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Abstract-Recently published calculations of hydrogen Stark broadening on the basis of the unified classical 
path theory have been extended to include lower state interactions in the final line profile. A detailed comparison 
with experiments in the density range 10'3-10'7 cm-3 is given. 

I .  I N T R O D U C T I O N  

IN A recent paper,") henceforth referred to as paper I, the unified classical path theory(2) 
was generalized for the case of upper and lower state interactions and was applied to the 
Stark broadening of hydrogen. The thermal average of the time development operator 
and the final intensity profile of any hydrogen line were derived for the general case in- 
cluding lower state interactions. Numerical calculations for the thermal average including 
lower state interactions have been presented. The calculations of the final line profiles, 
however, have so far been restricted to the Lyman lines. In this paper we discuss calculations 
of the intensity profile including lower state interactions which are more involved because 
they require the evaluation of tetradic operators and contain more extensive summations 
over vector coupling coefficients. The influence of lower state interactions is demonstrated 
for the first few lines of the Balmer series and possible simplifications for the higher series 
members are pointed out. A detailed comparison with various experiments covering the 
electron density range from about 1013-1017 cmP3 is given requiring for low electron 
densities a convolution of the first series members with the Doppler profile. The unified 
theory calculations are also compared with static calculations. The applied computer 
program is presented in an NBS Monograph.(28' 

11. B A S I C  R E L A T I O N S  

In this section we summarize briefly the basic relations, which have been derived in 
paper I and are used for the unified theory calculations presented in this paper. 
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With the static ion field approximation the shape Z(o )  of a Stark broadened line is 
given by 

I(w) = P(E,)~(o,  E ~ )  dsi, Iom 
where the normalized distribution function P(E,) is the low frequency component of the 
fluctuating electric microfields. In this manner we regard the radiator as being an atom 
subjected to a static field and perturbed by the electrons. In the unified classical path 
theory") the ion field dependent line shape Z(o, E,) is obtained from 

d is the dipole moment. The matrix elements of Awop specify the distance Aw from a par- 
ticular Stark component shifted by the static field and 9 is essentially the Fourier 
transform of the thermal average. Within the classical path approximation and the impact 
approximation 9 ( A o o p )  is given by 

9 ( A o o p )  = - iAoop exp( + itAwop).F1)(t) dt  Awop (3) Iom 
where the thermal average 

F(')(t) = ne dx, dv, W(v,)[4Yl(R, xl ,  v, ,  t ) -  13. (4) s 
ne denotes the electron density and W the velocity distribution function. The tetradic 
time development operator a, is defined by the time ordered expression 

with the binary interaction 

YF1(R, x,, vl, t )  = exp{itX',/h}Vl(R, xl, vl ,  t )  exp{ - itX',/h}. (6) 

Vi is the Coulomb interaction potential between the radiator and a single perturbing 
electron. The Hamiltonian ;/i", 

.vi", = Xa+eZsi (7) 

consists of the Hamiltonian of the unperturbed radiator and the static ion part eZE,. 
(For details see equations (IV. 16HIV. 18), (111. 14HIII. 16) and (11. 2)  of paper I.) 

In evaluating the preceding equations for well isolated hydrogen lines we have to 
consider matrix elements only between states with the same principal quantum number 
n(no-quenching approximation) and it then is most convenient to work with parabolic 
states Inqm). m is the magnetic quantum number and the quantum number q is defined 
to be 

(8) q = n, - n2 
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with n1 and n,  being the usual parabolic quantum numbers which have to satisfy the re- 
lation 

f1 = r ~ , + n , + l m \ + l .  (9) 
Furthermore, we distinguish quantum numbers which refer to the lower state from the 
upper state quantum numbers by a prime. 

In taking matrix elements of the operators Ace,,, d and Y(A.w,,) between parabolic 
states it was shown in paper I that for the general case of upper and lower state interactions 
we have the following relations. For Am,,, which is diagonal in parabolic states, one obtains 

(10) 
where Aw is the frequency perturbation from the position of the unperturbed line, 1 the 
normalized field strength in units of the Holtsmark field strength co 

(n’q’nz’ ; nqmlA.w,,ln’q’m’ ; nqm) = Acu- Aw,(n, q,  n’, q’)b 

and 

AQ, 1s the frequency shift of a particular Stark component cliarncterized by the quantum 
numbers 11, 11, n’ and q’ due to the ijoltsmark field strength t o .  rhe mntrir eieinerits of 
Y ( A q , J  are given b) 

where 

The unitary transformation (nlmlriqni) from parabolic to \pherical (tate5 can be 
expressed in terms of 3psymbols‘ ’’ 

