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Abstract-Stark broadening theories which concentrate on the statistics of the plasma electric microfield 
rather than the dynamics of collisions have come to be known as Model Microfield Methods. In the present 
paper we present an analysis of Stark broadening problems based on Markovian model microfield statistics. 
Our derivation permits an easy comparison with traditional Stark broadening theories such as the impact 
and unified theories; this comparison is used to clarify the physical nature of the approximations employed 
by Markovian models. The strengths and weaknesses of various models are discussed, emphasizing the 
kangaroo process of Brissaud and Frisch, and methods are suggested for improving the current model 
microfield approach. 

1. INTRODUCTION 

In this paper we will discuss the class of iine broadening theories known as Model Microfield 
Methods'-' henceforth abbreviated as MMM. This type of theory was originally proposed by 
Brissaud and Frisch' for line broadening in plasmas where a radiating atom is perturbed by the 
electric microfield produced by the electrons and ions. In traditional theories, such as the 
impact' and unified6,' theories, the electric microfield is evaluated as the sum of electric fields 
produced by each of the charged particles in the plasma and averages of various collisional 
operators such as time development operators are performed by independently averaging 
over all possible positions and velocities for the charged particles. The MMM proposed by 
Brissaud and Frisch makes a radical departure from the traditional approach because it 
concentrates on the statistical properties of the electric microfield, almost disregarding the 
existence of the particles. The goal of the MMM is to find a mathematical model which 
correctly describes those statistical properties of the electric microfield which are necessary for 
calculating line profiles. A few key parameters are of course defined by results obtained from 
the traditional plasma kinetic theories, but the main focus of the theory is on the mathematical 
statistics. 

The approximations used by Brissaud and Frisch are consequently mathematical in nature 
rather than physical and they were motivated in part by the desire to obtain a simple analytic 
expression for the line shape. It has thus been quite difficult to assess the validity of their model 
and the MMM approach was, to a large extent, ignored for this reason. However, Seide13 has 
recently performed a detailed set of calculations for hydrogen lines using the MMM of Brissaud 
and Frisch to treat the electrons and these calculations agreed very closely with the best 
available unified theory calculations. Shortly thereafter, he used the MMM for the ions as well4 
and these calculations gave much better agreement with experimental data then all previous 
impact and unified theory calculations. Nevertheless, in spite of this improvement, there are 
still discrepancies with experimental data. As a result of the success of Seidel's calculations and 
the tantalizing discrepancies which remain, there is now a great deal of interest in the MMM, its 
conditions for validity, and methods for improving the model. 

tPart of this research was performed while E. W. Smith was a visiting professor at the UniversitC de Provence. 

229 



230 EARL W. SMITH et 01. 

The goals of the present paper are to (1)  present a new approach to the MMM which permits 
a detailed comparison with the traditional impact and unified theories, (2) to clarify the physical 
nature of the approximations used by Brissaud and Frisch, (3) to point out weak points in the 
theory which may limit its validity and (4) to suggest methods for improving MMM calculations. 

2. DIGRESSION O N  STRONG COLLISIONS 
We wish to begin with a brief digression on the difference between strong dynamic collisions 

and strong static interactions. This is necessary because we will be interested in discussing the 
validity of various theories for strong fields and also because a great deal of confusion exists in 
the literature concerning the distinction between strong dynamic and static fields. 

The traditional view of static interactions begins by noting that the intensity at a frequency 
separation A o  from line center is given by the Fourier transform of the dipole autocorrelation 
function 

I (Aw)  a Re e iAu' (d( t )  * d(0)). (1) 

This integral is determined primarily by the region t I l / A o  because, for t > l /Aw, the 
exponential oscillates between -1  and 1, which reduces the magnitude of the integrand and 
produces a cancellation between positive and negative values. Letting T denote the duration of 
a collision between a charged particle and the radiating atom, it is then clear that all particles 
for which 7 %  l / A o  may be regarded as stationary when calculating the intensity at the point 
Ao. Thus, it is argued that for A o  sufficiently large, most particles could be regarded as static. 
Letting V(r )  denote the first order static perturbation' due to a particle at the point r, the energy 
levels of the atom will be shifted so that it will absorb or emit at a new frequency w defined by 
h A o  = V(r) .  Combining this result with the requirement T* l / A o  for static interactions, one 
finds that static interactions are characterized by 

Vdh 9 1 and A o  S 1 / ~  (static interaction); (2a) 

if V(r)  = C/r" with n 1 2  and T = dun,,, where u,,, is the average perturber velocity (relative to 
the atom), then Eq. (2a) gives 

re r, = (C/huaVg)"("-') and A o  % 1 / ~  (static interactions); (2b) 

where r, is called the Weisskopf radius; a corresponding Weisskopf frequency is defined by the 
inverse of the collision duration T, = r,,,/ravp, that is A o ,  = unvJrw. Thus, one says that static 
interactions are characterized by Eq. (2a) and, on the average (i.e. using u = uavs), they are due 
to perturbers which are much closer than the Weisskopf radius r, and they contribute to that 
region of the linewings where A o  % A o ,  (Le. using T < 7, = l / A o ,  and the condition for static 
interactions T S l / A o ) .  

