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Atomic Timekeeping and the Statistics of
Precision Signal Generators

JAMES A. BARNES

Abstract—Since most systems that generate atomic time employ
quartz crystal oscillators to improve reliability, it is essential to de-~
termine the effect on the precision of time measurements that these
oscillators introduce. A detailed analysis of the calibration procedure
shows that the third finite difference of the phase is closely related to
the clock errors. It was also found, in agreement with others, that
quartz crystal oscillators exhibit a “flicker” or |w ~! type of noise
modulating the frequency of the oscillator.

The method of finite differences of the phase is shown to be a
powerful means of classifying the statistical fluctuations of the phase
and frequency for signal generators in general. By employing finite
differences it is possible to avoid divergences normally associated
with flicker noise spectra. Analysis of several cesium beam frequency
standards have shown a complete lack of the \w\”l type of noise
modulation.

INTRODUCTION

N ORDINARY clock consists of two basic systems:
a periodic phenomenon (pendulum), and a
counter (gears, clock face, etc.) to count the
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periodic events. An atomic clock differs from this only
in that the frequency of the periodic phenomenon is, in
some sense, controlled by an atomic transition (atomic
frequency standard). Since microwave spectroscopic
techniques allow frequencies to be measured with a
relative precision far better than any other quantity,
the desirability of extending this precision to the domain
of time measurement has long been recognized [1].
From the standpoint of precision, it would be desira-
ble to run the clock (counter) directly from the atomic
frequency standard. However, atomic frequency stan-
dards in general are sufficiently complex that reliable
operation over very extended periods becomes some-
what doubtful (to say nothing of the cost involved).
For this reason, a quartz crystal oscillator is often used
as the source of the “periodic” events to run a synchro-
nous clock (or its electronic equivalent). The frequency
of this oscillator is then regularly checked by the
atomic frequency standard and corrections are made.
These corrections can usually take on any of three
forms: 1) correction of the oscillator frequency, 2) cor-
rection of the indicated time, or 3) an accumulating
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record of the difference from atomic time of the apparent
or indicated time shown by the clock. Both methods
1) and 2) require a calculation of the time difference,
and it is sufficient to consider only the last method and
the errors inherent in it.

A careful consideration of the calibration procedure
leads to the development of certain functionals of the
phase which have a very important property—existence
of the variance even in the presence of a flicker (I,J//‘fw()
type of frequency noise. The simplest of these func-
tionals, the second and third finite differences of the
phase, turn out to be stationary, random variables
whose auto-covariance function is sufhciently peaked to
insure rapid convergence of the variance of a finite
sample toward the true (infinite sample) variance. These
functionals of the phase have the added features of
being closely related to the errors of a clock run from
the oscillator as well as being a useful measure of oscil-
lator stability.

With the aid of these functionals, it is possible to
classify the statistical fluctuations observed in various
signal sources. In agreement with work of others
[2]-[5], a flicker noise frequency modulation was ob-
served for all quartz crystal oscillators tested. Similar
studies on several commercial rubidium gas cells gave
uniform indications of flicker noise modulation of levels
comparable to those of the better quartz crystal oscil-
lators.

In Section I, the effects on the precision of a time
scale due entirely to the calibration procedure of the
quartz crystal oscillator and the oscillator’s inherent
frequency instability are considered.

In Section 11, the experimental results of Section I are
used as the basis for a theoretical model of oscillator
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frequency fluctuations, and the results are compared to
those of other experimenters,

In Section IlI, the statistics of an atomic frequency
standard of the passive type (e.g., Cs-beam or Rb-gas
cell) are considered, and the composite Clock system is
treated. Section IV is devoted to a brief discussion of
stability measures for signal sources.

[. QuarTtz CRYSTAL OSCILLATOR PHASE FLUCTUATIONS
Typical Gross Behavior

Figure 1 shows a typical aging curve for a fairly good
quartz crystal oscillator. The oscillator had heen operat-
ing for a few months prior to the date shown in the
graph. On Mayv 1, 1963, the frequency of the oscillator
was reset in order to maintain relatively small correc-
tions.

Least square fits of straight lines to the two parts of
Fig. 1 vield aging rates of 0.536X10-1° per day and
0.515X107'% per day, respectively. This difference in
aging rates could be explained by an acceleration of the
frequency of about —9X10~" per day per day. This
acceleration of the frequency is sufficiently small over
periods of a few days when compared to other sources
of error that it can be safely ignored. Thus, the fre-
quency of conventional quartz oscillators can be written
in the form

Q) = [l 4+ at + ()] (1)

where « is the aging rate, €(f) is a variation of the fre-
quency probably caused by noise processes in the oscil-
lator itself, and ¢t can be considered to be some rather
gross measure of the time (since a and é are quite
small corrections).
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Actual Calibration Procedure of a Clock System

The fundamental equation for atomic timekeeping
is [6]

Q= @) (2)
dt

where Q is the instantaneous frequency of the oscillator
as measured by an atomic frequency standard, d¢ is the
differential phase change, and dt is an increment of time
as generated by this clock system. Since time is to be
generated by this system, and ¢ and Q are the directly
measured quantities, it is of convenience to assume that
Q=0(¢) and to write the solution of (2) in the form,

2 d¢
v= v @

If one divides the output phase of the oscillator by Q,,
and defines the apparent or indicated time ¢4 to be

ZAEE‘) (4)

2o

(1), (3), and (4) can be combined to give

A2 dlA
At = f _ . (5)
1Ay 1 + atA + é(tA)

As it is indicated in Fig. 1, it is possible to maintain the
magnitude of the relative frequency offset 1atA —I—é[
within fixed bounds of 10~8. Expanding (5) to first order
in this relative frequency offset yields

At >~ Aly — ft‘“ [OdA -+ é(lA)] dis. (6)