/ n - - l  1 1 -  1 
~ 

2 l z  112- q 112 + q 
l P i  -” “’421$  1 )  
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Introducing the normalized time 

and the normalized frequency 

1 s = opt 

with b, = J(8nn,e2/m) being the plasma frequency, the Fourier transform of the thermal 
average is defined to be 

i (AwR > f l ,  n, n’, qb > 46 9 q c ,  4:) 
W 

= lim 1 5 exp[( - E + i A o R ) s ] F ( s ,  n, qc ,  n’, 4:) ds. (18)  
&+OX 0 

The thermal average F(s)  was evaluated in paper I for the general case of upper and lower 
state interactions and it was shown that F(s) may be approximated by a function C(s) = 

&Gk(s) whose Fourier transform can be given analytically such that 

i ( A o R )  = i(k, A o R ) .  (19)  
k 

For most practical situations it turns out to be sufficient to consider only the first term in 
the series 

i(k = 1, A w R )  = alb:e- i z l  iH$“’(Z,)+H‘,‘’(Z 

where HL1’ and H‘,’) are Hankel functions and 

Z1 = b,  A o R ,  (21)  

because the higher order terms usually affect the final line profile by not more than 2 per 
cent around bo N bp. The constants a, and b,  are given by 

a, = -4J(nn)n,~~C~[B--  ln(4Cz)] (22)  
9 

b - -C[B-ln(4C2)]2, 
- 4n2 

where D is the Debye length, B a constant of the order of unity (see Table I1 in the appendix 
of paper I) and 

3 h 
2 mDvav 

c = -(nq-?l’q’)-. 

Finally we give for completeness the matrix elements of d @ d 

[(21,+ 1)(21b+ l)]1’2(nlalrln’ra) 
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where the radial matrix elements are given in equation (63.2) of BETHE and SALPETER.‘~) 
In case of no lower state interaction where the time development operator between 

lower states is replaced by a unit operator the matrix elements of 2 ’ ( A o O p )  in equations (13) 
and (14) simplify significantly and we have 

(n‘q‘m‘: nqbm(~u(Ao,,)ln‘q’m’; nqam) = - i n [ A o - A w i ( n ,  qb, n’, q’)flI2 

1 (nqbmlKu(q,)lnq,m)i(Aw, f l ,  % n’, q b ,  4 ’ 9  4,) (26)  
4c 

where 

(nqbmlKu(qc)lnqam) 

Equation (26)  simplifies even further for the Lyman lines with ln’q’m’) = 1100). For this 
case numerical calculations were given in paper I. 

111. P R O P E R T I E S  O F  T H E  9’ A N D  K M A T R I X  

In equations (13) and (26)  we have split the 9-matrix into two parts. One part, the 
K-matrix, contains all the vector coupling coefficients or 3j-symbols and is independent 
of the plasma parameters, while the other part, the Fourier transform of the thermal 
average i(Aw), contains all the broadening parameters. The K-matrix is completely specified 
by the upper and lower state principal quantum numbers n and n’ and needs to be calculated 
only once for every hydrogen line. 

From equation (14) we realize first of all that the K-matrix is symmetric to the diagonal 

(n’q6mb ;nqbmblK(qc? d)ln’dmA ; nqama> 

= (n’qbmb ;nqamalK(qc, d)In’qbmb ; nqbmb) (28)  

while the 2’-matrix is not, due to the factor [ A o - A w i ( n ,  q b ,  n‘, qk)fll2. Next we see from 
the 3j-symbols that K is diagonal in the quantum number M .  

(29)  M = m ‘ - m  =m’  a a b P m b  

Hence we may arrange the K-matrix and also the 9-matrix in such a manner that they 
are block diagonal in M ,  where M = 0, & 1, f 2 ,  . . . , n+n’- 2. We also notice that 
mitrix elements which differ only in the sign of M are identical. 

