon is a t  its zenith 
than twelve hours later since the latter deformation will be 
decreased by the latitude effect (twelve hours later the line 
joining the earth and the moon intersects the observer’s 
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E A R T H  MOON I 
Fig. 2. The gravitational forces acting on the earth due to the moon 
after a constant force equal to the force acting at the center of mass 
has been subtracted. The dotted line shows the general shape 
(exaggerated) of the distortion produced by these forces. The earth 
is deformed with points A and B moving away from the center of 
the earth and points C and D moving closer. The view is that of an 
observer situated above the North Pole. 
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Fig. 3. The distortion induced by the moon when it is not exactly 
in the equatorial plane. The axis of rotation of the earth,is vertical. 
An observer at latitude A sees a tidal distorticjn A - A when the 
moon is overhead and a smaller distortion B - B twelve hours later. 

side of the earth in the Southern Hemisphere). (See Fig. 3.) 
This observer would conclude that a diurnal component is 
also present. This diurnal component augments the semi- 
diurnal distortion when the moon is near the zenith and 
diminishes the distortion twelve hours later. These two 
components have a constant phase relationship and both 
reach their maxima at  the same time (in this model). This 
situation is shown in Fig. 3 .  An observer a t  position A on  
the earth measures the tidal distortion t o  be A - A’ when 
the moon is a t  its zenith. Twelve hours later he measures 
the much smaller tidal distortion B - B’. 

The analysis we have done for the effect of the moon 
must be done for  the effect of the sun as well. If we assume 
a sun fixed at  one point in space over the equator, the 
conclusion is exactly the same as in the lunar case. The 
sun produces a tidal bulge that points along the earth-sun 
axis. From the point of view of an observer on the earth, 
this tidal bulge appears to rotate producing two tidal peaks 
per day. The tidal deformation will depend o n  the latitude 
of the observer just as in the lunar case. When the sun and 
the observer are not a t  the equator, there will be a diurnal 
solar distortion as well. 
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I t  is not too  difficult t o  show that the greater mass of 
the sun is more than offset by its greater distance so that 
the solar tidal effect is somewhat smaller than the effect 
induced by the moon. The tidal distortion is produced by 
the variation in the gravitational attraction, and we can 
estimate the magnitude of the effect in the simple situation 
of Fig. 2 .  The difference between the gravitational attrac- 
tions at  points A and B is simply 

A F =  F A  - F ,  = GMm ( l / r A 2  - 1/rB2) 

where G is the gravitational constant, M is the mass of the 
tide-generating body and m is the mass of a point on  the 
earth a t  A or B. The distances between the tide-generating 
body and the points A and B are rA and r g ,  respectively. 
The difference may be approximated by 

AF = 2GMm(D/R3) 

where D is the diameter of the earth and R is the mean 
distance from the earth to  the tide-generating body. The 
tides generated by different sources are proportional to  
the quantity M / R 3  which is approximately 1.16 x 1 O6 kg/m3 
for the moon; the corresponding value for the sun is ap- 
proximately 6 x 1 Os kg/m3 or about one-half of the lunar 
value. 

The tidal distortions produced by other bodies in the 
solar system are negligible. 

The effect of orbital motion 
Our simple model becomes more complicated when 

we include orbital motions. The orbital motion of the earth 
and the moon cause the axes of the tidal deformations to  
rotate in space. From the point of view of an observer 
measuring time with respect to  the stars (sidereal time), 
the orbital motions introduce phase modulations on the 
simple diurnal and semidiurnal effects. 

In addition to  these phase modulations, there are 
amplitude modulations produced by the changing distances 
between the moon, the earth, and the sun since the orbits 
are elliptical. 

Finally, the apparent latitudes of both the moon and 
the sun change with time, and this results in a variation of 
the ratio of the semidiurnal and diurnal amplitudes. This 
variation depends on the latitude of the observer. 

The effect of these amplitude and phase modula- 
tions is generally expressed as a Fourier expansion of the 
tidal time series into its constituent frequency components; 
we can understand the general conclusion from a simple 
model, however. 