On the other hand, strong collisions are defined to be all those interactions for which a 
perturbation expansion of the S matrix is not valid. That is, 

V ( t )  d t  = rV(r)/h 2 1 (strong interactions), (3) 

where r is the distance of closest approach and T = r l u  is the collision duration time; using the 
Weisskopf radius defined in Eq. (2b), this is equivalent to 

r s r, (strong interactions). (4) 

Comparing Eqs. (2a) and (3) or (2b) and (4), we see that all static interactions are strong but 
the conuerse is not true. In the line center, Aw 5 1 / ~ ,  all strong collisions will be dynamic and, 
even in the line wings, A o  S I/?, the interactions for which 15 V T / ~  5 10 may be regarded as 
dynamic strong collisions. It is important to realize that one may not treat all strong interactions 
as though they are static; a failure to appreciate this fact (see Section 2.1 of Ref. 9) has led 
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Brissaud et aL9 to an incorrect assessment of the validity of their MMM for strong interactions 
(this will be discussed further in Section 5 ) .  

In order to give a rough but quantitative description of these concepts, we consider low 
lying hydrogen lines (e.g. Ly-a, Ly-p, Ha, HB) in a plasma at a temperature T = IO4 K and 
density n = IO" cm-3 as an example. A reasonable estimate for V ( r )  is V ( r )  = 10aoe2/r2 z 
1.2 x erg cm2/? for AI,, 5 r 5 A D  For r greater than the Debye length AD = d(kT/47rne2), the 
interaction is cut off by plasma shielding effects and, for r smaller than the thermal de Broglie 
wavelength A,,, = d(h/27rpkT), classical concepts are no longer valid (r < AI, contributes at 
most 7rA;,, to the optical cross section which is a small correction for most plasmas). Noting that 
the reduced mass p for a hydrogen-proton collision is roughly half the proton mass, the various 
parameters of interest are 

r,, = (C /h)d (p /3kT)  
= 1.7 x cm d(lo*/T(OK)) (electrons), 

= 5.16 x 10-6cm V(1O4/T(OK)) (ions). 
(7) 

Thus we see that, for ions at T = IO4, N = IOl7 r, % AD; hence, all interactions are strong; some 
will be static and some dynamic depending on the value of do. For electrons, r, 4 2Arh; hence, 
there will be very few strong dynamic collisions and essentially no static collisions (i.e. they all 
fall in the quantum scattering domain r 5 A r h  which makes very little contribution in most 
cases). 

We next note that the probability finding two perturbations simultaneously within a distance 
r from the radiator is ( 4 ~ ? n / 3 ) ~  = (r/ro)6 where ro= ( 3 / 4 ~ n ) " ~  = 6.2 x cm (1018/n)"3. Taking 
r 5 r,, this procedure gives the probability of having two simultaneous strong collisions. For 
electrons, r, 4 ro and one may neglect the problems of overlapping strong collisions; for ions on 
the other hand, r, 3 loro; hence, the overlap of strong interactions will be a very important part 
of ion broadening. 

3. DERIVATION O F  MARKOVIAN MODELS FOR T H E  ELECTRIC FIELD 
In this section, we outline the mathematics which provides the foundation for any Marko- 

vian model of the plasma electric field, following closely the discussion of Markov processes 
contained in Ref. 10. We also derive various expressions for the line shape which permit an 
analysis of the validity of the MMM. The kangaroo process (KP) proposed by Brissaud and 
Frisch'** is discussed as a specific type of Markovian model. 

We start by considering a series of values (e1, e2, E ~ , .  . . , E,,) taken by the electric field ~ ( t )  
at the times (ti, f2, t 3 , .  . . , f,,). The probability of finding these values at the prescribed times is 
described by a probability function a,, (elti; e2t2; c3 t3; .  . . : E,$,,). These changes in e ( t )  are said 
to be a Markov process whenever" 

where P ( E ~ ~ ~ ( E ~ ~ ~ )  is a conditional probability, that is, it gives the probability that the electric 
field E ( ? )  will have the value E~ at the time t2 when it is known that €( t i )  = e l .  

For a Markov process, the conditional probability function satisfies the Chapman-Kol- 
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dE”P(dld’t”)P(E”t”l(‘f‘) 

as well as the following relations: 

(9) 

We next restrict ourselves to a subclass of Markov processes for which” [see Eq. (1.73) of Ref. 
10 or Eq. (3.12) of Ref. 21 

where W(E/E‘) is called the transition rate, A is a normalization constant required by Eq. (lo), 
viz. 

and v(e)  is a frequency defined by 

V ( E )  = de’ W(E/E) (14) I 
such that I / Y ( E )  is the average duration of a field of strength Q. We note in passing that Eq. (12) 
implies that 

(15) P ( E t l E ’ t )  = 8 ( E  - E’).  