(n’qb - mb ; nqb - mblK(qc 3 &)ln’qA - ; nqa - ma> 

= (n’qbmb ; nqbmblK(qc, q:)In‘qAmA ; nqama). (30) 
Consequently, blocks which differ in the sign of M ,  can also be made identical. This greatly 
simplifies the matrix inversion required by equation (2) .  The problem is further simplified 
by the fact that also the d @ d-matrix can be made block diagonal in 

(31) p = ma-mL = mb-mL, 
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where p can only take on the values 0 and 1. As a result we finally have to evaluate only 
the blocks with M = 0 and M = 1 of the K and 9-matrix, respectively, because the block 
with M = - 1 gives identically the same contribution to the final line profile as the block 
with M = 1 and all the other blocks with JMI > 1 do not contribute due to the d 0 d 
matrix. Further useful symmetry properties of the K-matrix are given in the following 
equations 

(n'qbm6 ; n q b m b l K ( q c ?  d)ln'qLmL ; nqama) 

= (n' - qb - m6 ; n - qb - mblK(qc, &)In' - q: - m: ; n - qa - ma) (32) 

= (n'qbmb; nqbmblK(  - q c i  - d)ln'qAm; ; nqama). 

The latter relation simplifies our summation over qc and q: in equation (13) because 
also for the Fourier transform ~(Ao) we have 

i(AO, p, n, It', q b  9 4; 9 q c ,  4:) = i(AO, p, n, n', q b ,  4b , - q c ,  - 4;). (33) 

In calculating Z(w,ci) according to equation (2) we always have to invert complex 
matrices. Since for computational purposes it is more convenient to work with real matrices 
and since we need only the imaginary part of the inverted matrix we make use of the 
following relations 

X + i Y  = [ A + i B ] - '  

where 

X = [A+BAp'B]-'  

Y = - [ B + A B - ' A ] - '  
(34) 

with X ,  Y, A and B being real matrices. From equations (2), (13) and (18) it is clear that A 
contains the diagonal matrix of Am,,, and the sine transform of the thermal average and 
B the cosine transform of the thermal average. In the limit of large Am we have 

A = B + A m . I  (35) 

(see equation (X. 18) of paper I) which simplifies to lowest order the Y-matrix to 

Y - B/Aw2. (36) 

This is the one electron limit, which as pointed out already in Section IV of paper I, does 
not require a matrix inversion. 

IV. T H E  I N F L U E N C E  O F  L O W E R  STATE I N T E R A C T I O N S  A N D  T H E  STATIC LIMIT 

In the Figs. 1,2,3,7 and 8 the intensity of the line is plotted vs. the frequency perturbation 
Am in units of the plasma frequency b, = ,/(8nnez/m). The frequency scale is preferred, 
because it represents essentially the energy perturbation and is therefore more meaningful 
for the discussion of Stark broadening than, for example, the wavelength scale, which is 
usually more convenient in the measurement. Furthermore, A m / b p  5 1 is essentially the 
domain of the unmodified impact theory. 



Unified theory calculations of Stark hroadencd Iivdrogcii line,, including lower state interactions 269 

We first demonstrate the influence of lower state interaction on the final line profile 
i l l  Figs. 1 and 2 and compare three different methods of evaluation. In the first, most general 
mcihod lower state interactions are taken into account and the line profiles are calculated 
on the basis of equations (13) and (14) using the correct Stark effect for electrons and ions 
(solid curves in Fig. 1). In the second method based on equations (26) and (27) we neglect 
lower state interactions for the electrons, i.e. we do not allow for perturbations of the lower 
state sublevels by electrons (dashed curves in Fig 1 ,  solid curves in Fig. 2). However, we 
still use the correct Stark effect for the static ions. In the third and simplest method the line 
profiles are calculated like in case of the Lyman lines with no influence of the lower state 
for the electrons as well as the static ions (dashed curves in Fig. 2). These Lyman profiles 
were presented already in Paper 1.  

We realize first of all from Fig. 1 that in view of the accuracy to be expected from the 
unified classical path theory we may neglect lower state interaction due to the electrons 
for H ,  and therefore also for all the higher Balmer lines. For n, = 1.3. 1013 cm-3 and 
T = 1850°K the biggest calculated difference between the cases with and without lower 
state interaction is 43 per cent for H a ,  10 per cent for H , ,  6 per cent for H ,  and 4 per cent 
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FIG. 2. Comparison of the Balmer and Lyman lines with the upper state principal quantum numbers 
n = 6 , 8  and 10. 

for H ,  . These differences have been obtained for the distant, almost quasistatic wing. 
They become slightly smaller in the purely static wing and are significantly smaller in the 
line center (14 per cent for H,, 9 per cent for H,, 3 per cent for H ,  and 2 per cent for 
H,). Similar differences may be obtained at any electron density and temperature. In the 
distant, purely static wing the difference will always be identical (39.2 per cent for H,, 
9.3 per cent for H , ,  5.7 per cent for H ,  and 3.6 per cent for Ha), because the static ions are 
treated in both cases with the same, correct Stark effect, while the static electrons are treated 
in the second method with the Stark effect of the corresponding Lyman line. 

