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Abstract—The unified theory has been generalized for the case of upper and lower state interaction by introducing
a more compact tetradic notation. The general result is then applied to the Stark broadening of hydrogen. The
thermal average of the time development operator for upper and lower state interaction is presented. Except for
the time ordering it contains the effect of finite interaction time between the radiator and perturbers to all orders,
thus avoiding a Lewis type cutoff. A simple technique for evaluating the Fourier transform of the thermal average
has been developed. The final calculations based on the unified theory and on the one-electron theory are compared
with measurements in the high and low electron density regime. The unified theory calculations cover the entire
line profile from the line center to the static wing and the simpler one-clectron theory calculations provide the line
intensities only in the line wings.

I. INTRODUCTION

FoR THE first few Balmer lines of hydrogen, recent papers (GERARDO and HiLL, 1966
BaconN and EDwARDS, 1968 ; KEPPLE and GRIEM, 1968 ; BIRKELAND, Oss and BRAUN, 1969)
have demonstrated fairly good agreement between measurements in high electron density
plasmas (n, > 10'® cm™3) and improved calculations of the so called “modified impact
theory”. The experimental and theoretical half-widths differ less than about 10 per cent.
However, measurements of the Lyman-a wings (BoLDT and COOPER, 1964 ; ELTON and
GRIEM, 1964) and low electron density measurements (n, =~ 10'*cm™3) of the higher
Balmer and Paschen lines (FERGUSON and SCHLUTER, 1963 ; ViDAL, 1964 ; VIDAL. 1965) have
revealed parts of the hydrogen line profile, for which the modified impact theory appears
to break down. For the higher series members better agreement has been obtained with
quasi-static calculations (VIDAL, 1965). The reason the current impact theories break down
is that these theories correct the completed collision assumption by means of the Lewis
cutoff (LEwis, 1961) which is only correct to second order. With this cutoff it was possible
to extend the range of validity for the impact theory beyond the plasma frequency. However,
in the distant wings, where the electron broadening becomes quasistatic, the second order
perturbation treatment with the Lewis cutoff breaks down because the time development
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operator must then be evaluated to all orders. Attempts to correct the second order theory
have been made already (GRIEM, 1965; SHEN and COOPER, 1969}, but these theories still
make the completed collision assumption by replacing the time development operator by
the corresponding S-matrix, and so it has to be emphasized that in conjunction with the
Lewis cutoff these theories would only be correct to second order. The impact theory in its
present form is intrinsicly not able to describe the static wing and the transition region to the
line center where dynamic effects cannot be neglected. To overcome this problem, several
semiempirical procedures (GRIEM, 1962 ; GRIEM, 1967a ; EDMONDS, SCHLUTER and WELLS,
1967) have been suggested to generate a smooth transition from the modified impact theory
to the static wing, which, however, all suffer from the fact that the final profile is not neces-
sarily normalized.

Recently the classical path methods in line broadening have been reinvestigated in two
review papers (SMITH, VIDAL and COOPER, 1969a, 1969b), which are from now on referred
to as papers I and II. The purpose of I and II was to state clearly the different approxima-
tions which are required to obtain the classical path theories of line broadening and to find
out where these theories are susceptible to improvements. In a manner similar to the Mozer—
Baranger treatment of electric microfield distribution functions (BARANGER and MOZER,
1959, 1960), it was shown that the general thermal average can be expanded in two ways,
one of which leads to the familiar impact theory describing the line center (BARANGER, 1958,
1962 ; Griem, KoLB and SHEN, 1959, 1962). The other expansion represents a generalized
version of the one electron theory (COOPER, 1966), which holds in the line wings. It is also
shown that there is generally a considerable domain of overlap between the modified
impact theory and the one electron theory. Based on these results, a “unified theory” was
then developed (SMITH, COOPER and VIDAL, 1969), henceforth referred to as paper III,
which presents the first line shape expression which is valid from the line center out to the
static line wing including the problematic transition region. The line shape obtained by the
unified theory has the form

I

where d, Aw, and #(Aw) are operators. In paper 11, it was shown that the familiar impact
theories, which hold in the line center, may be obtained by making a Markoffapproximation
in the unified theory, while the one electron theory describing the line wings is just a wing
expansion of the unified theory. Consequently the crucial problem for any line broadening
calculation is to evaluate the matrix elements of #(Aw), which is essentially the Fourier
transform of the thermal average (see equations (46) and (47) of paper I1I). This will be done
in detail in this paper for the general case of upper and lower state interactions.