Substituting Eq. (12) into Eq. (9), we obtain the differential form of the Chapman- 
Kolmogorov equation” 

a,P( ct le’?’) = - V (  E )P(  et Id’) + de’‘ W( cIE”)P( E”? I E ’ ~ ’ ) ,  (16) I 
which is better known in physics as a master equation. In fact, multiplying Eq. (16) by Ol(dr), 
integrating over E‘ and using Eq. (1 1)  gives the familiar master equation for O1 

Starting from Eq. (16), Brissaud and Frisch define a specific Markov process, which they 
have named the kangaroo process, by choosing a transition rate W with the product form 

There are many ways to specify the functional form of Q ( E )  and V ( E )  and the functions chosen 
by Brissaud and Frisch are well adapted to line broadening problems. They choose the function 
Q so that the steady state solution of the master equation, Eq. (17), will be the well known 
plasma microfield distribution function” P(e); this condition required [Eq. (16) of Ref. I ]  
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where the average ( a  e )  of any function f(6) is defined by 

It should be noted that we are using the notation of Brissaud and Frisch' rather than that of 
Hooper;I2 our function P ( E )  was called @(E) by Hooper and it is not the same as Hooper's well 
known P ( E ) .  From Eq. (18) it is clear that W ( E / E ' )  must be an even function for both E and e'; 
thus, in the general solution of Eq. (171, 

+ n = l  2 I ' d t , ,  0 
. . . I ' l d t o l d q , .  0 . . l d c ,  

it is clear that all terms in the sum over n are even, consequently the covariance takes a 
particularly simple form 

Brissaud and Frisch then choose their function v(e) so that Eq. (22) is equal to the electric field 
covariance which is well known from plasma kinetic theory.I3 

A major advantage of the model defined by Eqs. (18) and (19) is that it produces a simple 
expression for the average of the time development operator generated by the interaction 
V ( t )  = M ~ ( t ) ,  i.e. 

ia, T( t )  = V (  t )  = M - E( t )  T( t ) .  (23) 

For hydrogen lines, one readily obtains [Eq. (17) of Ref. 11 

V 
Z(o) e"'( T ( t ) )  dt  = Re I 
which permits rather simple numerical calculations. 

that, in the static limit v(E)+O, Eq. (24) gives the well known static result 
In order to examine more closely the validity of the Brissaud-Frisch model we first note 

The limit v(e)+O is a mathematical statement that the time between jumps in the electric field, 
I/v(E), approaches infinity; that is, the field never changes. In the Brissaud-Frisch model, v(e) 
is proportional to the ion plasma frequency, hence the static limit may be obtained by letting the 
ion mass approach infinity. The static result, Eq. (25), is also obtained in the far line wings 
w % M - €0  using M * eo> v(eo), where eo is the most probable ion field strength; these two 
inequalities are equivalent to those in Eq. (2a). To show this, we first note that the averages in 
Eq. (24) are essentially integrals of functions proportional to P(r)/[v(e) - i (w  - M * E)] which 
has two peaks, one at E = eo due to P ( E )  and another at € = e l  where E = M - E ~ .  Since 
v(eo) = up, the region of the integral around E z co contributes a term which is proportional to 
(up/@) and is thus negligible in the far wings, w b M - eo> deO) P or The integrand in the 
region e el is sharply peaked since both w and M E are much greater that v(el); hence it may 
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be evaluated by a stationary phase integration. The first term on the right side of Eq. (24) thus 
reduces to the static result and the second term is of order (oJM eo) and thus negligible. 

To study the dynamic limit, we use the result derived in Appendix A, where it is shown that 
I ( o )  can be written in the form 

I ( @ )  = [-io - Mc(o)]-' 

with M, defined by 

Mc(o) = [dt eh'(M e(t)M 9 c(0)) 

+ [ d t  e&' ds  I,' ds'[(M e(t)M r(s)M * E(s')M ~(0) )  

- (M * r(t)M * E(s))(M * E(s')M ~(0))] + * * * 

This is the general result derived by FanoI4 in which each term will be evaluated using the 
probability functions P ( ~ t l ~ ~ 0 )  obtained from Eqs. (18) and (21). 

It is not surprising that the line shape, obtained by the model microfield theory, Eq. (24), can 
be written in the form obtained by Fano, Eqs. (26) and (27), because the latter are purely formal 
results which are independent of the model used for the actual calculations. That is, the 
Brissaud-Frisch MMM calculations using Eq. (24) are identical to the results of a calculation using 
Eq. (26) provided that every term in the series expansion of M J o )  is evaluated using the 
Brissaud-Frisch model. This fact permits a very convenient and informative analysis of the 
validity of the Brissaud-Frisch model in the dynamic limit. 

4. THE M M M  FOR BROADENING OF HYDROGEN LINES BY ELECTRONS 
It has been known for sometime that, for hydrogen lines, the second order term in Mc(o) 