In Fig. 2 the Balmer lines and the Lyman lines with the upper state principal quantum 
numbers n = 6, 8 and 10 are compared. In the line center we recognize the fact that the 
even Balmer lines have no unshifted Stark component, while the even Lyman lines do. 
The difference in the wings is also clear from the Stark effect of the Balmer and Lyman 
lines (see also Table 1 of the paper by VIDAL"'). It therefore becomes apparent that for 
principal quantum numbers of about n > 10 one may neglect the influence of the lower 
states on the final line profile altogether and use the Lyman profiles throughout. 

Next we compare in Fig. 3 the results of the unified classical path theory (solid curves) 
with quasistatic calculations (dashed curves) in order to show to what extent quasistatic 
calculations may be useful. The even Balmer lines up to n = 14 are plotted. The quasistatic 
profiles are based on the low frequency component of the electric microfield distribution 
 function^'^.') with a shielding parameter 

r,/D = 0.0898ndI6/ J T  (37) 
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FIG. 3. Comparison of the unified theory and the quasistatic theory for the even Balmer lines with 
n = 4 t o n = 1 4 .  

and the total density N being N = 2n,. In addition, short vertical lines mark the position 
of the average Weisskopf frequency 

Aw, = 2mv&/(3n2iikh) (38)  

as defined by UNSOLD,(*) where the average splitting 

with f k  being the oscillator strength of the k-th Stark component is frequently approximated 
by iik N n(n-1)/2 (see also Table 1 of the paper by EDMONDS et ~ l . ( ~ ) ) .  The Weisskopf 
frequency indicates the domain of the quasistatic theory and there have been various 
estimates, which all agree within a factor of 2 to 3. From Fig. 3 it is apparent that with 
increasing principal quantum numbers the profiles based on the unified classical path 
theory approach more and more the static profiles and that the Weisskopf frequency 
turns out to be a rather conservative estimate for the useful range of the quasistatic theory. 
In the example presented we recognize that except for the very line center one may use 
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quasistatic calculations almost throughout the entire profile for principal quantum 
numbers of n 2 10. For practical purposes the hole in the center of the static profile and 
the structure in the line center, which for the higher series members appears to oscillate 
around the profile based on the unified classical path theory, will be smeared out by a 
convolution with the Doppler profile. 

V .  C O M P A R I S O N  WITH E X P E R I M E N T S  A N D  O T H E R  T H E O R I E S  

We start our comparison of the unified theory with experiments in the high and low 
electron density range with recent measurements by WIESE et ul.('O) performed on a high 
current, wall-stabilized arc. The experimental set up and the method of evaluation is similar 
to the one described by WIESE et ul.'") However, a number of refinements are incorporated 
in the experimental set up and the achievable accuracy has been greatly improved. 

In Figs. 4 and 5 the red and blue wings of the measured H ,  and H,-profiles are plotted 
(solid lines), which have been obtained in the same run assuring the same electron density 
and temperature for both profiles. For the moment we do not consider the asymmetries 
of the profile, since the theory is not yet arranged to describe them. The electron density 
and temperature for this particular run have been determined in several ways from the 
absolute intensity of H ,  with 

ne = 7.5. 1016 cm-3 T = 12 570"K, 

from the absolute intensity of H ,  with 

ne = 7.7. 1 O l 6  cm-3 T = 12 640°K 

n ,=80 .1016cm-3  T=12700 K 

- Measurement of 
Wiese, Kel leher and Paquette 

FIG. 4. Comparison between the unified theory for Hg and the experimental profile as measured by 
Wiese, Kelleher and Paquette. 
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FIG 5 Comparison between the unified theory for H and the experimental profile as measured by 
Wine, Kelleher and P q u c t t c  

and from the absolute intensity of the continuum in the visible and in the UV, which 
differ by the contribution from the Ealmer continuum, with 

ne = 8 . 0 . 1 0 " ~ m - ~  T = 12 730°K. 