Recently, another unified approach to Stark broadening has been presented by
VOSLAMBER, 1969, which is formally equivalent to our results in paper 111. However, the
approximations to the time development operator are different as explained in more
detail at the end of Section VI. His final numerical calculations are restricted to the wings of
Lyman-u« neglecting the influence of the ion fields on the electron broademng and thereby
avoiding the ion microfield average of the electron contribution. ‘

In the following Section II, we start with a brief summary of the basic relations which are
required for the classical path approach pursued here. We then generalize the results of the
unified theory to include lower state interaction (Section 1V) after introducing a more
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compact tetradic notation (Section III). From this general result we turn to the specific
problem of hydrogen by discussing briefly the no quenching assumption (Section V) and
deriving the thermal average #‘")(t) (see equation (47) of paper II1) for the general case of
upper and lower state interaction (Section VI). We next investigate the multipole expansion
of the classical interaction potential in the time development operator (Section VII). The
thermal average Z1(t) is then evaluated in two steps by first performing a spherical average
(Section VIII) and then an average over the collision parameters: some reference time ¢,
impact parameter p and velocity v (Section 1X). The large time limit of the thermal average,
which leads to the familiar impact theories in the line center, is investigated in detail in the
Appendix for different cutoff procedures and compared with the results in the literature. In
Section X, a method is developed for performing the Fourier transformation of the thermal
average and it leads us to the crucial function for any classical path theory of Stark broaden-
ing. This function is finally applied in Section XI to the one electron theory, which forms the
basis for the asymptotic wing expansion, and in Section XII to the unified theory, which
describes the whole line profile from the line center to the static wing. Numerical results are
given for the hydrogen line profiles as measured by BoLDT and COOPER, 1964 ; ELTON and
GRIEM, 1964, and VIDAL, 1964, 1965. The numerical calculations of the thermal average
have been performed for the general case including lower state interactions, while the
unified theory calculations have so far been restricted to the Lyman lines. The extension of
the unified theory calculations to the general case is in process. The computer programs
which have been used are presented in an NBS Monograph (VipAL, COOPER and SMITH,
1970).

I1. BASIC RELATIONS

In this section we will briefly outline the basic relations which are used in our classical
path treatment of line broadening.

As discussed in Section 2 of paper 1, we are considering a system containing a single
radiator and a gas of electrons and ions. We will make the usual quasi-static approximation
for the ions by regarding their electric field €; as being constant during the times of interest
~ 1/Aw. This approximation is usually very good because the region where ion dvnamics
are important is normally well inside the half width of the line except for a few cases such as
the n-o lines of hydrogen (GRIEM, 1967b). The complete line profile I{w) is then given by the
microfield average (see equation (3) of paper H).

Hw) = f P(e)[{w, ¢;) dg; (1LY
0

where the normalized distribution function P(g,) is the low frequency component of the
fluctuating electric microfields. Due to shielding effects Pig;) depends on the shielding
parameter ro/D where r, and D are the mean particle distance and the Debye length (for
electrons only} respectively.

With the static ion approximation we have reduced the problem to a calculation of the
electron broadening of a radiator in a static electric field &;. The resulting line profile I{©. &)
is then simply averaged over all possible ion fields to give the complete line profile /{w).
The static ion fieid will be used to define the z-axis for the radiator and the ion-radiator
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interaction will be taken to be the dipole interaction eZg; where — eZ denotes the Z-com-
ponent of the radiators dipole moment.

If the unperturbed radiator is described by a Hamiltonian H,, we may then define a
Hamiltonian for a radiator in the static field ¢; by

Hy, = H,+eZs. (11.2)
The complete Hamiltonian for the system is then given by
H=H,+V, (R x,v,1) (IL.3)

where V, denotes the electron radiator interaction. In this equation, x and v are 3N vectors
X = (Xg,Xz,..., Xy} V= (¥, V,, ..., Vy), which denote the positions and velocities of the
N electrons and R denotes some internal radiator coordinates. For one-electron atoms, R
is the position of the “orbital” electron relative to the nucleus. The interaction V, will be
regarded as a sum of binary interactions,

VAR, X,v,8) =Y ViR, x;,v}, 1) (I1.4)
i

where V; denotes the interaction between the radiator and a single electron. As is well
known the line shape I(w, ¢;) may be given by the Fourier transform of an autocorrelation
function C(t) (BARANGER, 1962}
1.
Kw, &) = — Refe"‘”C(t) dt. (IL5)
T
(¢}

In the classical path approximation, the correlation function for electric dipole radiation is
given by

C(t) = Tr{d{TYOATL)),,P}, (IL6)

where d and p, denote the dipole moment and the density matrix for the radiator. The
thermal average denoted by the subscript av represents the average over electron states (see
equation (47) of paper I):

(THOAT) ey = fdx dvP)WMWTIR, x, v, )AT,(R, X, V, £) (1L7)

where P(x) and W(v) are the position and velocity distribution functions for the electron
perturbers (defined by equations (37) to (40) in paper II). The time development operator
for the system TR, x, v, 7) is the solution of the differential equation

a%nm = [Ho+ V0] Ty(0) (I1.8)

ih
and it may be written in an interaction representation defined by
TR, x,v,t) = exp(—itH /MU (R, x, v, 1) _ (1L.9)
where

m%u,,(z) = V1)U (1) (11.10)
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and
V(t) = exp(itH ,/h)V,(t) exp(— it H o /h). (I1.11)

It should be noted that V(1) is identical with ¥(t) in paper 1I except that we have not yet
made the no quenching assumption which removes the unperturbed part H, in the Hamil-
tonian H, inequation (I1.11). Using the time ordering operator ¢, U (¢) may be written in the
form

t
UJR,x,v,1) = Oexp {—%J. VR, x,v,1) dt'}. (I1.12)
. [}
To evaluate the trace over atomic states in equation (I1.6), it is convenient to use the H,
eigenstates |a), |b), ... with the eigenvalues E_, E,, .. .. Hence, using U {t) we have
C(t) = Y. <{ald|b){cdid) e s (I1.13)