produces virtually all of the dynamic aspects of electron Stark broadening. In fact, this was the 
only term considered in the early impact theories? which used an impact parameter cutoff, bo, 
to remove those interactions for which 10" V ( t )  dt  > 1; the contribution of these strong col- 
lisions was usually rather small and was approximated by a collision cross section vb:. A more 
recent modified impact theory" used a frequencydependent Lewis cutoff which greatly 
improved the calculations for larger frequencies (Le. frequency separations from line center Ao 
greater than the electron plasma frequency up) and an attempt was made to patch on an 
asymptotic line wing expression for the electrons." Finally, calculations were made with a 
unified theory' which included some of the higher order terms in Eq. (27), namely, those 
corresponding to nonoverlapping binary collisions. In this theory, Mc(o) was expressed as the 
Fourier transform of a function F( t )  and the t + O  and t + m  asymptotes Fo(t) and F,(t) were 
evaluated and analyzed. For values of w near line center, it was found that M J o )  is determined 
primarily by F,(t) and this gave results essentially identical to the second order results of the 
modified impact theory." In the line wings, Mc(o) is determined by Fo(t) and one obtains the 
familiar Holtsmark asymptotic result in which correlations between electrons are neglected; it 
is known that this result is less accurate than a static calculation which includes electron 
correlation effects, but it was argued that this small error would be overwhelmed by the large 
contribution from static ion broadening. Thus, while the unified theory improved the theoretical 
foundations for electron broadening and to some extent the accuracy and reliability of 
numerical calculations, this theory also tended to confirm the original idea that, for electron 
broadening at least, one needs only the electric field autocorrelation function (the second order 
term in Mc(o)) in the dynamic limit and a static asymptote for the line wings; any reasonably 
smooth means of joining these two asymptotes seems to produce only small errors in the 
transition region. Additional support for this conclusion comes from studies of time 
ordering,'8v'9 electron correlations?' and other effects" which appear only in fourth and higher 
order terms in Mc(o). These corrections'' are always found to be at the 10% level thus 
confirming the idea that 90% or more of the electron broadening is described by the electric 
field autocorrelation and an appropriate static limit. 
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From our previous discussion of the kangaroo process (KP) proposed by Brissaud and 
Frisch, it is clear that their model gives the same second order results for M J w )  as the unified 
theory (recall that their jumping frequency U(E) was defined in such a way that their calculation 
of the electric field autocorrelation, Eq. (2.15), would equal the result known from plasma 
kinetic theory). 

A calculation of Mc(o) with the Brissaud-Frisch model also includes all higher order terms; 
the KP model calculations have not actually been done this way, but as noted in the previous 
section and in Appendix A, the KP calculations can be rewritten in the form of Eq. (26), thus 
permitting an identification of each term in Mc(o). Taking the fourth order term for example 
[Appendix A, Eq. (A.7)], we see that this involves a calculation of 

In the KP model, these averages are evaluated using the approximation specified by Eq. (18) 
to simplify the general Markovian probability function P(ct Ic‘f‘) given in Eq. (21). In the unified 
theory, only the term (V(t3)V(t2)V(tl)V(0)) is evaluated (the other term comes from the 
projection operator which is neglected in the unified theory calculations; see Appendix B of 
Ref. 18 for the justification of this approximation); it is also assumed that all four functions 
V ( t )  represent one and the same electron (i.e. overlapping collisions are neglected) and, finally, 
the time ordering t3 2 t2 2 t l  r 0 in Eq. (28) is usually neglected. Thus, we see that with the 
unified theory one calculates a highly restricted subset of the higher order terms using various 
approximations (e.g. binary collisions, neglecting time ordering, etc.) whereas with the MMM 
one calculates all of the higher order terms using the function P(d1e‘t’). The accuracy of any 
MMM calculation for these higher order terms will depend on the particular model chosen for 
P(ct1e’t’). We emphasize that the validity of the MMM for higher order dynamic effects, such 
as time ordering is really a question of its validity for the higher order terms in M J o )  in the 
dynamic limit; in principle, all of these terms exist in an MMM calculation but their accuracy 
will depend on the model chosen for P(ctle’t’). 

Broadening by electrons is not likely to provide a sensitive test for these higher order terms 
because, as noted above, they produce only a 10% change in the line profile. In fact, 
V o ~ l a m b e r ~ ~  has compared a KP model calculation by Seide124 with his unified theory cal- 
culations and finds at most a 5% difference between the two profiles (i.e. a 10% difference in the 
electron contribution) in the near line wings (i.e. for frequencies between the plasma frequency 
and the Weisskopf frequency). 

One important result of the inclusion of all higher order terms in Mc(o) is that the MMM 
approaches the correct many-body static asymptote, whereas the unified theory approaches the 
on-particle static asymptote known as the Holtsmark limit. This may be expected to produce a 
difference of 5% or less for frequencies around the Weisskopf frequency (for much larger 
frequencies, the many-body static results approach the Holtsmark limit and, for much smaller 
frequencies, static effects vanish). In fact, part of the discrepancy observed by V ~ s l a m b e r ~ ~  
may have been due to this difference in the calculation of static effects. 

The preceding discussion may be summarized by the following points: (1) the MMM is in 
principle more powerful than the unified theory because it provides a calculation of all higher 
order terms in Mc(o) rather than a restricted subset of terms; (2) in the static limit this enables 
the MMM to use the best known many-body probability distributionI2 rather than the one- 
particle Holtsmark limit used in the unified theory; (3) in the dynamic limit, the accuracy of an 
MMM calculation of the higher order terms (which include time ordering effects, electron 
correlations, etc.) will depend on the particular model chosen for P(ct(c’f’);  (4) dynamic 
electron broadening is determined almost entirely by the second order term in M J o )  
(essentially the electric field autocorrelation function) hence one may expect very good 
results from the Brissaud-Frisch KP model because this model, by its construction, gives the 
known second order results; (5 )  this insensitivity to higher order dynamic effects means that 
one will not be able to use electron broadening to distinguish between the Brissaud-Frisch 
model and various alternative stochastic models.2s 



236 EARL W. SMITH ef ai. 

We may thus conclude that the KP model proposed by Brissaud and Frisch provides a 
powerful theory for electron broadening of hydrogen lines; it is as accurate as the unified 
theory to second order and it is more accurate in the static limit. The validity of the KP model 
for higher order dynamic effects has not been established as yet because these effects make 
only a 10% contribution to electron broadening. 