The three values of the electron density differ in all runs by similar amounts. In particular 
the difference between the values from the H,-, and the continuum intensity is very repro- 
ducable and gives rise to a 6 per cent difference in the electron density. These are indications 
(private communication of Dr. Wiese) that these differences may be due to small Non LTE 
effects in the arc because of its rather small dimension. This would be consistent with the 
validity criteria for LTE in inhomogeneous stationary plasmas (see section ofGRIEM('2)). 
Since the continuum intensity is least affected the electron density and temperature as 
obtained from the continuum have been adopted as the best values in particular since the 
Lame values have been obtained from the continuum in the visible and the UV. For these 
parameter values the profiles as calculatcd with the unified theory including lower state 
interactions have been plotted in Figs. 4 and 5 with the same normalization j'z I(A1) d2 = 1 
as the experimental profiles. We realize that the calculated profiles are slightly higher and 
narrower than the measured profiles. In both cases, however, the best agreement between 
theory and experiment in a least squares sense has been obtained with 8.5. 1016 cm-3 
meaning that the theoretical value appears to be 6 per cent larger than the experimental 
value. 

Applying recent calculations of KEPPLE and GRIEM( '~)  one obtains from the half-, 
quarter- and eighth-width n, = 7.38. 10" cm-3 for H ,  and n, = 8.05. 1016 cm-3 for H ,  
(as evaluated by Dr. Wiese), which reveals an intrinsic inconsistency because the two 
electron densities differ by about 10 per cent. 
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We also notice that the worst agreement is in the very line center, a feature which is 
so far common to all impact theories. This fact makes the determination of the electron 
density on the basis of fractional widths rather questionable because its definition may be 
ambiguous and it effectively normalizes wing intensities with respect to the intensity in 
the very line center, where the theory seems to be least reliable. Although this is the most 
convenient and most widely used method, it is definitely preferable to determine the 
electron density from a least squares fit of the experimental and theoretical profile using 
the same normalization for both profiles. 

In Fig. 6 the calculations of KEPPLE and GRIEM('~) are compared with our calculations 
for H ,  and ne = 6.4.  10l6 cm-3 and T = 12 200°K indicating that our profile is narrower 
and higher hence giving rise to larger electron densities. In the very line center the most 
important difference appears to be due to the constant B in equations (22) and (23). While 
our calculations are based on a quantum number dependent constant B for a lower cutoff 
pmin = A +$nZa,, which has been selected according to the validity criterion of the classical 
path theory, Kepple and Griem use a larger value B = 1.27 for all the Stark components. 
We have repeated our calculations with their value of the constant B. The profile is included 
in Fig. 6 and does not quite agree with their calculations. It should be pointed out that the 
normalization of the profile of Kepple and Griem is slightly too small, which may account 
for part of the remaining difference in the very line center, where the unified classical path 
calculations should go over to the results of the impact theory, if the ion field dependent 
cut off (see equation VI.4 of paper I) is neglected. 

From the preceding comparison we realize that at this stage the most important 
problem seems to be to obtain better values of the constant B whose dependence on various 
cutoff procedures was discussed in the Appendix of paper I for classical path theories 

H 

I I ,. .\ 

0.02 

t 
"."I" 

0.010 

0.005 

A L  [ A I  
F1~6.Comparison betweentheunified theorywith Basobtainedforpmi, = R+$n2a,,withB = 1.27 

as used by Kepple and Griem and the modified impact theory of Kepple and Griem. 
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neglecting time ordering. We note that in case of the H ,  and H ,  profiles in Figs. 4 and 5, 
better agreement between theory and experiment may be obtained with a constant B 
larger than that used in this paper, and that in case of the Lyman-a experiment of BOLDT 
and  COOPER('^) discussed in paper I, better agreement is obtained with a smaller constant B. 

For the moment we postpone the discussion of the various possibilities, which may 
affect the constant B, until we also have compared our results with measurements of the 
Balmer lines H3-H 14 and the Paschen lines P6-Pl3 performed by VIDAL."~' ') Unfortunately, 
these experiments do not provide an independent electron density measurement, which is 
as accurate as the measured profiles. Since, however, the measurements revealed a Am- '/'- 

wing, which for most of the lines extended over two orders of magnitude in intensity, the 
electron density was determined assuming that these measured Am- '/'-wings were 
identical to the asymptotic Holtsmark wings. In this manner the same electron density 
of ne = 1.3. IOl3cmp3 was obtained within f 4  per cent for all the Balmer lines from 
H4 to Hi4 (see VIDAL")). In paper I it was pointed out (on the basis of the Lyman line 
calculations) that the unified theory calculations actually give the Aw- '''-wings which were 
measured in the experiment and which extend much further into the line center than a 
quasistatic theory would predict. However, over the intensity range measured, these 
Am- "*-wings do not necessarily coincide with the asymptotic Holtsmark wing. 