23

Equation (6) should then be valid to about one part in
1018,

Normally the frequency of the oscillator is measured
over some period of time (usually a few minutes) at
regular intervals (usually a few days). At this point, it
is desirable to restrict the discussion to the case where
the calibration is periodic (i.e., period T, determined
by ¢4) and then generalize to other situations later. One
period of the calibration is as follows:

t4 start of calibration interval
ta+ 3T —1) start of frequency measurement (r <7)
t4+3(T+7) end of frequency measurement
4+ T end of calibration interval,

where 7 is the frequency measurement interval. If ¢
were constant in time, the frequency measured during
the interval {4+ 3(7T—7) to t4+3(7T+7) would be just
the average frequency during the complete measure-
ment interval T since the oscillator would have an
exactly linear drift in frequency. Also, if ¢ were con-
stant, (6) could be written as
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At = Aty — T/isz\ (7

\ QU T’

where (6Q/Q)- is the average relative frequency offset
during the interval ¢t,-+3(7 —7) to t4+3(T+7).

Even though, in general, ¢ is not constant, € and ¢
are not knowable, and thus one is usually reduced to
using (7) anyway. The problem, then, is to determine
how much error is introduced by using (7).

The time error 8 accumulated over an interval 7’
committed by using (7) can be expressed in the form,

ta+T 59\
5t = f [ats + €] dis — T/—-\ (8)

4 N/’

where the quantity (6Q/Qy), is given by
/59\ 1 tat1/2(T+7)
\—/ = %f [atA + é] dta. (9)
Qo/ » T vV ia+1/2(T—7)
Equations (8) and (9) can be combined to give
6t = e(tA + T) - 6(1_4)

T T+ T—r
— *[e (tA -+ ‘~~> — e(tA -+ ——~—>:| (10)
T 2 2

It is this equation which relates the random phase
fluctuations with the corresponding errors in the time
determination.

Meaningful Quantities

It is again of value to further restrict the discussion to
a particular situation and generalize at a later point.
In particular, let 7= 3r, then (10) becomes

5t = e(ta + 37) — e(ta) — 3{e(ta + 27) — e(ta + )], (A1)

It is now possible to define the discrete variable e, by
the relation

e, = e(ta + nt),

and rewrite (11) in the simpler form (see Table I)

n=2012, -
8t = Adg,, (12)

where A3, is the third finite difference of the discrete
variable e,.

TABLE [
FINITE DIFFERENCES
en=e(tatnr)
Discrete variable Definition
n €n eltatnr)
Aen €nsl—€n e(tat7)—elta)
Ay, Aeni1—Aey e(ta+27) —2e(tatr) +ella)
Ade, A1 — A%, | elta+37) —3[e(tat+2r) —eltatr) | —elta)
Mo | Alega—ale, | ellatdr) —d[ettat3n) teltatn)]
+-6e(ta+27) +elta)
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Similarly, (2) mav be integrated directly using (1) to
obtain

o(ta) = Qo [u + %tﬁ + e(m):l + ¢(0). (13)

Thus, by defining another discrete variable ¢,, the third
difference of (13) yields the relation

A, = QoA%,,

0= ()
t={— -
Qo ¢

It is now possible to set up a table of meaningful quan-
tities for time measurement (see Table I11).

(14)

or equivalently,

(15)
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If three oscillators are used, it is possible to indepen-
dently measure the three quantities o1, 013, and a3, Thus
there exist three independent equations:

o1’ = a1® + 022}
= gi® + o352},

a3 = g2° + 037

(18)

While the three equations,
. . 5,7 =123
0ti; = A, ) — A%, D
1 <7

are not linearly independent, the standard deviations
o2 given by (18), in fact, form linearly independent
equations (subject only to certain conditions analogous

TABLE 11

MEANINGFUL QUANTITIES

Quantity ‘

Discussion

Phase o

Must exist for all times of interest and be measurable.

First difference of the phase 1A,

Proportional to the average frequency in the interval r. Must exist for all time.

Second difference of the phase }A%p,

Related to the drift of the oscillator frequency. Must exist for all time.

Variance of the second difference} {({A2p, — (A2¢,)]%)

(It is possible to construct a time scale even if this does not exist. However, experiment
indicates that it is probably finite.)

Third difference of the phase  {A%, Proportional to the clock error in the time interval 7= 37. Must exist if clock is to be of
value.
Mean square third difference | {(A%,))? Proportional to the precision of time interval measurements. Must exist if clock is to be

“ of value.

Where all averages are defined by the relation:

1 pT
)= Lim— [
oy Lim - o

Experimental Delermination of Phase Fluctuations

If one measures the phase difference between two
oscillators, (13) applies to both, and hence the difference
phase 8,=¢,% —¢,® is related to the difference time
8ty = 6t;—8t, by the relations

1
8tis = —- A%, =

2

Ale, (1) — Ale, (D),

(16)

Provided that the cross-correlation coefficient {((A%, 1)
(A%,»)) is zero (i.e., the €, are noncorrelated), the
variance of 82 becomes

a1f = ((0)*) = ((8%,)%) + ((8%,)*),  (17)

since it is assumed that (A,)=0. The assumption that
the cross-correlation coefficients vanish is equivalent to
postulating an absence of linear coupling between the
oscillators either electrically or through their environ-
ment. It is of value to develop a scheme which is capa-
ble of classifving individual oscillators rather than
treating ensembles of assumed identical members. Thus,
this development is restricted to time averages of indi-
vidual oscillators rather than ensemble averages.

" .

to the triangle inequalities). Thus, the systems of (18)
are solvable for the three quantities ¢,>={(8£,)%). It is
thus possible to estimate the statistical behavior of each
individual oscillator.