5. T H E  M M M  F O R  B R O A D E N I N G  OF H Y D R O G E N  L I N E S  BY I O N S  
For many years, ions were treated as static for all line broadening calculations. It was 

known that ion dynamic effects could be present at line center but it was thought that they 
would not produce an observable change in the line profile. However,  measurement^^^.^' of the 
halfwidth of H, and the central dip of H, for hydrogen and deuterium perturbed by various 
noble gases showed a l/vp dependence on the reduced mass and agreement was obtained 
with static ion calculations only in the limit p = m. Furthermore, a recent measurement2’ of the 
Ly, halfwidth is 2.5 times larger than that calculated using a static ion approximation. 

Measurements such as these have stimulated many attempts to use the impact and unified 
theories to describe the dynamic ion broadening. Such attempts have met with very little 
success because both of these theories are based on the fundamental assumption that the 
radiating atom is perturbed by a series of nonoverlapping binary collisions with the perturbers 
whereas, for densities of 10’’ or higher, the ions are characterized by important overlap effects 
as discussed in Section 2. These overlap effects are seen in the static limit where the many body 
probability distributionI2 must be used rather than the one particle Holtsmark distribution which 
is the normal static limit of the unified theory. Attempts have been made to modify the unified 
theory by building in the many body static limit but this does not address the problem of 
overlap in the dynamic limit. 

Since the MMM does not employ by a binary collision assumption, it was hoped that this 
type of theory would provide a good theoretical treatment of ion broadening including both the 
many body static limit as well as an improved treatment of dynamic effects. Seidel‘ has 
performed detailed MMM calculations for H,, H, and Ly, using the Brissaud-Frisch KP model 
for both ions and electrons and his calculations give much better agreement with experimental 
data than previous calculations using a purely static theory for the ions but some important 
discrepancies remain, particularly for the H, dip at lower densities (Fig. 9 of Ref. 4). These 
results indicate that the ability of the MMM to include ion dynamic effects constitutes a major 
improvement over previous theories but something is still missing in the calculations. Seide129 
has investigated the influence of radietor motion on the collision broadening but it was found that 
this effect is negligible for the hydrogen lines ~onsidered.~’The fact that something is still missing in 
Seidel’s MMM calculations has led us to reexamine the validity of the Brissaud-Frisch model as 
applied to ions. 

In the previous section, it was noted that the Brissaud-Frisch KP model gave good results 
for electron broadening because the known electric field autocorrelation and many body static 
probability functions were used to define certain parameters in their model. This insured that 
their line profile would be correct in the static limit and it would also give the correct second 
order approximation for M,(o) which represents about 90% of the electron dynamic effects. 
This second order approximation was sufficient for the electrons because the average electron- 
atom collision is weak. However, the average ion-atom collision is strong so one would expect 
the higher order terms in M J w )  to be important and the validity of the KP model has not yet 
been established for these terms in the dynamic limit (i.e. values of o near line center). 

Before proceeding with a further examination of the KP model, it may be helpful to briefly 
outline some of the results obtained from the study of rotational and vibrational linewidths of 
molecules in electrically neutral gases; for these systems virtually all collisions are strong hence 
they can provide some insight into the theoretical requirements for broadening by strong 
dynamic collisions. For many years, it was thought that one could use a second order 
approximation for the averaged binary collision S matrix; strong collisions were treated by 
introducing an impact cutoff at some value bo and adding a strong collision cross section ?rb2 
just as in the early impact theories for electrons. The value of bo should be approximately equal 
to the Weisskopf radius r, defined in Eq. (2b), however, for molecules ?rr: is responsible for a 
large part of the observed halfwidth and in many cases this “correction” by itself gave 
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halfwidths which were larger than the experimentally observed values. Consequently many 
heuristic adjustments of the impact parameter cutoff were needed in order to produce 
agreement with experimental data, often resulting in ridiculous values for bo which were 
substantially smaller than the hard sphere diameter for the  particle^;^' it was finally concluded 
that this approach was completely invalid. This conclusion has never been reached in the field 
of Stark broadening simply because ?rb; constitutes a relatively small correction to the electron 
halfwidth and it was not necessary to study the strong collision problem in any detail. The 
whole cutoff procedure is based on an argument that strong collisions, b < bo, simply cause the 
S matrix to oscillate rapidly between + 1  and 1 and, under the impact parameter average, 
J S ( b ) b  db, the contribution from 0 5 b s bo is essentially zero; since M,(O) is proportional to 
the average of 2a(l- S), the integral of 1 over (0, bo) produces the strong collision cross section 
mb:. In recent years, a molecular line broadening theory has been developed3* in which S is 
approximated by exp (-iv) where 17 is a matrix defined in such a way that the approximate S 
matrix is rigorously correct to second order in the interaction and the errors introduced in 
higher order terms are small (10-15%) and tend to cancel one another when all terms in the 
series expansion are added together. This theory was found to give very good agreement with 
experimental data32,33 without any recourse to cutoffs or other adjustable parameters. Using 
this theory, it was also found” that the S matrix does indeed oscillate for small impact 
parameters but this oscillation is not a rapid and uniform function of b hence S does not 
integrate to zero for small impact parameters. It was thus established that the arguments based 
on rapid oscillation of the S matrix are false and the strong collision cutoff procedure provides 
a very poor description of strong dynamic collisions. 