In the following we reevaluate the measured line profiles employing now the complete 
line profile from the line center to the wings. We concentrate primarily on the Balmer lines, 
which have been measured more accurately than the Paschen lines and where we also 
have more series members available. The measurements were performed on a stationary 
radio frequency discharge within a magnetic bottle as described by SCHLUTER.(' ') The 
electron temperature, which within the error limits is equal to the ion temperature, was 
measured to be T = 1850°K. Consequently, we have to consider first of all to what extent 
Doppler broadening and the Zeeman effect may influence the first series members. In 
Fig. 7 the theoretical line profiles are shown for ne = 1.3. 1013 cm-3 and T = 1850°K 
before (dashed lines) and after (solid lines) the convolution with the Doppler profile. 
It shows that up to around H ,  Doppler broadening has to be taken into account. In 
estimating the influence of the Zeeman effect we notice that for a magnetic field of 1800 
Gauss (0.18 Tessla) as typically used in the experiments the separation of the outer com- 
ponents of the Lorentz triplet amounts to 0.168 cm- '. Neglecting complications due to 
the combined Zeeman and Stark effect this indicates that from around H ,  (full half 
width = 1.76 cm- ') we may neglect the Zeeman effect for all the higher series members. 

A comparison of the experimental and theoretical profiles for the Balmer lines H,-H14 
gives the best agreement for ne = 1.15. 1013 cm-3, a value which is slightly smaller than 
the value of ne = 1.3. l o t 3  cm-3 given by VIDAL.(') This is not surprising because within 
the measured intensity range the apparent Aw- "'-wings of the unified theory calculations 
are all lying above the asymptotic Holtsmark wings on which the electron density value 
of VIDAL") was based. For this new value the measured and calculated Balmer lines 
H,-H14 all agree within 5 per cent over the entire line profile. These maximum deviations 
are comparable to the achieved accuracies of the measurement and are so small that they 
hardly show up in a plot like in the Figs. 1, 2, 3, 7 and 8. For the lower Balmer lines only 
the line wings can be evaluated since the line center is noticeably affected by the Zeeman 
effect not included in the calculations. The agreement is not quite as good. However, the 
differences do not exceed 10 per cent for the wings of H ,  to H , ,  which appears to be partially 
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FIG 7 The Balmer line profiles as calculated with the unified theory for ne = 1 3 l oL3  cm and 
T = 1850 "K with and without the convolution of the Doppler profile 

due to the growing influence of the apparatus profile for the narrower profiles of the lower 
series members. 

In Fig. 8 our calculations are compared with the calculations of KEPPLE and GRIEM,(I3)  
which have been extended to H I ,  by BENGTSON et al."'' We see that their profiles are wider 
and that the higher series members do not show the measured A ~ - ~ ' ~ - w i n g s .  From a com- 
parison with Fig. 3 we also realize that with increasing principal quantum number n our 
profiles approach the static profiles while the profiles of Kepple and Griem do not. Their 
profiles actually appear to differ more and more from the static profiles with increasing 
principal quantum number n, which manifests the fact that the modified impact theory is 
not able to describe the static electrons. 

As pointed out already in paper I, we emphasize again that contrary to the H,- and 
H,-profiles discussed above, the higher series members are insensitive to the exact value of 
the constant B. The reason is that these profiles are predominantly static in nature. In other 
words it means that the average Stark effect splitting, which is approximately equal to the 
half width of the higher series members, is significantly larger than the constants a, for 
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FIG. 8 .  Comparison between the unified theory and the modified impact theory of Kepple and 
Grieni for the even Balmer lines H ,  to HI , .  

the different Stark components (see equation (22)), which determine essentially the electron 
impact broadening. Since the line centers of the first series members are predominantly 
Doppler broadened, these low density experiments give no detailed information on the 
constant B. Hence, as one would expect, we also obtain a better agreement between theory 
and experiment than we did for the H,- and H,-profiles discussed above, where the agree- 
ment could have been worse due to the uncertainty of the constant B. This fact is particularly 
important for astrophysical applications where one is mainly interested in low density 
profiles, because these profiles are insignificantly affected by the remaining uncertainty of 
the constant B. One may, therefore, calculate low density profiles with rather large 
confidence. 

V I .  DISCUSSION 

Since the value of the constant B appears to be the most vague and restricting quantity 
in the current classical path theories, we will now summarize the effects which may influence 
the constant B and are not included in the present calculations. First of all, we can state 



278 C. R. VIDAL, J. COOPER and E. W.  SMITH 

in general that the exact value of the constant B is least important if either the static 
broadening exceeds the electron impact broadening, as discussed above for the low density 
profiles, or if according to equation (22) the value of ln(4C2) is much larger than the 
uncertainty of the constant B which means that 

- ln(4C2) >> 1. (40) 

According to equation (24) the latter situation is most likely to occur for the innermost 
Stark components of any hydrogen line. 