[KBIU B> <d|U (Blad]aLalpday
where
g, = (Eq— EJ)/h. (I1.14)

In paper 11 and 111, the correlation function C(t) was evaluated for the case of no lower
state interactions in order to keep the mathematics as simple as possible because one of the
U (1) operators in equation (I1.13) may then be replaced by a unit operator. In this paper we
will give a more general evaluation of C(t) which includes lower state interactions. For this
purpose we introduce in the next section a more compact tetradic notation. Furthermore, it
should be noted already at this stage that we will interchange the sequence of approxima-
tions with respect to paper II by deriving the generalized unified theory before making the
no quenching approximation. This makes the results of the unified theory also useful for
situations where the no quenching approximation cannot be made like, for example, micro-
wave lines.

I1I. THE TETRADIC NOTATION

The purpose of the tetradic notation which we shall use is to write the product of the
U (t) operators in equation (11.13) in terms of a single operator. To do this we first consider
the product of the matrix elements {«|Ala’) and {f|B|f") where A and B may be any arbi-
trary operator. This product may be written in terms of the direct product 4 ® Baccording
to

(o Alo"Y<BIBIB> = aflAQBla'S"), (LIL.1)

where the product states [aff) = [a)|f) are essentially the same as the states of Baranger’s
“doubled atom™ (BARANGER, 1962). This direct product, A® B, is a simple form of tetradic
operator. If one of the operators 4 or Bhappens to be a unit operator I, we may conveniently
denote this fact by means of superscripts / and r according to

AN B> = (afl Aol B = (o Alo Dy (IL.2)
(CaflIQBla'B> = (af|Blo'B> = {PIBIBDS (ITL.3)
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That is, a superscript [ denotes a “left’” operator which operates only on the “left” subspace
(in this case the |a), |o’> subspace) and a superscript r denotes a ‘“‘right” operator which
operates on the “right” subspace. It thus is clear that any ““left”” operator will commute with
any ‘“‘right” operator:

(44, B = 0. (111.4)

With this notation, the thermal average in equation (11.13) can now be written in the more
compact form

[KBlULDIeX<AIU (Dad]a, = KAUHNBY AU () ad],,
= [(cdlUX)U!ba)lav (I1L5)
= Lcd|[UHOU (). lba).
We have chosen to write (blU(1)lc)> as {c|UX(t)|b) simply for convenience in the derivation

given in later sections. Noting the definition of U,(t) given in equation (II.12), we define
operators VYR, x, v, t) and VR, x, v, t) so that

. 1

i

ULR, x,v,1) = O exp {—EJ VYR, x,v,1') dr}
)

. (I11.6)
U'R, X, v,t) = O exp {—;l J VIR, x,v,t) dt’}.
0
Since any “left” operator commutes with any “right” operator, we have
i t
U*R, x, v, DUYR, x, v, 1) = O exp {-%f‘ii(R, x,v,t) dp}
o
=Y R,x,v,1) (I11.7)
where
TR, x,v,8) = VIR, x, v, t)— VR, x, v, 1). (I11.8)

We have now succeeded in replacing the two U (t) operators by a more general tetradic
operator %(r) which operates in both “left” and “right” subspaces. Equation (I1L.5) thus
becomes

(KU Bie><d| U (0lay],, = <cd|[#(D)].]ba>. (I11.9)
It is important to realize that the tetradic operator %(t) is formally the same as the operator
U ,(1); that is, it satisfies the same type of differential equation

-

ih%%(R, v, 1) = AR, x, v, DR, X, V. ). (111.10)
O

This means that all of the line broadening formalism which has been developed for U (1),
will be directly applicable to #(t).
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To make the formal correspondence more complete we use the operators Hy, H,
VYR, x, v, ) and VI(R, x, v, ) to define the tetradics #; and 7,(R. x, v, t) according to
Hy = Hpy— HY (L1
VIR, X, v, 1) = VIR, x, v, 1)~ V¥R, x, v, 1). (I11.12)
Since any left operator commutes with any right operator we have
Vi) = expl{itHy/R}Vi(t) exp{ — itHy/h}
= exp{it#y/h}Vit) exp{ —it#y/h}. (111.13)
Hence
YR, X, v, ) = expl{itHy/h} ViR, x, v, t) exp{ — it H#p/h} (11L.14)

which is formally the same as equation (I1.11). It is also obvious that both ¥, and ¥, will be
given by a sum over binary interactions 7] or ¥ just as in equation (IL.4).

%(R, X, V, t) = Z 4l/li(I{a xj7 vja t) (III'IS)
j
4Vi(]!, xj’ vj’ t) = V’i(R’ xj’ vj’ t)_ Vll*(R’ xj’ vj’ t) (11116)
The formal similarity between the operators Hg, V,(t), V,(t), U,(t), etc. and the tetradic

operators J,, ¥i(t), V.(t), %(t), etc. will greatly simplify the treatment of the thermal average
for the general case of upper and lower state interactions.