If the amplitude of a tidal constituent varies with 
time, the resultant time series is expressible as a product of 
two sinusoidal functions: the first giving the time depend- 
ence of the amplitude and the second giving the time 
dependence of the force. A product of two sinusoidal 
functions is always expressible as a sum of two sinusoidal 
functions: one with a frequency equal to  the sum of the 
frequencies of the tidal term and the amplitude variation 
and one with a frequency equal t o  the difference. (This 
effect is termed amplitude modulation and is well known in 
radio transmission.) Although it is more difficult t o  prove, 
a periodic modulation of the phase of a sine wave produces 
the same sort of sidcbands: one a t  the sum of the frequen- 
cies and one a t  the difference. The amplitudes of the tides 

change slowly with time; the characteristic periods are the 
lunar month and the solar year. Since both of these periods 
are much longer than a solar day, the resultant sum and 
difference frequencies differ by only small amounts from 
the nominal of once per day and twice per day of the 
simple theory. 

The zctual orbits of the earth and the moon also have 
longer-period effects such as the precession of the equi- 
noxes, etc. Each of these effects produces an amplitude or a 
phase modulation of the tides; each is handled in the same 
way. 

When we consider all of these modulations, we obtain 
a series of sidebands superimposed on the simple two-line 
spectrum (f = l/day and f = 2/day), and we are led to 
expect a cluster of frequencies or sidebands near one 
cycle/day and a cluster near two cycles/day. In both cases 
we would expect a series of sideband frequencies offset 
from the basic diurnal and semidiurnal frequencies by 
sums and differences of the various orbital periods. In 
fact tidal frequencies are often specified by a six digit 
“Doodson number.” The Doodson number is simply a 
prescription for expressing the frequency as a linear combi- 
nation of the basic orbital parameters. 

Since the orbits of the earth and the moon change 
slowly with respect to  the basic tidal period of one day, 
the tidal sidebands d o  not  differ greatly from their nominal 
frequencies of one cycle per day and two cycles per day, 
and the simple statement that the basic tidal periods are 
twelve hours and twenty-four hours is not grossly incorrect 
for short periods of observation. 

A more exact theory 
The simple model outlined above accounts for the 

major features of the tidal excitation function. There are, 
however, higher-order effects that are significant. They are 
more easily discussed using the tidal potential which is 
a scalar rather than the tidal force which is a vector. (The 
tidal potential difference between two points is simply the 
work done on a unit mass by the tidal force in moving the 
mass between the two points.) 

It is also inconvenient to  express the generating 
function in terms of the distance between the moon (or  
the sun) and the point of observation. The position of the 
observer is most easily specified in terms of latitude and 
longitude; the position of the moon is usually specified in 
terms of a spherical coordinate system using two angles and 
a distance. If we use the center of the earth as the origin 
of these two systems (one to  locate the observer and the 
second to  locate the moon), we can express the distance 
from the moon t o  the observer as a power series in a/R, 
where a is the radius of the earth and R is the radial dis- 
tance t o  the moon. The coefficients of the terms in the 
power series are called multipole moments. They are poly- 
nomials of sines and cosines of the angular positions of the  
observer and the moon. 

The multipole expansion is convenient because it 
separates the coordinates of the observer from the co- 
ordinates of the moon so that the lunar part of the calcula- 
tion need be done only once for all observers; the lunar 
part is relatively easy t o  calculate using known astronomical 
constants. Successive terms in the expansion involve higher 
and higher powers of a / R .  This quantity is about 0.02 for  
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the moon so that the series converges quickly and only a 
few terms are usually needed. 

The first term in this expansion is exactly the con- 
stant attractive force discussed in the first section. The 
next term (the “dipole” term in the analogous electrical 
expansion) is zero since the center of the earth is taken as 
the center of mass of the system in our model. From the 
point of view of the earth tides, the first term of interest 
is the second order term. This term describes a “quadru- 
polar” distortion of the earth whose shape is exactly the 
shape deduced above and outlined in Fig. 2. The radial 
part of this term varies as (I’ / R 3 .  We recognize this term as 
having the same radial dependence as the differential force 
we derived above. The next order lunar term is smaller than 
the quadrupole term by a factor on the order of 0.02 so 
that the quadrupole term accounts for roughly 98% of the 
total tide. The next order term is negligible for the sun. 