Apparatus

A phase meter was used similar to one described in
Cutler and Searle [5]. The basic system was aligned
with an electrical-to-mechanical angle tolerance of
about +0.25 percent of one complete cycle, and since
the phase meter is operated at 10 Mc/s, this implies the
possibility of measuring the time difference to +0.25
nanoseconds. The output shaft, in turn, drives a digital
encoder with one hundred counts per revolution and a
total accumulation (before starting over) of one million.
Thus the digital information is accurate to within one
ns and accumulates up to one ms. Since measurements
are made relatively often, it is easy for a computer to
spot when the digital encoder has passed one ms on the
data, and this restriction on the data format in no way
hampers the total length of the data handled.

Since the oscillator is assumed to have a linear drift
in frequency with time, the variance (about the mean)
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of the second difference of the phase should depend only
on the €,'?. For the evaluation of clocks, it is the mean
square time error which is important and, thus, the
mean square (rather than variance) of the third differ-
ence of the phase is the quantity of importance. Calcu-
lations of these quantities from the phase f, were ac-
complished on a digital computer. Normally the phase
difference is printed every hour for at least 200 hours
and the computer program computes the A28, and
A%, for T equal to 2, 4, 6, 8, etc., hours. Thus it is possi-
ble to plot the square root of the variance of the second
difference and the root mean square third difference of
the phase as a function of the variable r. A typical plot
of these two quantities appears in Fig. 2.

20—

3rd DIFFERENCE

2nd DIFFERENCE

rms TIME ERROR (NANOSECONDS )
I

20—

2 DAYS
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Fig. 2. Variance of second and third difference as a function of .

Since many revolutions of the phase meter are nor-
mally encountered between data points, the combined
effects of nonperfect electrical-to-mechanical phase and
rounding errors of the digital encoder can be combined
into one stationary, statistical quantity v, that can be
assumed to have delta-function auto-correlation. Let x
represent the rounding errors of the digital encoder
defined by the difference between the encoded number
and the actual angular position of the shaft. Then
these rounding errors form a rectangular distribution
from —0.5 ns to -+0.5 ns, and, thus, contribute an

amount
1/2
f x*dx
1/2

= 0.08 ns*®

1/2
L
1/2

211

to {v?). The nonperfect electrical-to-mechanical phase
conversion is sinusoidal in nature and, thus, contributes
an amount equal to

1(0.25)2 ~ 0.03 ns?.

The final value for {4?) should then be about 0.11 ns?

This was checked by taking two very good oscilla-
tors operating at a rather large difference frequency
{~5X 1079, and printing the phase difference every 10
seconds for several minutes. Since frequency fluctuations
of the oscillators are small compared to 1X107!°, the
resultant scatter can be attributed to the measuring sys-
tem. The results of this experiment gave the value 0.19
ns? for (y?).

Since <y i1s assumed to have a delta-function auto-cor-
relation, reference to Table I shows that ((A%y)?)
=20(y?), and thus (18) may be more precisely written,

o1 + o2 + 20{y?)
o13 = o1’ + o3>+ 20(7%[.
023 = 022 -+ 032 + 20(72>

For the best oscillators tested, o,% became about
2{(A3y)?) for 7=10°% seconds, and, therefore, measure-
ments were limited on the lower end to 20 minutes or
1200 seconds. The longest run made lasted a little over
a month or about one thousand hours. Thus the largest
value of 7 which might have reasonable averaging is
about one hundred hours or 3.6 X10® seconds. This lim-
its the results to about two orders of magnitude varia-
tion on 7.

While it is possible to build appropriate frequency
multipliers and mixers to improve the resolution of the
phase meter and reduce the lower limit on 7, it was con-
sidered that the longer time intervals are of greater in-
terest because 7 (=3r) is normally between one day
and one week.

I

2
g12

(18)

II. THEORETICAL DEVELOPMENT
Introductory Remarks

In the development which follows, certain basic as-
sumptions are made. It is assumed that the coefficients
Qyand « of (1) may be so chosen that the average value
of e(t) is zero; i.e.,

(e(t)) = 0.

It is also assumed that a translation in the time axis,
ta—t4+ ¢, (stationarity) causes no change in the value
of the auto-covariance function,

R(7) = (e(t) el + 7))
= (e + & et +E+ 7))
The only justification of this assumption lies in the fact
that the results of the analysis agree well with experi-

ment and the results of others. In the development
which follows, one cannot assume that

R.(0) = ({[®]»

(19)
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exists (i.e., is finite) and, hence, Wiener [7] cannot
guarantee that (19) is valid. While it may be that R.(r)
does not exist, quantities such as

U(r) = 2[R(0) — Ru(n)] (20)

may exist and be meaningful if limits are approached
properly. It is, thus, assumed that relations such as
(20) have meaning and may be handled by conventional
means.

Development of Experimental Results

All oscillator pairs tested, which exhibited a stable
drift rate as indicated in Fig. 1 and did not have obvious
diurnal fluctuations in frequency, showed a definite,
very nearly linear dependence on 7 for both the standard
deviation of the second difference and the root mean
square third difference of the phase. It was observed
that if an oscillator were disturbed accidentally during
a measuremnient, the plot would have a more nearly 73/2
dependence. This is probably because the assumption
of a negligible quadratic dependence of frequency with
time is not valid when the oscillator is disturbed. All
oscillators tested, therefore, were shock mounted and all
load changes and physical conditions were changed as
little as possible.

A least square fit of all reliable data to an equation of
the form

V{(@me)) = Viwr* m =234 (21)

gave a value of 1.09 for the average of the u’s. The values
of u ranged from about 0.90 to 1.15 (and even to 1.5
when the oscillators were disturbed during the measure-
ment). It is of interest to postulate that, for an “ideal,”
undisturbed quartz crystal oscillator, the value of u is
exactly the integer one, and to investigate the conse-
quences of this assumption.