IV. THE GENERALIZED UNIFIED THEORY

Using the tetradic operators as defined in the previous section we have for the correla-
tion function

Q) = bZ aldib{cldldde™ " Calp fay
abed

Ced| F(t)bad (IV.1)

where %#(t) denotes the thermal average of (R, X, v, t):

F(b) = [U(D)a
= f dx dvP(x)W(W)Y#Z(R, x, v, 1). (Tv.2)

This tetradic operator %(t) is formally identical to the operator F(r) defined in Section (2.A)
of paper 1. It would also be formally identical to the F(r) defined by equation (19) of
paper Il if we wouid make the no quenching approximation at this point. To preserve
generality, however, the no quenching approximation will be deferred until a later section
when we specify the |a), |b), ... eigenstates to be H, eigenstates for hydrogen.

Following the formalism developed in Section 2 of paper 111, we define an operator
F(R.x.v,t)by

FR,x, v, 1) = PXWWW#(R, x, v, 1) (1V.3)
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so that

F() = f dx dv# (R, x,v, 1) (Iv.4)
{cf. equations (11) and {12) of paper [II). From equation (I111.10) we see that

0 ~
ih= FRX.V,0) = F(R,X.V, 0F R, X, V. 1) (1v.3)

which is formally the same as equation (13) in paper III. We next introduce a projection
operator 2 which is identically the same as the operator £ defined by equation (14) of
paper III (the fact that & now operates on tetradics does not change its definition). That is,
for any function of electron variables f(x, v) we have

2f(x,v) = PX)W(v) J dx’ dvif(x’, v'). (Iv.6)

This relation holds whether f is a matrix, tetradic or any other type of operator. With this
operator we can follow the derivation in Section (2.B) of paper III replacing H,, V,, ¥, etc.
by #, V., V., etc. As a result (cf. equation (27) in paper I11) we have

%0:([) _ _h-zj explit’ #/h) [Vt — Y%t — )V (O)]a,
0

exp(— it W F () dt’ (IV.7)

where
. -t
YR, x,v,t—t') = Oexp {—% J (1—-2) Ve(R, X, v,t") dt"}. (IV.8)
3]

Returning to equations (I1.5) and (IV.1) we see that the quantity of interest is not Z(t) but
rather its Fourier transform.

(ed| F(w)bad> = | et e~ 0wt cd| F(t)ba) dt

e cdlexpl( — it 4, /) F(t)ba) dt

ot— 8 o——38

= J e cd|F (1) ba) dt (IV.9)
" .

where

F(t) = exp(—it 4 /WF (1) : (IV.10)
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From equation (IV.7) we see that

t

570 = — Ao mF ) —h? J exp(— i(t — ') H/h)

0

(7t = )90 — )/ A0l F () dr. (V.11

Solving this equation by Fourier transforms gives

Ho) = i[Aw,,— L(Aw)] ™! (IV.12)
where
L(Ao,,) = —ih™? J exp(itAw,,) [ ¥ (1) 7 (0], dt (IV.13)
0

and Aw,, is an operator defined by
Awy, = 0— Hy/h = o —(Hy— Hy)/h. (Iv.14)

With these results, the line shape given in equation (I1.5) becomes (cf. equation (I.1))

Ko, &) = %Im Y <aldiby{cldid)<{a| pla)

abcd

Cedl[Awg, — LBw,,)] " '[ba). (IV.15)

We next simplify #(Aw,,) by means of the impact approximation (see Section (3.2) of
paper II). Basically this approximation assumes that the average collision is weak, that
strong collisions do not overlap in time and that a weak collision overlapping a strong one
is negligible in comparison (weak collisions are those interactions for which a low order
perturbation expansion in ¥, provides a good approximation to % or % ; for strong collisions
the full exponential must be retained). It should be emphasized again that we make a distinc-
tion between the impact approximation and the impact theory. The latter contains the
impact approximation as weli as other approximations like the completed collision assump-
tion which will not be made here. We also assume that the electron perturbers may be
replaced by statistically independent quasi particles (e.g. shielded electrons). In Section (3)
and Appendix B of paper II1, it is shown that these approximations reduce #(Aw,,) to

P(Aw,,) = — iAwopf edooe FU () dt Aw,, (IV.16)
4]

where

Fr) = ’16’de1 dviW(v ) [ (R, x;. vy, 1)~ 1] (Iv.17)
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and
A (R, X, vy, 1) = Oexp {—%f (R, X4, ¥y, r')dt} (1V.18)
4]
and n, denotes the electron density.
Equations (IV.15) through (IV.18) give the line profile of the generalized unified theory.
To obtain the impact theory we simply replace #(Aw,,) by #(0) and as discussed in
Section 4 of paper III, we have the familiar resuit (cf. equation (44) of BARANGER, 1962).

L) =i J (Sts, —1)dv (IV.19)

where S; denotes an S-matrix for a binary (completed) collision and [dv denotes the
integral over collision variables, as defined in the Appendix of paper IL

fdv = neJdv of (v) f dp 2np f dQ. (IV.20)
0

In comparing equation (1V.19) with Baranger’s result it is important to note that Baranger’s
operators S; and S, operate only on “initial” and “‘final” states respectively, whereas our
operators S, and S’ operate on all possible H, eigenstates. This difference occurs because
we have not made the no quenching assumption yet.