Although the quadrupole term accounts for most of 
the tide, the higher order terms in the expansion each have 
a component with a frequency of more than two cycles/day. 
These higher frequency terms are observable on many 
instruments. Each of these higher order terms also makes a 
contribution to  the diurnal and semidiurnal bands, and 
these contributions must be included in accurate computa- 
tions. Although these terms have almost the same frequen- 
cies as the principal diurnal and semidiurnal components, 
their dependence on latitude and longitude is different; 
their importance is therefore dependent on  the position of 
the observer. 

All of the terms in the multipole expansion also have 
long-period components. These are tides with periods 
longer than one day; the next largest component is usually 
the fortnightly tide. These long-period tides are usually 
masked by the larger diurnal and semidiurnal tides, but 
they are important when the shorter period components 
are very small (at the poles, for example). 

The tidal spectrum 
We see from the more exact theory that the tidal 

spectrum is extremely rich. Tables of tidal harmonics have 
about 400 entries, although many of these terms are quite 
small and are often combined with nearby larger terms. 
Tidal analyses usually require approximately 3 0 frequency 
bands to  deal with data series about one year long. More 
terms must be used for longer time series. 

The response of the earth 
The tidal stresses discussed above act on  the oceans 

and on the solid earth. The response of the earth (measured 
as the distance A - A’ of Fig. 3,  for example) is smaller 
than that of the ocean but, in our current linear approxima- 
tion, has the same spectrum. In order to calculate the 
deformation of the earth we must know its elastic proper- 
ties. Alternatively, we can use the observed deformation to  
calculate the effective elastic moduli of the earth. 

We may characterize the response of the earth in 
terms of the “equilibrium tide.” The tidal forces cannot 
move the center of mass of the earth-moon system. We 
have taken the center of mass to  be located at  the center 
of the earth, and displacements are measured from that 
point. Relative displacements are measured from the 
position of a point in the absence of tidal effects. 

We imagine a point on the surface of the earth in 
equilibrium under gravitational forces. As the moon passes 

Fig. 4. A schematic diagram of a gravity meter. The local accelera- 
tion of gravity can be determined by measuring the displacement 
produced when a known mass is suspended from a spring of known 
force constant. 

overhead, the point experiences an additional force due to 
the moon’s gravitational attraction. If the particle moves a 
distance h towards the moon, the work done by the addi- 
tional force is mV, where m is the mass of the particle and 
V is the difference in the tidal potential between the two 
end points. This work increases the gravitational potential 
energy of the particle by mgh, where g is the local accelera- 
tion of gravity. Since the particle is always in equilibrium, 
these two changes must be equal: 

mgh = mV 

so that the height h is given by 

h = V/g 

This quantity has a magnitude of about 30 cm. (Note that 
V is the tidal part of the potential - not the entire poten- 
tial. Apart from constants and angular factors, its mathe- 
matical form is a’ / R 3  - a form that we recognize as having 
the same radial dependence as the differential force.) The 
vertical displacement due to  the earth tides will be smaller 
by a constant factor derived from the elastic properties of 
the earth and reflecting the fact that the solid earth is not 
bound by purely gravitational forces. This constant is 
usually called Love’s number h ,  and its average magnitude 
is about 0.62 for the main (i.e., quadrupole) tidal term. 

Tidal instrumentation 
Although the tidal deformation described above 

could in principle be measured directly (using astrometric 
methods, for example), this is not commonly done since 
the effects are quite small. The tides are usually observed 
using three types of instruments: gravity meters, tilt 
meters, and strain meters. Any one of these can be used to  
study the tides, but each responds in a different way to  the 
tidal potential. 