Because certain difficulties arise at the value p=1, it
is essential to calculate with a general 4 and then pass to
the limits u—1™ for the quantities of interest. This is
equivalent to considering a sequence of processes which
approach, as a limit, the case of the “ideal” crystal
oscillator. Thus (21) may be rewritten for m =2 in the
form

{(A%,)?) = kz‘ T \7’" (22)
Using Table I, (22) may then be rewritten as
6([e(ta)]?) = 8Le(ta) - eltad1))F2(e(ts) - elta+2r)) = ko | 7 |
or, equivalently,
6R.(0) — 8R.(r) + 2R.(27) = ko 7| (23)

As mentioned above, the function U(r) is defined by the
relation

Ulr) = {[elta) — e(ta +1)]%

= 2[R(0) — R.(7)] (24)
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and is assumed to exist. Equations (23) and (24) may
be combined to give

AU(r) — UQ21) = k| 7| (25)
If a trial solution of the form
V@) = A@)- |72
is used, one obtains
A@)- | P14 = 2] = ko 7 [
from which one concludes that
8= 2ux2

(4 = 29 A(B) = ke,
and

Ur) = e, (26)

42w

where u <1 since U(r) and k; are non-negative. Equation
(21) may, thus, be satisfied if

Lin%_)(4 — 225y A (2Qu) = ko,

u—1

(27)

which implies that A(2) is infinite. It is for this reason
that the limiting process must be employed.

It is not necessary, however, to assume a particular
form for 4 (2u) because (27) is sufficient for the purposes
of this development.

It is now possible to determine the mean square third
difference of €,; i.e., from Table I,

((8%)%) = 20([e(t)]?) = 30[e(t)-elta + 7))
+ 12([e(ta) -elta + 20)]) — 2([e(ta) - ets + 30)]),

where use has again been made of (19). Equation (28)
may equivalently be written in the form

(28)

{(A%,)%) = 15U (r) — 6U(2r) + U(37), (29)
which may be combined with (26) to yield
((A%,)?) = bal 7l [15 4 6(2%) + 3], (30)
(4 — 22

If one now passes to the limit u4—1¢?, (30) becomes

Exr2(241n2 — 91n 3)

((Azfn)2> =

(31)

Thus, a quadratic dependence of the variance of the
second difference of the phase implies a quadratic de-
pendence of the mean square third difference, and the

ratio
1/@_3282  1.5601 - - -
((A%)%)

is independent of 7. The average ratio of the points
plotted in Fig. 2 is 1.65. Values ranging from 1.4 to 1.7
were observed for various runs on different oscillator
pairs. Average value for all reliable data taken is 1.52.

(32)
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oHASE FREQUENCY

MULTIPLIER
NOQULATOR (SYNTHES:ZER)

QUARTZ CRYSTAL
OSCILLATOR AUDID
OSCILLATOR

b
INTEGRAL TYPE ERROR
FREQUENCY

r ATONIC

SYNCHRONOUS

CONTROLLER SIGHAL DETECTOR DEVICE
Fig. 3. Typical control loop for an atomically controlled oscillator.

Generalization of the Time Error Problem

The average frequency of an oscillator over an inter-
val of time is just the total elapsed phase in the interval
divided by the time interval. Since errors of the fre-
quency standard are not presently being considered, the
calibration interval of Section I gives rise to an error
time 8¢ which could be expressed as a sum

1 =
o = — Z G,L(#)(tA ‘I"‘ buT)a

0 n=0

(33)

where m—41 is the total number of terms and the set
{a,, b} are chosen to fit the particular calibration pro-
cedure. Indeed, any calibration procedure must give
rise to an error time which is expressible in the form
of (33).

There are, however, certain restrictions on the {af,,, b, }
which are of importance. First, it is a matter of conve-
nience to require that b,> b4, for /> #n. Also, if the oscillator
were absolutely perfect, and e(4) were identically zero,
one should logically require that the error time 8¢ be
identically zero, independent of ¢4, the drift rate o, and
the basic time interval 7. That is, from (13)

6 = Z an-(ts + bur) + l Z @ (s +b,7)2 =0 (34)
n=0 n=0

for all ¢4, a, and 7. One is thus led to the three condi-
tions:

(335)
n=0
D @b, =0, (36)
n=0
> axba? = 0. (37)
n=0
It is of interest to form the quantity
( Z anbn2)< Z al) = Z auzan + Z analan
n=0 n=0 n=0 n<l
+ D anad, (38)

i<n
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and it is now possible to interchange the subscripts n

and / in the last term of (38) and write the equation in
the form

Z anﬂbn:) + Z a’rlal(bn2 + blg) = 0

(39)
n=0 n<l
Subtracting the square of (36),
( Z aubn)( Z albl> = Z a“‘lbui’ + 2 Z analbnbl;
n=0 =0 n=0 n<l
one obtains
> @b — b)) =0 (40)

a<l

as another condition on the {a,, b.}. Equation (40) is,
of course, not independent of (35)-(37).