The other limit of the one electron theory is obtained by making a wing expansion of
the unified theory; that is, the operator [Am,,~ L(Aw,,)]” ' is expanded in powers of
[L(Aw,p)/Aw,,). To lowest order this gives

1 1 1
Aw,,— LAw, )]t = LB —+
L (Uop ( a)op)] Aa)op+Aw0p ( wop)Aw0p+
{ Fo
_ —i | edeo FO(ydrt - (IV.21)
Aw,, J

The first term, | Aw,,, gives a delta function when one takes the imaginary part required
by equation (IV.13). To get this delta function we approximate radiation damping effects
by using (Aw,,+ ic) in place of Aw,, (see Section (3.A) of SmiTH and HOOPER, 1967); the
imaginary part of 1/(Aw,,+ie) is just —nd(Aw,,) when ¢ — 0. When this delta function
term is averaged over ion fields according to equation (II.1) it will produce the line broaden-
ing due to the static ions alone (see Section 5 of paper 1Ij. The influence of the electrons
as well as electron—ion coupling is contained in the second term of equation (I'V.21).
Hence one is interested in the matrix elements of the Fourier transform of #¢), which
is also the quantity of interest in the unified theory (see equation (1V.16)). The primary
difference between calculations made by the unified and one-electron theories is therefore
the matrix inversion of [Aw,,— #(Aw,,)] which is required by the unified theory but not
by the one clectron theory, Since the matrix elements of the Fourier transform of #1(1)
play such a central role in any classical path theory (including the impact theory), the
evaluation of these matrix elements for hydrogen will be discussed in detail in the following
sections.
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V. THE NO-QUENCHING APPROXIMATION FOR HYDROGEN

In the preceding section we have derived the thermal average %(t) and its Fourier
transform .#(w) for the general case of upper and lower state interaction. In order to
evaluate I{w, ¢;) in equation (IV.15) we have to consider the complete trace over all H
eigenstates |a), |b),.... However, in looking at the equations (IV.9), (IV.18) and (111.14)
one realizes that due to the exponential factors only a few of all the possible matrix elements
will contribute significantly to the final line profile at a particular frequency w. That is,
we can neglect those matrix elements for which the argument of the exponential factor is
so large that it gives rise to rapid oscillations within the range of the time integral. Hence,
if one treats well isolated lines, only those matrix elements of U,(t) between either “initial”
or “final” states have to be considered. We may therefore state the no-quenching approx-
imation as

(1) = UhnUi() (V.1)

where U; now no longer operates on the complete “left”” or “right’ subspace, but only on
“initial” or ““final” states (see also Section 2.2 and 7.2 of paper II).

Further approximations cannot easily be generalized and depend on the particular
problem investigated. We now apply our general results to the problem of hydrogen.
In this case the no-quenching assumption states that we need to consider only those
matrix elements of U, () and V,(R, Xx,, v;, t) which are diagonal in the principal quantum
number n. As shown already in paper II this is a good approximation as long as the lines
investigated are well separated. For calculating the line wings it is furthermore required
that there is no appreciable overlap with wings of adjacent lines in the region of interest.
The same is true also in any reliable measurement of line wings.

To show this we can proceed as in Sections 2.2 and 7.2 of paper 11 with the difference
that now we are dealing with the operator H, = H,+ eZg; rather than just H,. Since H,
does not commute with Z we introduce a projection operator P, (see Section 2.2 of paper I1)
which picks out the part of an operator which is diagonal in #. Using this operator we split
H, into a part which is diagonal in n

H,, = H,+eP,Z (V.2)
and a part which is not diagonal in n
Hy = e(1—P,)Zs;. (V.3)

H, now commutes with P,Z because both operators are diagonal in parabolic coordinates.
We therefore specify their eigenstates completely by the principal quantum number n,
the magnetic quantum number m and the quantum number g which is defined to be

q=mn,—n,; (V4)
ny and n, are the usual parabolic quantum numbers which obey the relation
ne=n +n,+|m+1 (V.5)
Knowing the solution of the eigenvalue problem

Hy ngmy = E, . |nqm) (V.6)
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with
Epom = E,teZ,5 (v.7
we see from a second order perturbation approach (cf. Chapter 16 of MERZBACHER, 1961)

that the energy correction

y |<ngm| Hygeln'q'm'H|?
n#n’ E E

ngm~ “n'g'm’

AEQ), =

ngm

(V.8)

can always be neglected as long as the ion fields do not become too large. This is again
equivalent to stating that the lines have to be well separated.