From the experience gained in molecular line broadening, it would seem that we want an 
approximation for M,(o) which is rigorously correct to second order and which gives a 
reasonable approximation for each of the higher order terms. The unified theory is certainly 
correct to second order but the higher order terms will not be valid for ions, even if time 
ordering is included, because overlap effects are neglected. The MMM proposed by Brissaud 
and Frisch is also correct to second order and, as noted already, all terms in the expansion of 
M J o )  are included; it only remains to examine the accuracy of their KP model for these higher 
order terms. 

We must note at this point that Brissaud et al? have examined the validity of the KP and 
they have briefly discussed its treatment of strong interactions [see Eq. (3.19) of Ref. 91. 
Unfortunately, they have assumed that all strong fields are static (see Sect. 2.1 of Ref. 9) which 
is not correct, as already noted in Section 2 of the present paper; they also assumed that a 
strong field is produced by a single particle [Eq. (2.3) of Ref. 91 thereby neglecting the overlap 
of strong binary collisions which is important for ion fields. In their treatment of strong 
collisions, Section 3.3 of Ref. 9), they assert, without proof, that the effect of strong fields is to 
instantaneously damp the correlation function ( T ( t ) )  and their damping rate, IlAt, is just the 
usual damping rate obtained from the strong collision cross section rb:. Their result, Eq. (3.19) 
of Ref. 19, is thus equivalent to the usual strong collision cutoff procedure because multiplying 
( T ( t ) )  by a damping rate exp ( -y t )  is equivalent to adding y, the strong collision cutoff 
corrections, to the halfwidth. Brissaud et al. obviously thought that this result was desirable 
because it is listed on p. 1142 of Ref. 9 in items (iii) and (iv) which they put forth as the strong 
points of the KP model; however, as noted above, the analysis of systems which are dominated 
by strong collisions has shown that this strong collision cutoff procedure is seriously in error. 
On the other hand, the analysis presented in Ref. 9 is clearly incorrect because it was assumed 
that (1) all strong fields are static, (2) each strong field is due to only one particle, and (3) strong 
fields simply serve to damp (T( t ) ) .  None of these assumptions is needed in the derivation of the 
Brissaud-Frisch KP model;’** hence, one may still hope that the KP provides an adequate 
treatment of strong collisions even though the results obtained in Ref. 9 would indicate that it is 
no better than an impact parameter cutoff procedure. 

To gain further insight into the physical nature of the KP model and its suitability for ion 
fields, we next consider the validity of the product form, Eq. (18), which is used for the 
transition rate W ( E ~ E ’ ) .  The physical meaning of W may be obtained from Eq. (12) which says 
that, if the electric field takes the value E’ at some instant of time, AfW(+’) is, in the limit 
At +O, the probability that the electric field will jump to the value E during the time interval At. 

QSRT Vol. 26. No. 3-E 
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The product form used by the KP model, W(e(e’) = Q(e)v(e’) ,  says that, if the electric field 
takes the value e’ at some instant, Atv(e’) is probability that there will be a jump to some other 
value during the time interval At  and the probability of finding the value e after the jump is 
Q(e) .  The fact that At  W(e1e’) is a product of these two probabilities, namely, Atv(e’) and Q ( E ) ,  
means that the two events are completely independent; that is, the value of the electric field 
after a jump is completely independent of the value it had before the jump. Thus, the KP is said 
to be a Markov process with no memory. For the sake of comparison, suppose we consider a 
model in which 

W ( E I E ’ )  =f(€ - e’)v(e’), (30) 

(31) 

and f(&) is peaked about Se = 0. In this model, Atv(e’) would again be the probability that the 
electric field of strength e’ will make a jump during the time A t  but the probability f ( e  - e’) of 
finding the value after the jump is peaked around the value E’ before the jump. This is an 
example of a Markovian model with memory. To compare these two kinds of Markovian 
models we consider the variation in the electric field produced by a typical binary collision; at 
the beginning of the collision the electric field will increase from some background level up to a 
maximum value at the time of closest approach, then it will decrease to the fluctuating 
background level again. The goal of any MMM is to represent such a collision, as well as other 
overlapping collisions etc., with a stepwise continuous electric field which has the same general 
behavior; that is, it increases in several discrete jumps to a maximum value and then decreases 
back to a fluctuating background level. The average duration and intensity of such events will 
be determined by the statistics of the model chosen and the criterion for success will be the 
ability of the model to predict the correlation functions needed for line profile calculations. In 
the KP model, the value of the electric field after a jump is completely independent of the value 
before the jump, hence a large positive value e’ may be followed by another large positive value 
e which is near E’ but it is just as likely to be followed by a small value e because Q ( E )  is 
peaked near small not large values of e. It is hard to imagine how such a model could ever 
represent the type of electric field variations present in a plasma. In the Markovian model with 
memory, Eqs. (30) and (311, the fact that f is peaked about zero insures that a large value E’ will 
be followed by a value e near E’ hence we would expect this type of model to be capable of 
representing the plasma electric field fluctuations. 

