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Since the average values of the cross terms are zero, 
this reduces to:  

1 1 

T 2 
= ” [ I d .  - -- AJ2(A+) 

I f  we take the limiting band\vidth to be the Ion-pass 
bandn-idth after phase sensitive detection, as  we do in 
the text, the expression on the right must be multiplied 
by two to allow for the folding of the band when its 
center frequency is translated to  zero. 
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A Statistical Model of Flicker Noise 

J. A. BA4RNES AND D. W. ALL4N 

Abstract-By the method of fractional order of integration, it is 
shown that it is possible to generate flicker noise from “white” 
noise. A formal expression for the relation of flicker noise to white 
noise is given. An approximate method, amenable to the use of digital 
computers, is also given for the generation of flicker noise modulated 
numbers from random, independent numbers. 

INTKODL-CTION 

LICKER noise is a noise characterized by a power 
spectral density u.hich varies inversely propor- I? tional to frequency. This type of noise has been 

found in many devices including semiconductors and 
quartz crystal oscillators. The presence of this type of 
noise modulating the frequency of high-quality oscil- 
lators has been of particular interest to  the authors, 
and i t  is in this application that  the present paper is 
directed. The principles used, however, are applicable 
to  flicker noise in general but find convenient expression 
in terms of the phase and frequency of an oscillator. 
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Colo. 

Alan)- books i n  noise theory [ l ]  establish the relation, 

between the po\ver spectral density S,(w)  of a function 
f ( t )  and the pon-er spectral density S,(o) of the deriva- 
tive of j”( t ) .  In the I\ ork \vhich folloxvs i t  I\ i l l  be assumed 
that  if ] ( t )  has a polver spectr‘il densit? S,(o). then j ( t )  
also h‘is a poiver spectral densit!, S,(o). I-;quation (1)  
may be inverted to  the form 

‘This integration [ j ( t )  to J ( t ) ]  cannot, hov ever, guar- 
antee the stationarity ofJ(t) and, hence, it is not obvious 
that  the poller spectral densit). of J ( t )  r‘in be defined in  
an unambiguous fashion even though ] ( t )  n i a ~  be coni- 

for the existence of ‘1 flicker noise pouer spectral densit) 
is lacking. 

pletel! \\ell behaved. Indeed the formal justific d t‘  1011 
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STATISTICAL MODEL 
Consider an ergodic ensemble of functions 

f n ( t ) ,  n = 1, 2 ,  3,  . . 

such tha t  the ensemble average is given by 

1 N  
Lim - C jn(t)  = f(t> = 0, ( 3 )  
N - m  LV n=l 

where the bar indicates ensemble average. Since the en- 
semble is assumed ergodic, the autocovariance function 
&(T)  is given by 

and i t  will be further assumed tha t  

RAT) = W T ) ,  (4) 

that  is, white noise. The  power spectral density of f n ( t )  
is then given by 

S~(W) = k .  

If now one assunies that  there exists some function 
g ( t )  such that  

according to  (2) and the assumptions mentioned before, 

k 
&(a) = - . 

bI2 
Similarly, if h(t)  = g ( t ) ,  then 

k 
&(a) = - * bI4 

T h a t  is, each time the function is integrated, a factor of 
is applied to the power spectral density. If x.e 

define Sf(m)(~) to be the power spectral density of the 
m-fold integral of f ( t ) ,  we may write 

In  order to  describe flicker noise frequency modula- 
tion, we are interested in the case where 

2 m  = 1 

or in other words the 4th order integral of f(t). I n  this 
model, Sf(1/2)(w) mill be taken to  represent the power 
spectral density of the instantaneous frequency. Since 
the instantaneous frequency of a n  oscillator is the de- 
rivative of the phase +( t ) ,  one may write 