The constant B is sometimes misleadingly referred to as the strong collision parameter. 
This is only partially correct, because its value depends not only on the lower cut off 
parameter pmin but also on the upper cut off parameter aD, where D is the Debye length 
and the constant a has been varied in the literature from 1 . l ( I 8 )  down to 0.6.(19) As discussed 
in the appendix of paper I, this parameter a will also influence the limits on the time integral 
J V(t’) dt‘ in the time development operator 42 which for the S-matrix limit are extended from 
- co to + co. In the unified theory calculations these limits have been extended from - T to 
+ 7: where 

T = J(a2D2-p2)/U, (41) 

in order to make the time limits consistent with the upper cut off parameter aD. We also saw 
from the appendix of paper I that, as a function of the parameter a, the constant B varies as 

B = B(a = 1)+21ncc. (42) 

The correct value of the constant a has not yet been determined conclusively. Since for 
large impact parameters one is dealing only with weak collisions, it has to be possible to 
determine the parameter a from a second order classical path theory, which means essenti- 
ally within the frame work of the ordinary impact theory. 

The influence of small impact parameter collisions on the constant B is a much more 
involved problem. First of all, it is clear that one has to worry about collisions with impact 
parameters 

3 2  p 2 Pmin = A+zn a, 

= qi  + 3.78 . i o -  Y J T )  (43) 

where classical path theories start to break down. As discussed for example, by  SMITH(^') 
we have to distinguish in this range between “completed” strong collisions, which contribute 
primarily to the impact limit, and “incompleted” strong collisions, which mostly contribute 
to the static wings. While the latter collisions are properly treated in a classical path theory 
and have no influence on the value of the constant B, the “completed” strong collisions can 
only be treated correctly by a quantum mechanical calculation, which has not yet been done. 

Besides the limitation imposed by a classical path approach, we also have to consider 
the influence of time ordering which has been neglected in our time development operator 42 
of equation (5).  We notice that time ordering will become important if Vz/h 2 1. With a 
typical collision time z N plu, this is the case for impact parameters 
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For most practical cases, where the value of B becomes critical, pord is larger than pmin. 
Hence, there will be a domain, in which time ordering is important even within the region of 
validity of a classical path theory. 

In the S-matrix limit the effect of time ordering has been investigated within the classical 
path theory for Lya(”) and for H i 2 ’ )  by solving the complete set of coupled differential 
equations, which define all the matrix elements of the time development operator. These 
calculations have demonstrated that the effect of time ordering may change the value of the 
constant B by as much as k 1 and that the effect on the final line profile may amount to a 
few percent in intensity. These calculations have also included higher multipole terms. If 
one examines the effect of the higher multipole terms with respect to the case, where one 
considers only the dipole terms, one finds out that in case of Lyman - a  as well as in case 
of H ,  the higher multipole terms lower the value of all the different constants B. However, 
at the electron density and temperature of these experiments (which are essentially the same), 
the change in the constant B due to the higher order multipole terms affects the final line 
profile only very little. 

For the more general case of the time development operator @, required by the unified 
theory, the effect of time ordering has recently been examined for Lyman These 
calculations show the results of the S-matrix limit in the line center and the decreasing 
influence of time ordering with increasing frequency perturbation Am. 

Due to the various outlined reasons which may affect the value of the constant B, it is 
rather difficult to make a quantitative statement of the possible error. If we assume that for 
impact parameters p 2 pard all the collisions which contribute to the value of B, have been 
treated correctly, one may give an upper bound on the possible error in B based on the 
unitarity condition of the time development operator. Since the time development operator 
may only oscillate within the limits of f 1, the integral over impact parameters from 0 to 
pard, which is weighted by the impact parameter p, will change the constant B at the most by 
an amount of the order of unity. In addition to this the influence of the upper cut off para- 
meter according to equation (42) has to be kept in mind. We also recall that in order to 
obtain the best agreement between theory and experiment we have to change the constant B 
for the Lyman a profile(’4) by an amount which is slightly larger than 1, and for the H ,  and 
H ,  profile by an amount, which is smaller than 1. It should also be noted that the ion field 
splitting is not fully taken into account in the time development operator as discussed in 
Section VI of paper I. It was shown that this may lead to slight modifications in the line 
center but not in the line wings. A full treatment would be rather difficult because the ion 
field exponentials in equation (VI.4) of paper I remove the spherical symmetry of the prob- 
lem and a simple cut off procedure as suggested by KEPPLE and GRIEM(’ 3, does not appear to 
be completely adequate since it affects the normalization of the line profile. In addition, near 
the line center we would expect the quasistatic description for the ions to be invalid. This, 
however, is practically unimportant because the Weisskopf frequency for the ions, which 
gives the range of validity for a quasistatic approach, is for low densities well inside the 
Doppler width and at high densities well inside the half width. Notice also that the break- 
down of the no-quenching approximation may cause a small effect on the strong collision 
term (see Ref. 20, p. 3 15). 