At this point, one may wonder how the KP model could ever have any success in 
representing the plasma electric field. It must therefore be recalled the KP model has two 
“adjustable parameters” Q ( E )  and ~ ( e )  which were defined in such a way that the static 
probability distribution and the electric field autocorrelation function would be equal to the 
known values. Since these are essentially the only functions needed for electron broadening, 
the KP was satisfactory. On the other hand, since higher order terms in ME(@) ,  that is, higher 
order electric field correlation functions, are required for dynamic ion broadening effects, it is 
no longer surprising that the KP is incapable of calculating these functions. 

From these arguments, we conclude that the KP may be unsuitable for ion broadening 
because it does not provide a good representation of the plasma electric field fluctuations. This 
model was successful for electron broadening only because the latter is determined primarily by 
the static limit and the electric field autocorrelation function and it was possible to adjust the 
free parameters in the KP to insure that these two functions would be correct. It also seems 
that the KP will not be capable of improving theoretical calculations in the transition region 
between the line center and the line wings (Le. between the plasma frequency and the 
Weisskopf frequency) where higher order terms in M E ( @ )  become important and where 10% 
uncertainties still exist in unified theory calculations. On the other hand, it seems that a 
Markovian model with memory, such as Eqs. (30) and (31), might give a better representation of 
the physical processes in a plasma and might, therefore, be used for an improved MMM. 

I def(e - e’) = 1 ,  

6. T H E  MMM FOR BROADENING OF ISOLATED HELIUM L I N E S  

For a hydrogen atom, the energy levels characterized by different values of the orbital 
quantum number 1 are effectively degenerate (within the manifold of each principle quantum 
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number n ) .  This means that the dipole operator M will have nonvanishing matrix elements 
between degenerates states and the lowest order interaction with an electric field is M * E. For 
helium atoms, the states corresponding to different I values are split by L S coupling and M 
has no nonvanishing matrix elements between degenerate states; in this case for isolated lines 
(i.e. nondegenerate), the lowest order interaction with the electric field is the second order 
result & M . ~ ( k  > (Ek - Ho)-’ (k(M * E where ( k )  and EK denote the eigenvectors and eigen- 
values of Ho. That is, for isolated lines in helium :he interaction is proportional to e2 or l / f  
whereas for hydrogen the interaction in proportional to c or l/?. This means that, by 
comparison with hydrogen line broadening, the helium lines are broadened by short range 
interactions so there is less broadening due to long range weak interactions and there is a bigger 
contribution from strong interactions (e.g. the “strong collision correction’’ resulting from the 
strong collision cutoff procedure is typically 2040% for helium lines3’ compared with 
typically 10% for hydrogen lines). For ions we may expect a similar stress on strong short range 
dynamic effects. Thus, if the KP is unsuitable for the higher order terms in Mc(w),  as argued in 
section 5 ,  we would expect it to give less satisfactory results for helium lines than for 
hydrogen lines. This is in fact the case for measurements performed on the forbidden lines at 
4922 and 4471 8, as evidenced by the results of Mazure et ai.% and unpublished results reported 
by Helbig.37 This relatively poor treatment of ion dynamics for helium thus supports our argument 
that the KP is not adequate for the higher order dynamic terms required for a description of strong 
dynamic interactions. 

7. CONCLUSIONS 
From the analysis of Markovian model microfield methods presented in this paper, we draw 

the following conclusions; 
(1) The MMM provides a means of calculating all terms in the operator Mc(o) obtained by 

Fano14 whereas the unified t h e ~ r y ~ . ~  calculates only the subset of terms which correspond to 
nonoverlapping binary collisions for statistically independent perturbers. 

(2) This means that the MMM includes those higher order terms which represent the effects 
known as time ordering, overlap of strong collisions, higher order correlations, etc. The validity 
of the MMM calculation of these higher order terms will depend on the specific model chosen 
for the conditional probability P(rt(e‘f‘) and the transition rate W(E(E’)  discussed in Section (3). 

(3) Throughout this paper we make a distinction between the model microfield method 
(MMM) in general, which may refer to any stochastic model for ~ ( t ) ,  and the kangaroo process 
(KP) which is a specific type of MMM. The KP model, proposed by Brissaud and Frisch’V2 and 
used by Seide!?** is defined by the choice W(E(E’)  = Q ( E ) v ( ~ )  with v(E‘)  and Q ( E )  being defined 
in terms of the known electric field autocorrelation function ( ~ ( t )  ~ ( 0 ) )  and the static electric 
field distribution function P ( c )  [see Eqs. (19) and (22)]. 

(4) The KP model gives good results for electron broadening of hydrogen lines because the 
choice of v and Q guarantees that Mc(o) will be correct to second order and the static limit will 
be correct; for electron broadening, these two limits determine 90% or more of the value of the 
intensity for any frequency of interest. 