The gravity meter 
A gravity meter measures the local acceleration of 

gravity. We may imagine a prototype gravity meter as a 
mass on a spring as shown in Fig. 4. The m a s  must be in 
equilibrium under the action of two forces: the downward 
force due to the pull of the earth and the upward force 
provided by the stretched spring. The pull of the earth has 
the magnitude mg, where m is the mass of the particle and 

T H E  PHYSICS TEACHER DECEMBER 1982 591 



g is the local acceleration of gravity. If the spring is stretch- 
ed by a distance x ,  the force due to  the spring on  the mass 
has the value k x ,  where k is a constant characterizing the 
stiffness of the spring. If the mass is t o  be in equilibrium, 
the sum of the forces must be zero so that the two forces 
must be equal in magnitude. Thus 

kx = mg 

so that the local acceleration of gravity can be measured in 
terms of the extension, x ,  the spring constant, k ,  and the 
mass m : 

g = k x / m  

When an instrument of this type is placed on the 
surface of the earth it responds to  the tidal potential in 
three ways: 

1. There is a direct attraction between the mass and 
the tide-generating body (e.g., the moon). When the moon 
is overhead this effect raises the mass thereby decreasing x 
and reducing the apparent value of g. 

2.  The earth on which the instrument is mounted 
deforms as shown schematically in Fig. 2.  The instrument 
moves further away from the center of the earth. This 
motion reduces the gravitational attraction of the earth 
and augments the direct effect described above. This 
motion is proportional to  the Love number h discussed 
above. 

3. The deformation of the earth produced by the 
tidal potential moves some of the outlying mass of the 
earth more nearly under the gravity meter. This tends t o  
increase the density of the material under the instrument 
and therefore t o  raise the local gravitational potential. 
This effect is opposite in sign to  the first two effects. This 
effect is usually characterized in terms of a second Love 
number, k .  Its magnitude is about 0.31. (The modification 
of the tidal response due t o  the change in the gravitational 
potential of the earth is not  limited t o  the tides in the 
solid earth. I t  occurs in the ocean tides as well.) 

We would expect all of these terms t o  be proportional 
to  the applied potential, and the effects are customarily 
lumped into a “gravimetric factor” relating the applied 
potential deduced from the astronomy t o  the measured 
change in gravity. The gravimetric factor must be a function 
of the Love numbers defined above. An exact calculation 
shows that the gravimetric factor for the quadrupolar tide 
is given by 

1 + h  - 1.5k 

which has a magnitude of about 1.16. In the customary 
definition, the Love numbers are dimensionless. The 
potential is likewise expressed in a dimensionless way as 
the equilibrium tide divided by the radius of the earth or 
V/ga .  This quantity is about 200 microgals (a microgal is 
a unit of acceleration equal t o  one cm/s2 1. 

If the reason for measuring the earth tides is t o  study 
the elastic response of the earth, then it is clear that a 
gravity meter dilutes the desired signal with a direct attrac- 
tion that turns out  to  be the dominant effect. Thus to  
achieve the same accuracy in the measurement of the 
elastic properties of  the earth, a gravity meter must have a 
significantly higher signal-to-noise ratio than a strain 
meter, for example ( t o  be described later). A detailed 
calculation shows that a gravity meter must be roughly six 

I I 
Fig. 5. A gravity meter with increased sensitivity. The point A is in 
equilibrium under the action of the tension in the bar, the pull of 
the spring and the weight of the mass as shown on the right. When 
the acceleration of gravity changes, point A will move up or down 
so as to keep the sum of the forces equal to zero. 

times better than a strain meter t o  achieve the same accura- 
cy in the determination of the earth’s contribution to  the 
earth tide signal. This factor of six is not a constant; it 
depends on  the location of the instruments and on the 
azimuth of the strain meter as discussed below. 

Practical gravity meters are not very different from 
the prototype instrument shown in Fig. 4. Their design is 
governed by several constraints: 

1. The instrument shown in Fig. 4 is sensitive to  
changes in temperature, and these changes will change the 
length of the spring exactly as a change in gravity would. 
Thus gravity meters using mechanical suspensions are 
usually operated in controlled-temperature environments. 