So far we have ignored profile asymmetries which have been observed, for example, in 
Ly-CY, H ,  and H ,. In the following we give a brief discussion in which we do not consider the 
well known asymmetries due to the w4-factor in the expression for the power spectrum, the 
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frequency to wavelength conversion, and the Boltzmann fa~tor,’’~) which was neglected by 
assuming the elements of the atomic density matrix to be constant for all initial states. 
Asymmetries due to these effects will grow with increasing frequency perturbation A u  and 
are always negligible in the line center. Hence, we are mainly concerned with the higher 
order multipole terms and the higher order Stark effect terms due to the electrons and ions. 

In Section VI1 of paper I it was shown how the higher order multipole terms due to the 
electron perturbers can be included in the interaction potential of the time development 
operator and it was pointed out that within the no-quenching assumption only a finite 
number of multipole terms exist. The main aggravation is that the unitary transformation 
which diagonalizes the time development operator after the spherical average is no longer a 
simple rotation. In the impact limit this will affect primarily the constant B as noted above 
and cause only negligible asymmetries like in case of the time ordered solutions.‘21,22) 

The main reason for asymmetries especially in the line center has been shown to be due 
to the ions and we refer to a recent paper Of sHOLIN‘25’ which supersedes the earlier papers by 
GRIEM‘~~)  and NGUYEN-HOE et ~ 1 . ( ~ ’ )  In this paper, it has been successfully demonstrated 
that the observed asymmetries of the Ly-a, HP and H ,  lines can all be explained within a 
static ion approach, where the main effect is caused by the quadrupole term of the ions and 
to a smaller extent by the quadratic Stark effect and the ion field dependent transition 
probability corrections of the individual Stark components. The electrons were assumed 
to cause only collision broadening and to introduce no further asymmetries. 

It should be pointed out that the results presented by Sholin can easily be incorporated 
into the calculations presented here and work on this is in process. Like Sholin, we regard 
the radiator as being an atom in a static ion field and perturbed by the electrons. Hence, 
one only has to modify the matrix elements of Amop in equation (10) and of d 0 d in equation 
(25) according to the relations given by Sholin, in order to include the higher order multipole 
terms and the higher order Stark effect terms due to the static ions. 

If we incorporate the higher multipole terms due to the electrons in the time development 
operator together with those due to the ions, another interesting feature of the unified 
theory is that a number of the higher order multipole terms due to the electrons and ions 
like, for example, the most important quadrupole terms, will cancel each other in the static 
limit of the electrons. This effect was already suspected by GRIEM(”) (p. 94). However, this 
sort of mutual compensation occurs only if electrons and ions are treated within the frame- 
work of the same approximations (for example, quasi-static or impact) as pointed out by 
SHOLIN.(’~) For this reason the occurrence of asymmetries gives important information on 
the type of electron broadening. It is also clear why asymmetries have been observed in the 
high density profiles of Ly,, H ,  and H,, where the ions may be treated quasi-statically and 
the electrons are over most of the measured line profile in the domain of the impact theory, 
but not in the low density profiles of the higher Balmer and Paschen lines, where ions and 
electrons are both in the quasi-static domain over almost the entire line profile. 

Finally, we may conclude that, at this stage, the accuracy of the unified theory calcula- 
tions depends primarily on the extent to which the final line profile is affected by the 
constant B and to a lesser extent on the asymmetries not yet included. Both effects are in 
turn determined by the electron density and temperature. It is probably safe to say that in 
general the electron density obtained with the unified theory in its present form will differ 
at  the most by 10 per cent from its true value. In the impact limit significantly better agree- 
ments between theory and experiment, which have been reported in the literature, have to 
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be regarded as fortuitous. However, better results are definitely obtained for the higher, still 
well isolated series members andlor at low electron densities ( n ,  5 an-"), which are of 
particular astrophysical interest. 
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