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Since the average values of the cross terms are zero,
this reduces to:
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If we take the limiting bandwidth to be the low-pass
bandwidth after phase sensitive detection, as we do in
the text, the expression on the right must be multiplied
bv two to allow for the [olding of the band when its
center frequency is translated to zero.
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A Statistical Model of Flicker Noise

J. A. BARNES anp D. W. ALLAN

Abstract—By the method of fractional order of integration, it is
shown that it is possible to generate flicker noise from “white”
noise. A formal expression for the relation of flicker noise to white
noise is given. An approximate method, amenable to the use of digital
computers, is also given for the generation of flicker noise modulated
numbers from random, independent numbers.

INTRODUCTION

LICKER noise is a noise characterized by a power
Fspectral density which varies inversely propor-

tional to frequency. This type of noise has been
found in many devices including semiconductors and
quartz crystal oscillators. The presence of this type of
noise modulating the frequency of high-quality oscil-
lators has been of particular interest to the authors,
and it is in this application that the present paper is
directed. The principles used, however, are applicable
to flicker noise in general but find convenient expression
in terms of the phase and frequency of an oscillator.
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The authors are with the National Bureau of Standards, Boulder,
Colo.

Many books in noise theory [1] establish the relation,

Siw) = |

"Sp(w) (1)
between the power spectral density S/(w) of a function
f(t) and the power spectral density S (w) of the deriva-
tive of f(). In the work which follows it will be assumed
that if f(f) has a power spectral density S;(w), then f(#)
also has a power spectral density Sy(w). Equation (1)
may be inverted to the form

1 o
Si(w) = =7 Sr(w).

L (2)

This integration [f(f) to f(t)] cannot, however, guar-
antee the stationarity of /() and, hence, it is not obvious
that the power spectral density of f(f) can be defined in
an unambiguous fashion even though f(t) may be com-
pletely well behaved. Indeed the formal justification
for the existence of a flicker noise power spectral density
is lacking.
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STATISTICAL M ODEL

Consider an ergodic ensemble of functions

fﬂ(f')y

such that the ensemble average is given by

n=1,23, -
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where the bar indicates ensemble average. Since the en-
semble is assumed ergodic, the autocovariance function
Rs(t) is given by

i T
Ri(r) = Lim — | fult +7)fu() dt = f(t + 1)f(1),
' Tow 2T -7

and it will be further assumed that
Ry(r) = Aé(r), €))

that is, white noise. The power spectral density of f.(¢)
is then given by

Sf(w) =k

If now one assumes that there exists some function
g{t) such that
L 4= 40 = 10)
il gi) =) =

according to (2) and the assumptions mentioned before,

Sue) = =
ol
Similarly, if i(f) =g(t), then
i Si(w) = £
o]t

That is, each time the function is integrated, a factor of
‘w]“g is applied to the power spectral density. If we
define S;"(w) to be the power spectral density of the
m-~fold integral of f(¢), we may write

S/) = T

In order to describe flicker noise frequency modula-
tion, we are interested in the case where

2m =1

or in other words the ith order integral of f(¢). In this
model, S;V?(w) will be taken to represent the power
spectral density of the instantaneous frequency. Since
the instantaneous frequency of an oscillator is the de-
rivative of the phase ¢(t), one may write

Selw) = 5,42 (w)

for our present model of phase fluctuations.
The concept of fractional order of integration has

long been developed and may be found in several
references [2]. Thus we may consider an ensemble of
oscillators whose phase ¢, (¢) is given by the relation [3]

é.(t) = —1— f t(t — w) Y, (u) du (5)
MY

for A=%, or

U — ufa(u) du.

$n(t) =

r@)

One may now obtain several relations which are of use
later:

#0= = [ Vi=u R =0
—\/7—|- . U f.\u)au =

from (3). Similarly
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from (4) and the é-function behavior of f(u)f(x"). Also

—f t —u)du
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It should be noted that both (6) and (7) depend on
t [i.e., #.(t) is nonstationary |. In order to further estab-
lish the connection of (5) with flicker noise, it is con-
venient to evaluate the quantity

(A20)? = [o(t + 27) — 20(t + 1) + ()12

That is the ensemble average of the square of the second
difference of the phase [4]. One may write ‘

(AZp)? = [p(t + 2012 + 4lo(t + D2+ [o(0)]

— 4[p(t + 270 + )] — 4l¢<t‘ + ne®)]
206 + 2080)]. (8)

At this point the algebra becomes excessive. It is, how-
ever, of value to recognize that flicker noise is normally
observed on equipment which has been operating for
long periods of time. Thus, it is reasonable to consider
the asymptotic behavior of (8) as t/r— . If one con-
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siders first the terms not involving logarithms, it is
possible to expand these terms in 7? times a descending
series in p=t/7. It is found that the coefficients of
p’ for 7> —1 vanish identically and thus only the log-
arithmic terms contribute to the asymptotic value. Thus
(8) becomes

statistics of the set ¥, was made. If one assumes that

Ve — Wiy )% =

the values of u obtained were 0.83 and 0.84. From (10)
one sees that for flicker noise, u should be the integer one

(14)

@) ~

™

which reduces to

. 44
(A%)2 = { — ) r%In 2 (10)
ki
for large ¢/7. Comparison of this result with another
treatment of flicker noise [4] indicates complete agree-
ment for the dependence on 7.

THE GENERATION OF “FLICKER NOISE NUMBERS”

While it might be possible to have an analog computer
evaluate (5), it is of value to generate a series of numbers
which behave analogously to (10) for discrete 7. That is
if ¢; [the analog to ¢(t)] is a variable defined over the
range of the integer j, then

((iray — iy + ¥)%) = kN,
where k is a constant and the brackets indicate an aver-
age over the entire range of j (N is the discrete
analog of 7).

One can show [5] that if @, is also a discrete variable,
the mth-fold finite integral of a; is given by

(amyma; = ——— 3" (j+ 1= Dyt

11
F()zl <)

where the brackets on the exponent are defined to mean

x=xx+Dx+2) - +1-1.  (12)
Equation (11) is thus the discrete analog to (5). Un-
fortunately (12) does not have an obvious generalization
to fractional exponents.

This problem was approached in an experimental
fashion. A set of numbers §; were generated from a set
of random, independent numbers a; obtained from
reference [6]. The ; were related to the a; according to

the equation

- ViFi<ia

1=1

(13)

and computed on a digital computer. {sing programs
described elsewhere [4], [7], an attempt to classify the

247 {[2p+ 1+2ver+oll2e +3 +2ve +F D2 +p+ 1]} ©
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+ 14+ Vp? + 2]

A modification of (13) to the form

J

Z (G+ 1 — i), (15)
vielded data which conformed to (14) with a u-value of
one as closely as the experimental procedure allowed
(u=1.00+0.05). Thus (15) seems to generate flicker
noise as preciselv as our techniques of analysis can
determine.

CONCLUSIONS

It has been shown that a half-order integral of white
noise displays the properties of flicker noise. The exis-
tence of a formal expression relating flicker noise to white
noise suggests the possibility of recognizing additional
sources and physical mechanisms for the generation of
flicker noise. It is possible to generate numbers with a
digital computer [using (15)] which present properties
similar to flicker noise, which is also of value. Thus it is
possible to employ computer simulation of equipment
perturbed by flicker noise processes.
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