For the actual situation where €(t4) is not identically
zero, one is reduced, as before [see (7)], to using condi-
tions (35)—(37) since €(f4) is not knowable. The time
error then becomes

m

8t = D an-e(ts + b,1)

n=0

(41)

where use has been made of (13), (33), and the restric-
tions (35)-(37). Note that (41) is the generalization of
(10). The square of (41) can be written in the form

(62 = Z 4.2 (tq + bat)

n=0

m

+ 23 awai[elta + bor) et + bir)],  (42)
n<l
which may be averaged over ¢, to yield
()% = 22 a3 {(e(ta))®)
n=0
+ 2 2 awarl[e(ta) e + (b0 = b)D)]),  (43)
n<l
where use has again been made of (19).
The square of (35) may be written as
> el + 2> aa =0,
=0 n<l
and (43) then becomes
(60 = — 2 awaf ()| 2a))
n<l
= 2[e(ta) el + 0o = bIMDY. (49
Combining (44) with (21) one obtains
((6)2) = — > awa U((by — ba)7). (43)

n<i
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Substitution of (26) in (45) yields

> aaay(b; — by)

n<i

((6)2) = ~ k| 7|2 , (46)

4 — 2%

which is indeterminate of the form (0/0) for u=1 be-
cause of (40). Making use of L’Hospital’s rule, the limit
of this expression as p—17 is

k2T2 kidd
T > @by — b)EIn (b, — b,).  (47)
n<l

((6n?*) =

Equation (47) is thus the generalization of (31). Since
many terms appear in the summation in (47), a com-
puter program was written for evaluation with particu-
lar sets of {@n, b }.

Comparison With Others
If one were to assume that (20) could be solved for
R.(7), one would obtain

R(r) = R(0) — 2U(7) (48)

which expresses the auto-covariance function in terms
of U(r). If one assumes still further that the Wiener-
Khinchin theorem applies to (48), the power spectral
density of €(#) is then the Fourier transform of R.(7);
ie.,

ko I T ’2“
S*w) = F.T.| R(0) — ————|.
2(4 — 2%¥)
Fortunately, Fourier transforms of functions like |7 |2

have been worked out in Lighthill [8]. The result is

R.(0)
27

ks l:cos -T—(%f‘—;—g] (@) 1] | @[22

- T . (49)

Sw) = 8(w)

The factor of (1/27) occurs because S.(w) is assumed to
be a density relative to an angular frequency w, rather
than a cycle frequency (f=w/27) as is used in [8]. The
first term on the right of (49) indicates an infinite den-
sity of power at zero frequency, i.e., a nonzero average.
The zero frequency components are not measurable
experimentally, and hence this term will be dropped as
not being significant to these discussions. The second
term on the right of (49) is indeterminate for u=1. As
before, the limit as u4—1¢7 may be obtained, yielding

ks

et

= - 50
81n 2 | (50)

Se(w)

for the final result.
The assumptions needed to arrive at (50) are not
wholly satisfying, and it is of value to show that (50)
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implies that ((A%,)?) is indeed given by (21) for m =2.
Only one additional assumption is needed, the Wiener-
Khinchin theorem. Since R.(r) and S.(w) are real quan-
tities, this theorem may be written in the form

R (1) = ZImSé(w) oS wr dw. (51)

From Table I, one may obtain (after squaring and
averaging) the expression

((A%,)?) = 6R.(0) — 8R.(r) + 2R.(27).
Substitution of (51) in (52) yields

(52)

{(A%,)?) = 4wa¢(w) [3 — 4 cos (wr) 4 cos 2wr)] dw. (53)

Using (50) for S.(w) is a lengthy but straightforward
process to evaluate the integral in (53). The result is,
in fact,

((A%)?) = kot?,

in agreement with (21).
If g.(w) is the Fourier transform of €(¢), it is shown,
for example, in Lighthill ([8] p. 20), that

gi(w) = fwg.(w)

is the Fourier transform of é(#). Thus, the power spectral
density of é(#) is related to the power spectral density
of €(¢) by the familiar relation

Si(w) = S (w).

Thus, the power spectral density of the frequency fluctua-
tions of an “ideal” oscillator may be given as

ks
|

8In2

Se(w) = [,
that is, flicker noise frequency modulation. The exis-
tence of this type of noise modulating the frequency of

good quartz crystal oscillators has been reported by sev-
eral others [2]-[5], [9].

Comments on the “Ideal” Oscillator

It has thus been shown that the assumptions of sta-
tionarity and “ideal” behavior form a basis for a mathe-
matical model of a quartz crystal oscillator which is in
quite good agreement with several experiments and ex-
perimenters. On the basis of this model, it is now possi-
ble to predict the behavior of systems employing
“nearly ideal” oscillators with the hope of committing
no great errors. There are compelling reasons to believe
that U(r) actually exists (see Section 1V) for real oscil-
lators in spite of (26). Such conditions require that the
|w| =1 behavior for the power spectral density of the fre-
quency fluctuations cut off at some small, nonzero fre-
quency. From some experiments [2] conducted, how-
ever, this cutoff frequency is probably much smaller
than one cycle per year. Such small differences from
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zero frequency are of essentially academic interest to the
manufacturer and user of oscillators. Quantities which
may be expressed in the form of (41), however, where
the coefficients satisfy conditions (35)-(37), have finite
averages even in the limit as flicker noise behavior ap-
proaches zero modulation frequency. Such quantities
are called cutoff independent in contrast to quantities
like U(r) which will exist only if the flicker noise cuts off
at some nonzero frequency.

I11I. AtoMIC FREQUENCY STANDARDS
Passive Devices

There are in use today two general types of atomic
frequency standards: 1) the active device such as a
maser whose atoms actually generate a coherent signal
whose frequency s the standard, and 2) the passive type
such as a cesium beam or rubidium gas cell. In the pas-
sive type, a microwave signal irradiates the atoms and
some means is employed to detect any change in the
atom’s energy state. This paper is restricted to the pas-
sive tvpe of frequency standard. Some experiments are
in progress, however, to determine the statistical be-
havior of a maser type oscillator.

It is first of value to discuss in what way a “standard”
can have fluctuations or errors. Consider the cesium
beam. Ideally the standard would be the exact frequency
of the photons emitted or absorbed at zero magnetic
field in the (F=4, m;=0)—(F=3, m;=0) transition of
cesium?!®? in the ground electronic state for an infinite
interaction time. This is, of course, impossible. This
means that the standard is at least less than ideal and
one is, thus, led to speak, in some sense of the word,
about “errors” or even “fluctuations” of the standard.