2. The sensitivity of the instrument is limited by the 
sensitivity of the device used t o  measure the change in the 
equilibrium position. This change is in turn inversely pro- 
portional t o  the stiffness of the spring (the constant k ) ,  
and high sensitivity implies a very weak spring. Weak 
springs tend to  be fragile and they also tend to  be very 
long since the equilibrium position of the mass is deter- 
mined by the requirement that the restoring force of the 
spring ( k x ,  where x is the stretch) must be equal to the 
downward force of gravity ( m g ,  where m is the mass). 

Several ingenious mechanical arrangements have been 
devised to  support a rather large mass on a very weak 
spring. One such arrangement is shown in Fig. 5 .  Point A 
is in equilibrium under the action of the weight of the mass 
(mg,  downward), the compression in the beam ( T ,  hori- 
zontal) and the restoring force of the spring ( k x ,  at  a slight 
upward angle). The weight must be supported by the spring 
since the beam is horizontal. If the weight changes slightly 
(due to  a change in the acceleration of gravity), the new 
weight must be balanced by a change in the tension in the 
spring. This in turn requires the spring t o  change its length. 
Because of the geometry, the length of the spring changes 
very slowly as point A moves upward or downward so that 
small changes in the acceleration of gravity result in large 
displacements of the point A. The result is a mechanical 
reduction in the effective stiffness of the spring for changes 
in gravity. 

Mechanical gravity meters typically have sensitivities 
of a few microgals. A good instrument might show a drift 
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of a few microgals per day. The drift is reasonably constant 
with time, so that it is usually possible t o  remove it using 
linear regression analysis. 

Several nonmechanical gravity meters have been 
developed. One type of instrument measures the accelera- 
tion of gravity by determining the time it takes an object 
to  fall through a series of known distances. The “object” 
is actually a part of a laser interferometer. The distances 
are measured in terms of the wavelength of light; the fall 
times are measured using precision frequency standards. 
Devices of this type are able t o  measure the acceleration of 
gravity with an uncertainty of a few microgals. Although 
this corresponds t o  a fractional uncertainty of only about 
0.01 ppm in the value of g, it results in uncertainties of a 
few percent in the earth tides. Since the total elastic contri- 
bution (that part of the tides produced by the earth and 
not  the direct attraction on  the sensing mass) is on  the 
order of 16%, such instruments cannot tell us much about 
the elastic properties of the earth. 

A second type of nonmechanical gravity meter uses a 
superconducting ball magnetically suspended in a con- 
tainer of  liquid helium. The currents used for the suspen- 
sion flow in superconductors and are very stable in time. 
These currents play the same role as the spring in a con- 
ventional instrument; the position of the mass must be 
sensed using some ancillary system. Typical readout 
systems use the change in the capacitance between the 
levitated mass and its surroundings as an indicator of the 
change in the position of the mass. 

Instruments of this type show great promise for 
improving our understanding of the tides. Published results 
have shown earth tide measurements with uncertainties of 
0.01% in the determination of the amplitudes of the 
largest semidiurnal components. 

The tilt meter 
A tilt meter measures the angle between the normal 

t o  the earth’s surface and the acceleration of gravity. We 
may imagine a tilt meter as a pendulum on a support as 
shown in Fig. 6 .  As with a gravity meter, the tilt meter 
responds t o  the direct attraction as the tidal body passes 
overhead. There is also an effect produced by the motion 
of the support as the earth deforms. These two effects are 
again lumped into a “gravimetric factor” relating applied 
potential t o  measured tilt. 

The response of a tilt meter a t  a given point also 
depends on  the angle between its sensitive axis and the 
meridian. In our simple model (stationary moon over the 
equator) for example, a tilt meter on the equator oriented 
along a north-south axis would see n o  direct effect, while 
an east-west instrument would see the maximum direct 
effect. The tilt along any intermediate azimuth may be 
found in terms of the north-south and east-west tilts using 
the rules of vector addition. Thus two orthogonal instru- 
ments are necessary t o  describe fully the tilt vector a t  any 
point. A single gravimetric factor may not be adequate t o  
describe the tilt tide a t  a site located in the real, anisotropic 
world. Tilt tides vary with latitude and longitude as well as 
with azimuth; the amplitude of a typical tilt tide is 200 
nrad (about 0.4”). 