(5 )  For ion broadening of hydrogen lines the KP gives better results than the unified theory 
but certain obvious deficiencies remain in the density dependence of the dip in H, etc? In 
Section 5 ,  it was argued that a Markovian model without memory, such as the KP, actually 
gives a very poor representation of the electric field fluctuations in a plasma and, for this 
reason, the KP model is not capable of correctly treating the higher order Mc(o) terms which 
are important for ion broadening. That is, the unified theory completely ignores the higher order 
correlation and collision overlap terms and thus gives poor results for ion dynamic effects. The 
KP includes these terms but calculates them with an inadequate model for P(et1~’t’)  thereby 
giving improved results; nonetheless, obvious errors remain due to the unsuitability of the KP 
model for the higher order terms which are required for strong dynamic interactions. 

(6) Our argument that the KP model is unsuitable for higher order dynamic terms is 
supported by the fact that KP model calculations give relatively poor results for helium lines 
(i.e. compared to the KP results for hydrogen lines). We argue, in Section 6, that helium lines 
are more sensitive to strong dynamic interactions due to the relatively short range interaction 
for helium. 
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(7) In Section 5 it was shown that a Markovian model with memory, such as that defined by 
Eqs. (30) and (31), can give a better representation of the physical processes in the plasma (Le. 
the electric field fluctuations) and should therefore give a better treatment of ion broadening. 

(8) Although we have discussed only Markovian models for simplicity, one could equally 
well construct an MMM based on a nonMarkovian model which could include more memory 
effects than those represented by Eqs. (30) and (31). At the present time there is no reason to 
think that a non-Markovian model would be inherently superior because the known non- 
Markovian properties of line broadening (e.g. Section 3.3) of Ref. 14) result not from the 
electric field statistics but rather from the fact that one has derived an equation of motion for a 
subsystem, the radiator, by averaging over another subsystem, the perturbers (e.g. Section 2.B 
of Ref. 7). That is, the same non-Markovian line broadening equation will result whether we 
choose Markovian or non-Markovian statistics for the perturber subsystem. 

(9) It may be useful to summarize the Markovian model microfield approach by noting that 
it involves three levels of approximations. First, there is the fundamental assumption that the 
true statistics of the electric microfield are adequately represented by a Markov model as 
defined by Eq. (8); the validity of this assumption has not been studied as yet. Next, there is the 
choice of a specific Markovian model such as the KP proposed by Brissaud and Frisch or the 
model with memory specified by Eqs. (30) and (31); in fact, there are many different Markov 
models'* one can choose from. The choice of the model is of course dictated by the statistical 
properties one wants to represent; for example, the KP model gives the correct electric field 
autocorrelation but it seems to fail for the higher order correlation functions, etc. Finally, it 
may be necessary to make additional approximations in order to obtain a soluable line shape 
expression. This is not necessary when using the KP model since that model produces a 
calculable line shape expression with no further approximations; however, improved Markov 
models, such as that proposed in Eqs. (30) and (31), will probably not permit actual line profile 
calculations without further simplifying approximations and the validity of these additional 
approximations must also be considered when comparing various alternative Markov models. 
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APPENDIX 

1960. 

In this appendix, we present the algebra necessary to cast the MMM line shape expression, Eq. (24), in the form 
obtained by Fano, Eq. (26), which is familiar to users of the unified and impact theories. From Eq. (24). we obtain 

1 [ v - io + iM . E v- io + iM . c 
.( v(-iw+M. € ) ) - I (  

v -  io + iM. 6 

=(v-  io + 1 iM. E [ 1 ++I) -10 t a(.) 

v - io + a(o)  I 
= ( v -  io + iM. E) (-) 

where 

Using (M . E) = 0, we obtain to lowest order 

(M v(iM.c)  )( v ) - I (  i M . c  ) = ((iM ' v - io + iM . e ) +  (v  - io + iM . c v - io + iM . E v - io + iM. E 

= (E$) - (:" ' "> + (6)' ( y ( % s ) 2 ) (  ( Y q )  .+ . . . 
v- lo  v - l o ?  v - lo  v -  10 v - 1 0  

thus 
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= h e-& [ (u(t )u(O))  - f ds ds'(u(t)u(s)u(s')u(O)) 
0 0  

+ l ds 1 ds'(u(t )u(s)) (v(s ' )u(O)) )  +. . * 

where u ( t )  = Me c(t) and in a Markovian MMM, 

A term such as Eq. (A8) splits into a sum of two terms when using Eqs. (18) and (21), the first is a product of three delta 
functions giving rise to the (Me e)4 term in Eq. (A7) and the second is a product of two delta functions, S(e-e2)x 
S ( q  - rr), which gives rise to the summation term in Eq. (A7); the terms with less than two delta functions vanish because 
(M . e) = 0 or rather, Y and Q are even functions of c whereas M is odd. 

Thus, we see that the MMM line shape can be written in the form derived by Fano where each term in the expansion of 
Me(@) is evaluated using the conditional probability P(et1e't') as in Eq. (A8) or Eq. (22). Actually, one could have simply 
started with Fano's result since it is derived with no approximations (other than the statistical independence of radiator and 
perturber subsystems) and then, choosing an MMM, each term in M J o )  would be evaluated as in Eq. (A8). 