Figure 3 shows a block diagram of a typical standard
of the passive type. An equivalent diagram of this fre-
quency-lock servo is shown in Fig. 4, where Vi(w) is the
Fourier Transform of the noise generated in the detec-
tors, associated demodulating circuitry, and the fre-
quency multipliers of Fig. 3. Vi(w) is an equivalent
noise voltage driving the reactance tube in the oscillator
to produce the é(¢4) term in the unlocked oscillator,
such that flicker noise FM results. The power spectrum
of Vy(w), then, is given by

hs

ol

CiSy, =

(54)

where hs/fw| is the power spectral density of the fre-
quency fluctuations of the unlocked oscillator.

It is easiest to treat the servo equations by the use of
the variable v, defined to be the difference between the
output frequency of the multiplier and the “ideal” fre-
quency of the atomic transition (the output of the
“atomic device,” as shown in Fig. 4, is then assumed to
be the constant zero). In order to preserve the dimen-
sions of voltage for the addition networks, it is conve-
nient to assume that the output of the subtraction net-
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work is —fBy where 8 has the dimensions of volt-
seconds. Thus, the equation governing the operation of
the servo can be expressed, in the frequency domain, as

Vilw) — By(w
I:Vg(w) + ——( ) ﬁl(—)] CN = v(w).

(53)

JwTy
This leads to a power spectral density for y given by
(NC)2Sy,(w) + Viri2h | o]

N wir® + (BNC)?

Sy(w) (56)
where use has been made of (54).

Normally, wr; becomes of the order of (BNC) for w of
the order of 10 s—t. Thus, for small w, (56) becomes

Si(w) = éSm(w) (37)

for |w] <1s.

VOLTAGE CONTROLLED OSCHLATOR

V) (w)

INTEGRATDR

+ L
. ST

=)

FREQUENCY
MULTIPLIER
xN

V, (w) NOISE GENERATED IN DETECTOR
Vz (w) EQUIVALENT NOISE TO GENERATE FLICKER NOISE IN VCC

Fig.4. Equivalentservodiagram of passive type frequency standard.
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Fig. 5. Variance of differences of the relative phase ditference

between two atomic standards.
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By applying the techniques of Section I to the differ-
ence phase of two cesium beams, the curves shown in
Fig. 5 were obtained. Through least square fits to the
data and comparing the ratios of the variances of dif-
ferences (see Appendix), the result was obtained that the
data fit curves of the form

{(Amy,)2) = Bu| 7]

for =1.34, with an uncertainty (standard deviation)
of about +0.04. Again using [8] as before, this leads to
the result that

Si(w) = ‘—;% P T r(—) (58)

where u=0.3440.04. One is, thus, led to the very
strange conclusion that the spectral distribution of the
detector and multiplier noise varies as ~/w|=%/%. The
source of this noise was later traced to a faulty preampli-
fier. With a proper amplifier used, the spectral distribu-
tion appears white as other papers [5], [10], [11] indi-
cate should be the case.

Ideally, for measurements over times large compared
to the servo time constant, the error accumulated during
one measurement interval should be independent of
errors accumulated during nonoverlapping intervals,
i.e., mathematically analogous to Brownian Motion
[t2]. This implies that S;(w) should be constant for
|w| <15

OF THE IEEE FEBRUARY

The Composite Clock System

If an oscillator’s frequency is measured by an atomic
standard, the error in measurement of the frequency is
given by

1
o = — [y(ta + 3T+ 1) = v(ta + 3T — )] (59)

for a calibration interval as given in Section [. Also, if
fs is the defined output frequencyv of the frequency
standard, the total error time for the entire calibration
interval T, due to the Standard, is given by 76f/f,, and
if the clocks contribute an additional error (uncorrelated
to the standard’s error), of 8¢, the total error §7 is given

by

Tsf
6T =6t + — - (60)
It is of value to explore the dependence of {(8f)?) on
the ratio of 7°/7. In particular, let 7°= (2n+1)7 for (10).
This can be put in the form of (41) with the following
assignments:

n 429 bn
0 —1 0
1 2n + 1 n
2 —2n — 1 n-+1
3 1 2n+1

nz!

20 —

RATIO

08 —

0.4 —

02 04 08 08 10

1.2 1.4 16 18 20

EXPONENT 7

N

Fig. 6. Ratio of variances, ((A**! em)?),/((A"em)?), as a function of the exponent 7.
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It is easy to show that these coefficients satisfy (35)-
(37).
Substitution of these coefficients into (47) vields
((80)2y = 2h7?] — 20220 + 1) In (n)
+2n+ 122+ DIn(n + 1)
~ Qu 4 1)2In 2n + 1)},
where 2=F,/8 In 2.
Since 7 is normally small compared to 7, it is reason-

able to approximate (61) for large #n. That is, the relative
time error is approximately given by

VI
T

(61)

In (w), (62)
where the approximations

n>1,In{n+ 1) = In (n) +—1—

n
have been used. It is apparent from (62) that for a given
interval 7', the errors accumulated by the clock are not
critically dependent on the measuring time 7, since

VIn (n) is a very slowly changing quantity.
The mean square error associated with the standard,

however, can be written in the form

T 2
) = (<) @, (63)
T
since (39) may be written as the first difference of 7,.
From (587) it is apparent that the relative time error is
then given by

THEND B
T.? (2n7fe)?

where n=1 (“white” noise). Or, combining (59), (62),
and (64),

VAGTY)

7 1/ (27rf)

As one should expect, for a given 7', the errors get less
for larger 7 but not rapidly. In the limit of =17 [not
using the approximate (65)Lthe errors are those of the

standard alone, i.e., /Bi7/27fs. Also, as 7—0, the clock
errors are unbounded.