Modern tilt meters tend t o  fall into two general 
categories: pendulums and bubbles. A pendulum tilt meter 
is a precision version of the prototype shown in Fig. 6. 

Fig .  6. A schematic diagram of a tilt meter. The tilt angle is read 
directly from the scale. 

I 

Fig. 7. A schematic diagram of a strain meter. The strain is deter- 
mined by computing the fractional change in the length of the base- 
line between the two piers. 

Great care must be used in the mechanical construction, 
and the instrument must usually be operated in a thermally 
stable environment. The position of the pendulum is 
usually determined by measuring the distance between 
the pendulum and two end plates mounted at  either end of 
its swing. A common method is t o  measure the capacitances 
between the center plate and the end plates. 

A bubble tilt meter is a precision version of the 
simple bubble level. Great care must be used t o  be sure that 
the liquid is pure and that the enclosing glass is smooth. 
The position of the bubble is often determined optically 
( the bubble-liquid combination forms a lens that may be 
used to image a light source on  a detector) or  electrically 
(the conductivity of the liquid measured along different 
secant-line paths changes as  the bubble moves). 

Several investigators are currently constructing long- 
baseline levels. These are made by joining two containers 
with a piece of tubing or pipe. The containers are placed 
on piers a t  either end of the baseline t o  be measured. As 
the earth tilts, the levels in the containers change. Since the 
baseline may be quite long, very small tilts may be meas- 
ured. These tilt meters are under development. 

The strain meter 
A strain meter measures the change in the length of a 

baseline on the surface of the earth. We may imagine a 
strain meter as a ruler and two piers as shown in Fig. 7. 
Unlike the gravity meter and the tilt meter, the strain meter 
measures only the deformation of the earth. There is n o  
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Fig. 8. The evacuated path of a 30-m 
laser strain meter. The instrument is 
located in a mine approximately 
8 km west of Boulder, Colorado. The 
strain meter is approximately 60 m 
below ground level. 

direct effect. The response of the instrument depends o n  
the azimuth of its sensitive axis, but the relationship is 
more complicated than for tilt. 

The relationship between stress and strain in a three- 
dimensional solid is complicated since a stress in any 
direction usually produces strains in all other directions. It 
turns out  that three strain meters are required t o  determine 
the strain a t  any point; the strain along an arbitrary axis 
cannot be deduced using the laws of vector addition and 
more complex addition rules must be used. 

Although there is a linear relationship between 
applied potential and measured strain, the “gravimetric 
factor” is far from simple. I t  depends on  the elastic moduli, 
on  the azimuth of the instrument and o n  its location. As 
with tilt, a single gravimetric factor may not adequately 
describe a site that has anisotropies or crustal inhomogene- 
ities. Strain tides vary with longitude and latitude as well 
as with the azimuth of the instrument. The amplitude is 
usually about 2 x lo-’. (Strain is the ratio of the  change in 
length t o  the baseline length and is thus dimensionless.) 

The earliest strain meters were precision versions of 
the prototype shown in Fig. 7. Fused silica was usually 
used as the “ruler” because of its small coefficient of 
thermal expansion. Both the long-term stability and the 
thermal stability were poor, however, and precision meas- 
urements were not  made until the  advent of lasers. 

Laser strain meters are interferometers that measure 
the change in the baseline length in units of the laser wave- 
length. Some means must be found t o  keep the wavelength 
stable. Unstabilized lasers show wavelength fluctuations 
of up t o  several parts per million - several orders of mag- 

nitude too large to  be useful for earth-tide measurements. 
Several stabilization schemes have been proposed; the best 
systems compare the laser wavelength against a molecular 
absorption wavelength in a molecule such as iodine or 
methane and tune the laser t o  maintain the coincidence 
between the laser wavelength and the absorption. These 
instruments have accuracies of about 5 x lo-’’ - more 
than adequate for  earth-tide work. 

