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;ummary 
Heretofore, the Allan Variance," u *(r), has 

become the de facto standard for measudng oscil- 
lator instabilitv in the time-domain. Often 
oscillator frequency instabilities are resonabl 
modelable with a power law spectrum: S (f) - e" 
where y is the normalized frequency,yf is th; 
Fourier frequency, and a is a constant over some 
range of Fourier frequencies. It has $een shown 
that for power law spectrum a *(r) - T and that 

IJ = -a-l for -3<a< + 1, wherr T is tie nomimal 
sample time over which each value of y is measured. 
The modified "Allan Variance" developed in this 
paper yields p z -a-l for all a in the range -3<a, 
which removes the previous ambiguity: p = -2 for 
+l<a. In other words, with the modified "Allan 
Valiance" one can easily distinguish between white 
phase noise (a = +2) and flicker phase noise 
(a = +1) -- commonly occurring for the short term 
instabilities of quartz crystal oscillators and 
active hydrogen masers. 

the same, i.e., - r-2. It is not at all uncosmton 

for white PM and flicker PM to occur in precision 

oscillators for r of the order of one second and 

shorter. The modified Allan variance, as develop- 

ed in this paper, depends as t-2 for a = +l and as 

~-3 for a = +2. This yields a clear distinction in 

somewhat 
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Introduction 

The random fluctuations in precision oscil- 

lators may often be characterized by a power law 

spectrum: 

sym =hafo, (1) 

where y is the normalized frequency deviation, f 

is the Fourier frequency, ha is the intensity of 

the particular noise process, and a is constant 

over some range of f. The typical values of a 

are: +2 (white noise phase modulation, PM); +1 

(flicker noise PM); 0 (white noise frequency 

modulation, FM); -1 (flicker noise FM); and -2 

(random walk FM). The Allan variance, as it has 

come to be known, 
1 

has been demonstrated as a very 

useful statistical tool for characterizing these 

various random processes with the exception that 

ifa= +lor +2, the dependence on t is nominally 

the time domain between these heretofore 

ambiguous processes. 

Definition of "Allan Variance" 

and Related Concepts 

Define y, the normalized frequency deviation, 

as 

y(t) = 
v(t) - v. 

V 
(2) 

0 

where v(t) is the output frequency of the oscilla- 

tor being studied, and v. is nominally the same 

frequency, but of a reference oscillator assumed 

for the moment without loss of generality to be 

better than the test oscillator. The time devia- 

tion from some arbitrary origin (t = 0) is the in- 

tegral of the frequency deviations (from that 

origin): 

x(t) = J- y(t') l dt' (3) 

0 

The iz average frequency deviation over an inter- 

val, T, is 

(4) 

where the assumption is made that the time devia- 

tion measurements are nominally spaced t apart. 
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The "Allan Variance" is defined as: 

cfy2(r> = + ‘(Y,,l -q2> 9 (5) 

where the brackets '9 9 denote infinite time 

average. Using equation (4), one may write: 

uy2(t) = & ‘(x,+2 - 2x3+1 + xp . (6) 

It has been shown that typically u a(r) 

varies as ru', and that u = -a-l for -3 2 a 5 +l. y 1,2 

Hence, we see one of the dimensions of usefulness 

of cry2(r); i.e., ascertaining the dependence on T 

allows an estimate of a (the power law spectral 

type of noise). However, if a 2 +l, then u B -2, 

and the T dependence becomes somewhat ambiguous as 

to the type of noise in this region. It is inter- 

esting to note that in the region a 2 +l, uya(r) 

is bandwidth (fh) dependent; i.e., the bandwidth 

of the measurement system will affect the value of 

uy(r), and furthermore, one may use the bandwidth 

dependence3 to determine the value of a (see also 

Appendix Ref. 2). 

Development of the Modified Allan Variance 

One may also write uys(t) in terms of a 

generalized autocovariance function: 

uy2(r) = & C4Ux(T) - UX(2T)l , 

where 

uxw = 2CRx(‘3> - RxW, (8) 

and where 

Rx(r) = cx(t+r) * x(t)> ) (9) 

the classical autocovariance function of x(t). 