77, (64)

(65)

Compounding Time Errors

Equation (65) represents a reasonable approximation
to the time errors of a clock system after one calibration
interval. The next question is: how do the errors of many
calibrations compound to give a total error §(N71) after
N calibrations? Returning to (59), one may write

E 5Tm

n=1

S(NT) = (66)
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where 87, is the time error associated with the nth cali-
bration interval. There have been papers published [13]
that assume that the errors of one calibration interval
are not correlated to the errors of any other calibration
interval. It is now possible to investigate this assump-
tion more precisely.

In particular, the clock errors (not including the fre-
quency standard errors) 8/, compound to give §(Nt),
given by

o(NVi) (67)

N
= > 8,
n=1

which can obviously be put in the form of (41). For N
equal to any number larger than one, the algebra be-
comes much too lengthy for actual calculation by hand
and it is desirable to make use of a digital computer.
Table I11 shows the results of this calculation for com-
pounding several third-difference-type calibrations. It
is interesting to note that, in fact, the total mean square
error after N calibrations is very nearly equal to N-
times the mean square error after one calibration. This
is in quite good agreement with DePrins [13]. Thus, the
rms relative eror may be approximated by the relation

1/<<6<VT>>° ?ﬁkﬁ’%ﬁﬁf, (68)

where &, n, By, f,, and 7 have the same meanings as in
(65).

TABLE 111
THEORETICAL DETERMINATION OF TIME ERrROR PrOPAGATION
8t )
{(E=))
’ (3ta?)
2 2.054
3 3.109
4 4,165
5 5.220
6 6.276

7 7.332

The conclusions which can now be drawn are that:
1) the total rms time error of this clock system from an
“ideal” atomic clock is unbounded as time increases, and
2) the relative rms error time to total elapsed time (68)
approaches zero about as fast as N-UV% It should be
mentioned here that systematic errors in the atomic
standard have not been considered. While this is a very
important problem, it has been treated rather thor-
oughly elsewhere [10], [11], [14]-[16].
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IV. MEASURES OF FREQUENCY STABILITY

General Restrictions

It is of value to consider the problem of establishing a
stability measure in a very general sense. Consider some
functional of the phase

x = x(6@)),

from which the stabilitv measure ¥ is obtained accord-
ing to the relation

1 T/2
v = Limﬁf | x|2dt,

T—» T ~-T/2

provided this limit exists.
In practice it is not possible to pass to the limit 77— o,
and, thus, one measures for some fixed time, 7°; i.e.,

1 T2 |
TJ _rp

Under favorable conditions, ¥ may be a reasonable
approximation to ¥, Unfortunately, this may not al-
ways be the case.

The frequency emitted by any physically realizable
device must be bounded by some upper bound, say B.
The following inequalities must, then, be valid:

| Q(t)| < B, f{for some B > 0;

1 T2
Lim—;f Q)2 dt < B

Tow ~T/2

With S;(w) being the power spectral density of Q(f), it
follows from the definition of power spectra that

T/2 o«
Lim-l—f Q)2 dt = 2f Si(e) do

T— e

for real Q(#), and thus

2fw5q;(w) dw < B2, (69)

If S,(w) has a flicker noise spectrum for small w, it
is apparent that this 1/’w’ type of noise cannot persist
to absolute zero frequency or the inequality (69) would
be violated. It is, thus, reasonable to postulate the
existence of a lower cutoff frequency w; for the flicker
noise modulation.

It is apparent from the preceding considerations that
stability measures may exist for which ¥y begins to
approach ¥ only after T is several times larger than
1/wr. From some of the experiments on crystal oscil-
lators [2], this may require 7" to exceed several years in
duration. This is quite inconvenient from a manufactur-
ing or experimental standpoint. The logical conclusion
is to consider only those stability measures ¥ which are
“cutoff independent,” that is, those measures of stability
which would be valid even in the Ii‘mit wr,—0+,
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Finite Differences

[t was shown in Section IT that an expression of the
form

1 m
= — D a.9(t + by1)

0 n=0

(70)

will have a finite variance if the {a,, b.} satisfy condi-
tions (35)—(37). It is easy to show that the first difference
of the phase (i.e., frequency) cannot be put in the form
of (70) with the coefhcients satisfying conditions (35)-
(37). Indeed, the limit

ko | T ‘2”‘

Lim U(r) = Lim —

p—1(=) 4 — 22“

u—1(=)

does not exist, and, hence, U(r) is not a good measure
of stability.

The variances of the second and third finite differ-
ences, however, are convergent. It is of interest to note
that the first line of Table 111 mav be expressed in the
form

<‘ A3¢n+3 + A3¢n| > _

2.054,
(%)%

which may be simplified to the form

(%045 (A%90)) _
(&%)

0.027.

This equation expresses the fact that a third difference
has a very small correlation (~3 percent) to an adja-
cent, nonoverlapping third difference. By extending
this procedure with the other values given in Table III,
it is found that the correlation of one third difference
with a nonoverlapping third difference becomes small
very rapidly as the interval between these differences
becomes large. This is sufficient to insure that the vari-
ance of a finite sample of third differences will approach
the “true” variance (infinite average) in a well-behaved
and reasonable fashion as the sample gets larger.