The primary problem with laser strain meters is that 
they are large, complicated devices. The path over which 
the measurement is made must be evacuated, and the 
ancillary vacuum apparatus is expensive and not  portable. 

In Fig. 8 we show the evacuated path of a 30-m laser 
strain meter. The instrument is located in a mine approxi- 
mately 8 km west of Boulder, Colorado. The stabilized 
laser and the ancillary electronics are not  shown. 

Measurements 
I t  is only in recent years that the quality of earth- 

tide measurements has improved t o  the point where mean- 
ingful comparisons between theory and experiment can be 
made. One of the principal difficulties is the smallness of 
tidal effects compared to effects due to thermal expansion. 
Typical materials have coefficients of thermal expansion 
of several parts per million per Celsius degree; a one degree 
change in temperature can thus cause distortions many 
times larger than those produced by the tides. Improve- 
ments in instrumentation have only partially solved this 
problem. The earth is subjected t o  thermo-elastic stresses, 
and it is not  unreasonable t o  expect diurnal and semi- 
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diurnal motions of a purely thermal origin. 
Each of the instruments we have discussed is also 

sensitive t o  various spurious effects. Gravity meters respond 
t o  changes in the local density. Thus changes in the level of 
the underground water table may produce spurious changes 
in g. A gravity meter also responds t o  changes in barometric 
pressure ( the instrument responds t o  the changing gravita- 
tional attraction of the mass of the air above the instru- 
ment). Tilt meters and strain meters respond to  local in- 
homogeneities. While this is often an advantage in that they 
can be used t o  learn about properties of the site, it is often 
difficult t o  invert the data and extract site properties from 
observed tides. Calculations of this sort are quite compli- 
cated and require rather detailed models of the site t o  be 
quantitatively useful. 

Measurement opportunities 
We turn t o  those problems that can be investigated 

using earth-tide measurements. 
The earth-tide signals are proportional t o  the elastic 

parameters of the earth, and precision earth-tide studies 
are one way of determining these parameters. The globally 
averaged values of these parameters are modified by local 
anomalies, and these may be studied with measurements of 
sufficiently high accuracy. Local anomalies that might be 
studied in this way include thermal anomalies (e.g., Yellow- 
stone National Park) and dilatancy, a change in elastic 
properties that may be useful as an earthquake precursor. 

Yellowstone National Park is famous as a thermal 
anomaly, Le., as a place where very hot material is very 
close to  the surface. This material is so hot  that its elastic 
properties differ quite markedly from normal materials; the 

earth-tide response will be quite different and it is possible 
(in theory) t o  determine the elastic properties of the 
molten material by measuring the earth tides there. 

Dilatancy is a partial failure of a material when it is 
subjected to  a stress that is close t o  the breaking stress. 
Although the bulk of the material has not broken, small 
cracks have opened inside. The material becomes “spongy,” 
and its ability t o  hold water increases. Its elastic properties 
change as well; its earth-tide response is different from 
normal materials. Dilatancy is interesting because it is one 
of the last stages before failure, and its detection might 
therefore serve as a useful earthquake precursor. Other 
techniques have been used to  search for dilatancy, with 
only mixed success; its utility as an earthquake precursor is 
not yet clear. 

In addition t o  local anomalies, the earth tides a t  any 
point are modified by the ocean tides because of the direct 
attraction of the water and because of the elastic deforma- 
tion of the earth due to  the motion of the water. These 
ocean-load tides are large along the coasts. They may even 
contribute several percent t o  the strain tide a t  a midcon- 
tinent site (e&, Colorado). Measurements of the earth 
tides can be used t o  test models of the ocean tides. 

There are many other investigations that require a 
knowledge of the tidal displacement. These include calcula- 
tions of satellite orbits, radio astronomy, and geodetic 
techniques such as satellite ranging. In any of these investi- 
gations, the position of the observing station must be 
accurately known. As we have seen, the equilibrium tide is 
on the order of 30 cm - a large correction for many of 
these techniques. The motion may be much larger a t  island 
or coastal stations because of the ocean load. 
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