Using the Fourier transforms of generalized func- 

tions, one may determine the coefficients relating 

the power spectral density to uys(t). Ref. 1 

gives these relationships. It is of interest to 

note that Ux(t) has the following approximate form 

in the region a 2 + 1 (see Appendix Ref. 2): 

U,(r) - a(a) 
[ 

I&--i -'+I - 1x1 "+I 1 (10) 
Hence, one notes that by changing the reciprocal 

bandwidth as well as T, one affects uya(t) in 

similar ways, depending on the value of a. From 

this, one should be able to deduce the value of a, 

since the bandwith dependence becomes stronger for 

a moving positive from +l, and the T dependence 

becomes stronger as a moves negative from +l. One 

can change the bandwidth in the hardware or in the 

software. In the past, it has typically been done 

in the hardware.3 James Snyder4 has shown that it 

is relatively easy to change the bandwidth in the 

data processing by a clever technique and we have 

followed his lead. In particular, we have chosen 

a new variance analysis scheme which coincides 

with the Allan variance at the minimum sample 

time, zo, (i.e., minimum data spacing), but which 

changes the bandwidth in the software as the 

sample time, T, is changed. 

Each reading of the time deviation, xi, has 

associated with it an intrinsic nominal (hardware) 

measurement system bandwidth, fh. Define 

th 
1 

= -; and similarly we may define a software 

bandw%, fs = fh/n, which is l/n times narrower 

than the hardware bandwidth. This software band- 

width can be realized by averaging n adjacent 

x 's; T i s = nrh, where ts = l/fs. We have defined 

a modified Allan variance which allows the recipro- 

cal software 
P 

andwidth to change linearly with the 

sample time, T: 

a n 

Mod uy'(r) = & ;x(~i+~~ 

i=l 

where T = nr,. Eq. 11 clearly coincides with Eq. 

6 for n = 1. One can see that, in general, we 

have formed a second difference of three time 

readings with each of the three being an average 

of n of the xi's (with non-overlapping averages). 

As n increases, the (software) bandwidth decreases 

and this bandwidth varies just as fs = fh/n. 

For a finite data set of N Ireadings of xi 

(i = 1 to N), we may write an estimate: 
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Mod cry?(r) = 3 
1 

tW(N-3n+l) l 

(12) 

lXj+2n - 2xj+n + 'j) ' 

I 

Eq. 12 is easy to program, but takes more time to 

compute than for uy(r). This is only of signifi- 

cance for the smaller computer or handheld calcu- 

1 ator. 

Comparisons, Tests. and Examples of Usage 

of the Modified Allan Variance 

We simulated various power law noise proces- 

ses, and applied Eq. 12. Shown in Fig. 1 art the 

resulting r-dependences of the modified Allan 

variances for a = -2, -1, 0, +l, and +2. The 

solid lines drawn art the anticipated or theoreti- 

cal slopes for the particular noise process. One 

sets excellent agreement for white noise PM and 

for flicker noise PM, and nominal agreement for 

the others. 

One can express Eq. 11 in terms of the gtn- 

eralized autocovarianct function: 

Mod uy2(r) = & 
1 

C4U,(r) - U,(2r)l - n 

+z (n-i)[-6Ux(ito) + 4Ux((n+i)ro) 

i-l 
(13) 

+ 4Ux((n-i)to) - Ux((2n+i)ro) 

- U,((2n-i)r,)l . 
1 

In the range -3 2 a 2 +l, one may write: 

Ux(') = a(a) . T -a+1 , (14) 

which when substituted in Eq. 13, and using Eq. 7, 

yields 

Mod uy2w = uy’(r) 1 ; + 1 . 
n2 an-Q+1 - (2n)-a+1 

n-l 
c (n-i) l 

i-l 
[-6f-a+1 + 4(n+j)-‘+l (15) 

-(2n+j)-‘+l + 4(n-j)-a+1 - (2n-j~-Q+1 
II 

Since we know that uys(r) is well behaved in this 

range and p = -a -1, it is of interest to look at 

the ratio: 

R(n) = Mod uy2(r)/uys(t) . 

As stated before, at n = 1 (T = ro) the ratfo is 

unity. One can evaluate Eq. 15 with a computer. 