Variance of Frequency Fluctuations for Finite Averaging
Times

Even though the variance of the first difference of the
phase does not satisfy the condition of being cutoff inde-
pendent, it is possible (by specifying both the sample
time and the total averaging time) to construct a cutoft
independent measure of the frequency fluctuations.
Instead of ¥y, the variance of NV adjacent samples of the
frequency will be denoted by ¢2(r, N) where 7 is the
sample time for each of the N measurements of fre-
quency. The variance is given by the conventional
formula

1
N -1

#t(r, V) =

5 [A_‘i’i _ ";‘VleﬂT
ye=1

T Nt
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If one neglects the drift rate «, which is essentially
equivalent to obtaining the standard deviation around
a linear drift, one obtains

1
(a?(r, ) =

TN = o)

1 \ i
= — e+ N0 = @nf . D
N
For the case of an *ideal” crystal oscillator, (19), (24),
and (26) allow (71) to be simplified (after passing to the
limit u—19 to the form

2N In (V)

{c*(r, N))
o, ) =

Thus, as N increases, the expected value of ¢*(7, V) in-
creases without bound (at least until Nr~1/w;). It is
interesting to note that for a given oscillator, {(¢*(r, N))
has a minimum value for N=2. Obviously one would
have to average several experimental determinations of
a?(, 2) in order to have a reasonable approximation to
(o3(r, 2)).

While a(r, N) is a cutoff independent measure of fre-
quency stability, it has the significant disadvantage of
being a function of two variables. Indeed, in order to
compare the stability of two oscillators, both the 7's
and the N’s should have nearly corresponding values.

Delayed Frequency Comparison

In radar work, often the frequency of a signal is com-
pared to the frequency of the same source after it has
been delayed in traversing some distance—often a very
great distance. One might, thus, be interested in defin-
ing a stability measure in an analogous fashion:

[+ T+1)—¢(+T
w&n=@“ ) = 9+ T)

\

T

ol + 1) — ¢(1)]2>. (72)

T

Again neglecting the drift rate a of the oscillator, (24)
and (72) combine to yield

1
Vi(r, T) = — RUE)—U(T—7)420(T)—U(T+1)]. (73)
72
After substitution of (26) into (73) the equation can be
rearranged to give (again passing to the limit, u—1<7)
Vir, T) = — 2/1[p2 Inpg— (1 4+0)2In(1 4+ p)
— (= D*In (o — 1],

where p=1"/7. Although this is a rather complicated ex-
pression, it may be simplified with the approximation
p=1/1>>1. The result is

T
for —>>1

T

(74)

T

T
Vi(r, T) = 4k <2 + In ~>,
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for an “ideal” oscillator. It is interesting to note here
that even when considering only l/Iw[ tvpe of noise,
one cannot pass to the limit =0 for this problem. In
the limit as r—0+, the expression

T

+ 7 -
Iﬂﬁi)fqszm

and thus

Lim ¥(r, T) = QU+ T) — Q)] — =

T—0*

from (74), even though 7'<«1/w;. The source of this
difficulty is the high-frequency divergence of the flicker
noise spectrum. If the system is limited at the high fre-
quency by wy, then one should pass to the limit —1/wy.

Again, ¥(r, T) is a function of two variables with all
of the associated annoyances. It may, however, be useful
in certain applications.

CoxcLUsION

The assumptions of stationarity and “ideal” behavior
for a quartz crystal oscillator lead to a statistical model
which agrees well with many different experiments.
One finds, however, that certain quantities are un-
bounded as averaging times are extended and it is im-
portant to consider only those quantities which have
reasonable hope of converging toward a good value in
reasonable time. Thus, the concepts of cutoff dependent
and cutoff independent measures of frequency stability
form a natural classification for all pessible frequency
stability measures,

On the basis of “ideal” behavior, it has been shown
that the errors of a clock, run from a quartz crystal
oscillator and periodically referenced to an atomic fre-
quency standard, accumulate error at a probable rate
proportional to the square root of the number of calibra-
tions. That is, the errors of one calibration interval are
essentially uncorrelated to errors of nonoverlapping in-
tervals in spite of the fact that “ideal” behavior is highly
correlated for long periods of time.

It has also been shown that the method of finite dif-
ferences can be a useful method df determining spectral
distributions of noise, as well as being a possible measure
of frequency stability. By using higher order finite dif-
ferences, phase fluctuations with even a higher order
pole at zero-modulation {requency can similarly be
treated. The need for higher than second or third differ-
ences, however, has not yet been demonstrated.

It should be noted that the existence of higher-fre-
quency modulation noise of different origin also has
significant affect on stability measures. In general, the
factors which limit the system to a finite bandpass are
sufficient to insure convergence of the stability measures
as w— <. If it is primarily the measuring system which
limits the system bandpass, however, the results may be
significantly altered by the measuring system itself.
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APPENDIX
RATIO OF VARIANCES

Let €(t) be a real generalized function such that (e(t))
=0 and define the discrete variable ¢, by the relation

em = e(t + mt). (73)

Also, let the auto-covariance function of e(t) be, as be-
fore, independent of a simple time transition. One may
now write (see Table I)

(A6 = 2[{(e)?) — (et + 1)e®])]

and assume that

(76)

((Aen)?) = (77)

where k, is a constant for a given n. It is also possible to
obtain the variance of the second difference:

le",

((A%)2) = 6{(en)?) — 8{[elt + 7)-e())])
+ {[e(t + 20)e()]). (78)
Using (77) and (78), one may obtain
2¢,,)? Ak — ki(27)7
@*igl —_ ;Tg,\, ,Ll),—4_(2)n (79)
{(Aen)® kyr?
Since (79) must be non-negative (e is real), the ex-

ponent is restricted to the range <2,
Similarly, one may obtain the variance of the third

difference
((A%r)? = 15k 7" — 6k (27)" + k1(37)7, (80)
and hence the ratio
@y _Boseres
(%)™ +— (@2
Similarly,
(@t 36 =00 E B -
((A%n)*) 15 —6-(2)" + (3)

Equations (79), (81), and (82) are plotted in Fig. 6 asa
function of the exponent 7.
For n=4/3, as in Fig. 6, the theoretical ratios,

((A*en)®)

<(An€m) >
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for n=1 and 2 are 1.48 and 2.84, respectively. The
straight lines drawn in Fig. 5 were made to have these
ratios and slope 2/3 (the square root of the variances).
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