As a result one is left with the eigenvalues E,, E,, ... of the Hamiltonian H_, whose
eigenstates |a),|b),...|d)> are the parabolic states [ngm)>. This allows us to rewrite the
autocorrelation function C(t) in equation (IV.1) for hydrogen in the form:

C(t, &) = Y, {ngmdin'q;m;> {n'gymild|ngym,>
i
X EXp {_ E[En - En’ + e(anb - Zn’ qi,)gi]t} <nQama| palnqama>

x {n'qymy ; ngymy F(On'qum;, ; ngm,» (V.9)

where quantum numbers which refer to the lower state are distinguished from the upper
state quantum numbers by a prime.
The matrix elements of P,Z are given by (see BETHE and SALPETER, 1957)
{ngm|Zingm) = Z,, = 3nqa, (V.10)

with a, = h?/(me?) being the Bohr radius. As a further definition the ion field ¢; will be
normalized to the Holtsmark field strength ¢,

& =pf-2 (V.11)
where
gp = (%TE) o en?. (V.12)
This yields
gy = Zocaios = Ao, a1, 3 - B (V.13)
with |
2/3
Aw(n, gy, 1, qp) = (i;) / é(nqb—n’qg)gnﬁm. (V.14)

Aw; is now the frequency shift of a particular Stark component characterized by the
quantum numbers 1. q,, #" and g, due to the Holtsmark field strength ¢, Introducing the
frequency shift A = ©w— w,, where the frequency of the unperturbed line w,,. is given by

Wy = (En—En)/h (Vls)
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the line profile I{Aw, ) can be written in the form
Re I 7 I ’ ’ !
[(Aw, B) = — Y. <ngmldin'qgmgy {n'gymijding,m, >

x {nqm,| padngam,» <n'qymy, ; ngymy| F(w)n'qum, ; ng,mg» (V.16)
where
<n'qyimy ; ngym| F(w)n'qumyg s ng.mg)

- f dt expli(Aa — AoB)}n' gy ; ngymy F(Oln'gym,; ngmy
(0]

Performing the ion field average according to equation (II.1) will then give us the desired
line profile once we know the thermal average %(t).

VI. THE THERMAL AVERAGE #"(t) FOR HYDROGEN

In Section IV we saw that the crucial problem in any classical path theory of line
broadening is the evaluation of the matrix elements of #)(t). With the no-quenching
approximation for hydrogen a typical matrix element in parabolic states is given by

(n'qymy,; ngymy F OO qum, ;s ng m,»
(VL1)
-, f dx dvy W(v,){giml s ngymi Uy ()~ 11n'gym,; ngm,

To simplify the evaluation we transform to the natural collision variables p, v and ¢,
which denote the impact parameter, electron velocity and some reference time of the
collision (see the appendix of paper 11). The orientation of the collision axes with respect
to the radius vector R of the orbital electron is specified by the three Euler angles repre-
sented by Q. Furthermore we assume a spherically symmetric distribution of perturbing
electrons ; this is a good approximation as long as the impact parameters are not too small.
The velocity distribution function W(v) is related to the Maxwell distribution function
f(v) by

fv) = 4> W (). (V1.2)

With the preceding definitions equation (VIL.1) can be rewritten as

(ot gmy; magumd FON g ngume
ne I ! i 7 i 7
- j a0 f do of () f dpp f At qimy; naymi () — ' gomli nggmy. (V1)

Next we have to know the matrix elements of the time development operator %, (t) defined
by equation (IV.18). This requires the matrix elements of the interaction potential (1)
In order to save some writing we consider for the moment only U ,(t) and V(t) which after
making the no-quenching assumption may be the “‘initial” or “final” part of the corre-
sponding tetradic operators (see equation (V.1)). A typical matrix element of V(1) is
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given by

~ e .
{ngam | Vi(t)ingama) = exp {i 7 Zna. *and)ﬁ.-t} (ng.m | Vi ()nggmy> . (VL4)

With the no-quenching assumption the unperturbed energy eigenvalues E, have cancelled.
At this stage we now make another simplification by dropping the exponential in the
latter equation; this has been done in all previous Stark broadening calculations but it
is rarely stated explicitly. This will be a good approximation in the line wings where the
time of interest 1/Aw are small and Aw 1s much larger than the average 1on field splitting.
In the line center, however, the argument of the exponential can easily be on the order of
unity or larger in which case ¥(t) effectively vanishes due to rapid oscillations of the
exponentials. This effect was first noted by VAN REGEMORTER, 1964, who shows that this
effectively introduces another cutoff which may easily be smaller than the usual Debye
or Lewis cutoffs. This additional cutoff has been included in recent calculations (KEPPLE
and GRIEM, 1968). However, as discussed in Section XII it turns out that its influence on
the final line profile is in most cases negligible.

Neglecting the ion field exponentials in equation (VI.4), the time development operator
U, is now given by

U, = Oexp {—% f P.V,(t) dt'} (VL5)
V]

where the time ordering is still required because P,V;(¢) need not commute with P,V,(t").
In paper I1 it was shown that this time ordering is negligible for weak collisions (to second
order) as well as quasistatic collisions (i.e. in the distant line wings). Time ordering is not
negligible for strong collisions; however, when the thermal average is performed, the
errors due to neglecting time ordering are expected to be small. The reason for this is that
the time development operator

U, = exp {—%f PV,(¢) dt’} (VL6)
4]

still retains its unitarity (cf. Section 8 of paper II). It should be pointed out at this stage
that the time development operator used by VOSLAMBER, 1969, is also unitary, but is
significantly more complicated because it includes the effects of time ordering to one more
order (third order) in the Dyson series. This does not necessarily entail better theoretical
results since after the spherical average all the odd terms of the Dyson series do not con-
tribute to the final results. Work which takes into account time ordering to all orders is
in process and preliminary results for Lyman-o, which should reveal the strongest effects
due to time ordering, show changes in the final line profile of only a few percent at the most.