A reasonable empirical fit may be formed, which is 

good to 0.5% or better of Eq. 15: 

R(n) = q+ (16) 

which approaches p/q asymptotically as n ap- 

proaches infinity, and is within 1% of p/q for 

n 2 8. Listed in Table 1 are the empirical values 

of p, q, and E and the quality of fit for the 

appropriate power law noi se processes. 

whit* FM 0 1 2 2 pwfe.3 .707 

Fllckw FM -1 99.9 140 2.35 w .021 

Imdom Y,lt FI -2 33 40 2.35 ckl ,908 

Flicker Walk F" -3 1 1 -_ pwrect 1 

The results of Table 1 are in reasonable 

agreement with simulated results of Fig. l(a) 

through l(e). The last row in Table 1, "flicker 

walk" frequency modulation, is out of the range of 

applicability of a, but the ratio, R(n), is still 

convergent. 
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The Ux(r) function for flicker noise PM is 

extremely complicated and has not been developed, 

but one can arrive at an empirical value for it. 

The U,(r) function is derivable for the other 

power law spectral processes. Table 2 gives the 

relationships between the time domain measure 

Mod uyz(r) and its power law spectral counterpart, 

given in Eq. 1. Also listed in the right hand 

column of Table 2 are the asymptotic values 

of R(n): 

TMLE 2 

lblr* 1yp* R(n) 

live m 
kd Oyl(') CDunt n-r 

WIlLI FM l 2 h. 3 ‘h 
2t-m3YG2 Exact 1 

* 

Flfckw PM 

uhitm Fn 

Fllct,r FM 

+1 5' 
l.036 l 3ln(wbrI 

(2x)r 11 Enplricrl 1 

R(n) 
0 ho' -27 Exvt 0.5 

-1 he1 2M2) . R(n) Evir(~41; Ex4ct 0.674 
Awfl4ble 

Rmdv Y4lt FM -2 hm2' v . R(n) mirlcrl; k4Ct 0.824 
Avail4bl4 

It is clear from Table 2 that Mod uy2(r) is 

very useful for white PM and flicker noise PM, but 

for u < +1 the conventional Allan variance, u 2(r). 

gives both an easier-to-interpret and an easizr-to- 

calculate measure of stability. 

It is interesting to make a graph of a versus 

p for both the ordinary Allan variance and the 

modified Allan variance. Shown in Fig. 2.is such 

a graph. This graph allows one to determine power 

law spectra for non-interger as well as interger 

values of a. The dashed line for the modified 

Allan variance has been intentionally moved to the 

left in Fig. 2 because for small values of n the 

value of p will appear to be slightly more negative 

that for uy2(z), even though for large n, they 

both approach the same slope (i.e., the same 

values of p). In fact, in the asymtotic limit, 

the equation relating p and a for the modified 

Allan variance is 

a = -p -1, for -3 < a < +3 . 

* See Appendix Note X 34 

(17) 

The value of p = -4 for a = +3 was verified empir- 

ically with simulated data, and it appears that 

for a > +3, p remains at -4. 

A direct application' for using the modified 

Allan variance recently arose in the analysis of 

atomic clock data a5 received from a Global 

Positioning System (GPS) satellite. We were 

interested in knowing the short-term characteris- 

tics of the newly developed, high-accuracy NBS/GPS 

receiver, as well as the propagation fluctuations. 

Fig. 3 shows both uy2(r) and Mod uy2(r) for com- 

parison. Using Mod uy2(r), we can tell that the 

fundamental limiting noise process involved in the 

system is white noise PM with the exciting result 

that averaging for four minutes can allow one to 

ascertain time difference to better than one 

nanosecond excluding other systematic effects. 

Conclusion 

We have developed a supplemental measure, the 

"Modified Allan Variance" (Mod uy2(r)), which has 

very useful properties when analyzing oscillator 

or signal stability in the presence of white noise 

phase modulation or flicker noise phase modulation. 

It also works reasonably well 'as a stability 

measure for other commonly occuring noise processes 

in precision oscillators. 

We would recommend that for most time domain 

analysis, u 2(r> 
Y 

should be the first choice. If 

u 2(r) 
Y 

depends on r as X-I, then the modified 

Allan variance can be used as a substitute to help 

remove the ambiguity as to the noise processes. 
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Notes and Errata
See item 34 on page TN-342 of the Appendix for two corrections.  Click on the link for this table to go there.
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Fig la-e. Mod uy(r) using Eq. 12 was calculated for different sample times for 

independently generated and simulated noise processes, which were 

white phase noise, flicker phase noise, white frequency noise, 

flicker frequency noise, and random waTk frequency noise, respec- 

tively. Mod uy(r) was computed for 399 data points in each case. 

One sees the excellent fit to the theory for white phase noise and 

flicker phase noise, an important new contribution in the ability to 

characterize oscillators having these noise processes. 
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