S&) = Sf(3'2)(W) 

for our present model of phase fluctuations. 
The  concept of fractional order of integration has 

long been developed and may be found in several 
references [2].  Thus we may consider an ensemble of 
oscillators whose phase +,,(t) is given by the relation [ 3 ]  

for A=+,  or 

One may now obtain several relations which are of use 
later: 

from (3). Similarly 

from (4) and the &function behavior of f(u)f(u'). &o 

-_ 
[+( t ) I2  = ' ( t  - u )  du  

T O  

(7)  

I t  should be noted that  both (6) and (7) depend on 
t [i.e., & ( t )  is nonstationary]. In order to further estab- 
lish the connection of (5) u.ith flicker noise, i t  is con- 
venient to  evaluate the quantity 

That is the ensemble average of the square of the second 
difference of the phase [4]. One may write 

At this point the algebra becomes excessive. I t  is, how- 
ever, of value to recognize that  flicker noise is normally 
observed on equipment which has been operating for 
long periods of time. Thus,  it is reasonable to consider 
the asymptotic behavior of (8) as  t / ~ +  a. If one con- 
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siders first the terms not involving logarithms, it is 
possible to expand these terms in 72 times a descending 

p’ for j 2 .  - 1 vanish identicallq. and thus only the log- 
arithmic terms contribute to the asymptotic value. Thus 
(8) becomes 

statistics of the set +, \vas made. If one assuiiies that  

__. 
series in p = t j 7 .  I t  is found that  the coefficients of d\/($’,+m - 2$’j+v f $jF) = ff.y’ (11) 

the values of p obtained \\ere 0.83 and 0.84. From (10) 
one sees that  for flicker noise, p should be the integer one 

Ivhich reduces to 

for large t / 7 .  Comparison of this result ivith another 
treatment of flicker noise [4] indicates complete agree- 
ment for the dependence on 7. 

THE GENERAITON OF “FLICKER XOISF: N c ~ I i ~ E K s ”  

iVhile it might be possible to have an analog computer 
evaluate (5), it is of value to generate a series of numbers 
Ivhich behave analogously to (10) for discrete 7. ‘That is 
if GI [the analog to Q ( t ) ]  is a variable defined over the 
range of the integer j ,  then 

( ($ ,+PY - 2*,+.\ + * 3 ) ?  = k.Y2,  

\\here k is a constant and the brackets indicate a i  aver- 
age over the entire range of j ( N  is the discrete 
analog of 7). 

One can sho\v [ 5  1 that  if a,  is also a discrete variable, 
the mth-fold finite integral of a,  is given b!. 

jvhere the brackets on the exponent are defined 

x(x + l ) (x  + 2) . . .(x + 1 - 1). (12) 

Equation (11) is thus the discrete analog to (5). Irn- 
fortunately (1 2)  does not have an obvious generalization 
to fractional exponents. 

I his probleni was approached i n  a n  experimental 
fashion. .A set of numbers It, nere generated froin a set 
of random, independent numbers a ,  obtained from 
reference [6]. ‘The +, \\-ere related to  the u L  according to 
the equation 

r .  

m d  computed on a digital computer. l’sing programs 
described elselvhere [4], [ 7 ] ,  an attenipt to classify the 

-1 modification of (13) to  the form 

$j = 2 ( j  + 1 - i ) 2 ’ 3 G i  
i=l 

yielded data  which conformed to (14) with a p-value of 
one as closel>r a s  the experimental procedure allo\ved 
(p= 1.00+0.05). Thus (15) seenis to  generate flicker 
noise as  precisely as our techniques of analysis can 
de term ine. 

C O N C L I  SIONS 

I t  has been shoum that  a half-order integral of white 
noise displaq s the properties of flicker noise. The  exis- 
tence of a formal expression relating flicker noise to  white 
noise suggests the possibility of recognizing additional 
sources and phq sical niechanisms for the generation of 
flicker noise. I t  is possible to generate numbers ivith a 
digital computer [using (15)] which present properties 
similar to flicker noise, which is also of value. Thus i t  is 
possible to  employ computer simulation of equipment 
perturbed by flicker noise processes. 
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