Vil. THE MULTIPOLE EXPANSION OF THE CLASSICAL INTERACTION
POTENTIAL

Before evaluating the thermal average &''(t) we briefly consider the classical inter-
action potential V() due to a single electron. If the perturber does not “penetrate” the
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radiator. Vi(t) is given by the well known multipole expansion

o0 k
V(1) = Z ! ]’m P,[cos 0(1)] (VILI)

where |R| is the distance of the orbital electron from the nucleus, r(r) is the instantaneous
distance of the perturbing electron, the P, are Legendre polynomials and 6(t) is the instan-
taneous angle between R and r{t).

In most cases it is sufficient to consider only the dipole (k = 1) term. However, to
account for some asymmetries of a line, it may be necessary to keep some of the higher
multipole terms as well. In any case, one can show that this multipole expansion is ter-
minated after some finite number of terms due to symmetries of the radiator.

To show this we specify the angular positions of R and x(t) by 8,, ¢, and 6,, ¢, res-
pectively and we apply the spherical harmonic addition theorem (equation (4.6.7) of
EpMONDS, 1960)

+k
Pcos) = 3, (=1PCH0y, ¢1)-Ck (6, ¢)) (VIL.2)
p=—k
where
cos 8 = cos 6, cos 6, + sin 6, sin 8, cos(p, — ¢,). (VIL3)

We may simplify the mathematics without loosing generality by choosing a coordinate
system in which ¢, = 0. Using the relation

Ck (02,05 = 0) = (—1)7- C}0,, 0, = 0) (VIL4)

one then obtains

Pi{cos 0) = C5(0y, ¢,)C5(65)

+ Z (= 1PCH02, 05 = O)[CE (01, 9,)+(—1)PC(0, 0,)]  (VILY)

p=1
which gives for the interaction potential
€ Ile
vy [t

[ck P(cos 0,(1) + Z \/ ( )P"(cos 0,(0){C~ ,+ v~1vck}] (VILS)

Vi) = ¢*

The dipole case (k = 1) gives the well known result

, ¢*R| 1

Vi(t) = —5-—| C§cos 0,(t)+—= e {C —C1} sin 0,(1)
r(t) V2

2

= 1)[Z -¢0s 0,(t)+ X sin 0,(0)]. (VILT)
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The y-component vanished because ¢, = 0. Similarly one can write down the higher order
multipole terms. The necessary matrix elements of C are given by

, 'k L\ k1
A'm|CoImy = (= 1™ J[QI+ 1)1+ 1)] . (V1L8)

-m' p mi\0 0 O
From the last 3j-symbol we see that these matrix elements exist only if [, k, I" satisfy the
triangle condition and their sum is an even integer. Therefore it turns out that, within the
no-quenching assumption where one needs the matrix elements of P,V(t), only a finite
number of multiple terms exist. The summation index k in equation (VIL.6) has to obey

the condition
1 <k <2n-1). (VIL9)

As an example we see that a calculation of the upper state interaction of Lyman-u requires
only the dipole and quadrupole terms. This condition also illustrates the well known fact
that there is no ground state interaction for the Lyman series.

VIII. THE SPHERICAL AVERAGE OF THE TIME DEVELOPMENT OPERATOR %(t)

In our evaluation of the thermal average #')(t), defined in equation (VL.3), we first
perform the spherical average represented by the integral over the Euler angles €, because
it greatly simplifies the remaining integrals over t,, p and v. This is due to the spherical
symmetry of the time development operator U (z) defined in equation (V1.6). It should be
noted that this symmetry was achieved by dropping the ion field exponentials in equation
(V1.4), thus replacing ¥(t) by V,(t). We will perform this average by means of a rotation
technique used by CooPER, 1967, and BARANGER, 1958, for S-matrices. Although we are
working with the more general time development operators U(t) or %(t), the rotation
technique is the same.

In terms of the collision variables p, v, t, and Q, the dipole interaction between the
radiator and a perturber is given by

Vit) = e2R[p+v(t +t))/[p* + 0¥t +10)*)? (VIIL1)

(see the appendix of paper II). The three Euler angles denoted by Q describe the orientation
of the collision frame relative to the atomic frame. It is therefore convenient to perform
a rotation of the atomic axis through the angles Q in such a way that R points in the same
direction as p and the x axis of the rotated atomic frame points in the same direction as v.
In this rotated frame, the interaction potential takes the form

V(t) = e*[Zp+ Xo(t +10))/[p? + 02t +10)*]/>. (VIIL.2)

This rotation transforms the time development operator U, into a new operator U, , where
U, and U, are related to one another by

U, = 2 YQ)U,.2Q) (VIIL3)

where 2(Q) is a rotation operator (see Chapter 4 of EDMONDS, 1960). The time development
operator in the rotated frame, U, , is given by
U,. = exp {—fi f PV(t) dz}. (VIIL4)
1

Q
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To make the form of U, . more explicit, we perform the integral over t' and we obtain

U,. = exp {—% ;}Z[P,,ZA(I, to, p,0)— P, X Bt ty, o, u)} (VIILS)
where
At 0.0 = e T Ito
and
B(t, ty, p,v) = 1 - L . (VIIL7)
VI /)t +17 1 +(to/p)’]

Substituting equation (VII1.3) into equation (V1.3) we see that the integral over Q in equa-
tion (VL.3)involves only the matrix elements of four rotation operators. Since it is convenient
to use spherical states|nlm) when taking matrix elements of 2(Q), we make use of the unitary
transformation from parabolic to spherical states discussed by HUGHEs, 1967.

Ingm) = Y |nlm’>{nim'ngm)
im’

n—1 n-—1

l
2 2
Cnlmingm) = 8y — HV2AFM=a70 J(214+ 1) (VIIL8)
m—q m+q
2 2 o

using 3j-symbols and the definitions in the equations (V.4) and (V.5). (An error in the phase
factor has been pointed out by Pfennig, private communication.) Noting that Z(Q) is
diagonal in the angular momentum /, the Q integral in equation (V1.3) may now be written

f {n'qymy s ngyi| U (B0 gamg s ngam,» dQ

D) f QU g m ' L,y D8 L UL lymy  (VIIL9)

@:rllzln’h<n’l;7’n;;| n'qymy 1 [{nggmy|nlym,>

G W nlym | U Inlm > D8, (nlmingm,>]

mymg mcig

where the summation X denotes sums over [, I, I, I, , m_. m_, m;and mj. The Q dependence
of the integrand in equation (VIIL.9)is contained entirely in the four rotation operators Z1Q).
Using equations (4.3.2) and (4.6.1) of EDMONDS, 1960, we obtain the identity

f@(l{,)— IQ(I;.) Ig(lb)* l@(la) dQ — 87[2 z (,__ l)m’CAm;,-e—md—mb+M—M'(2L+ 1)

mame < mgmp=? mpmg Memg
LMM'

L1, L I8 I, L &, , L Iy I, L
. {(VIIL10)
—m, m, M|J\—m, m, M|\-m; my AM|\—m, m, M

< (2]
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Hence equation (VIIL.9) becomes

j(n’q},m;,; nquy| U (DI goml,; ngm,y dQ = {n'qumyn'Lm > 'l n'qymy >

x {ngymynlym,>nlmingmy8n* Y, (= 1ymeT matmammp ¥ MoM(D) 1)

LM.M
(1; l, L)( L l, L)( L, L, L)( L, I L)
X
—-m, m, M\—-m, m, M|\—m; my M|f\—m, my M
x (' lmy s ndym U, (W' Em,; nlm >, (VIIL.11)

This result is spherically symmetric ; that is, any further rotations of the atomic coordinate
system leave this expression unchanged. One may verify this rotational invariance by
rotating U, through some arbitrary angle Q' so that U,, = 2~ Y(Q)U;.2(Q). Taking
matrix elements of the new rotation operators and making use of the orthogonality pro-
perties of the 3j-symbols one sees that the right hand side of equation (VIIL.11) did not
change. Since we are free to perform further rotations on U,, without altering equation
(VIII.11), it is convenient to rotate the XY plane through an angle ¢ = arctg (B/A) where A
and B are given by equations (VIIL.6) and (VIIL7). This rotation transforms U, into an
operator U, given by

U, =exp {—éezP,,Zg(t, tos 05 v)} (VIIL.12)
where
T, V2 L+(w/pYtolty+1) 12
g = 42+ By = X5 - . 1
8t to oot = AT B pv[l \/[1+(v/p>2<ro+rm[1+<vro/p)2l] (VITLEY

The operator U, has the important property that it is diagonal in parabolic states (because
it contains only P,Z). Hence a typical matrix element of U is given by

- 3 1 /
{ngm| U () ngm) = exp {— iinq;zlg(t, tos P l‘)}. (VIII.14}

We also realize that one and the same rotation through the angle ¢ = arctg (B/A4) diagonali-
zes simultaneously both time development operators acting on initial and final states
respectively. Asa result a typical matrix element of the corresponding tetradic operator #,(t)
is given by ’

- 3 /
<n'g'm’; ngm| 2 (O\n'g'm' ; ngm) = exp {—ii(nq—n’q’)ig(r, Lo, P v)}. (VIIL.IS)
m
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Substituting this identity into equation {V1I1.11) the spherical average of the time develop-
ment operator #,(t) finally becomes

f ' gymy, s ngpht U (D' qm, s nggmgy dQ =Y <n'gumgn’ L > n' L' giml )

x {n'gunn'Lm >’ Lmg|n’ qumy, y (nggmdndm, > (nd gm Jng o,

X <nqrmc'nlbmc> <nlbmb|nQbmb>8n2( - I)Amn ;mb(zL + 1)

I I, L L, I, L L, L, L\[ 1 I, L
X
-m. m, M\—m, m, M[\—-m, m. M \—m,’, m, M
-3 [ h
exp '15(’1qc—"1qc)_g(tato,P,U) (VIIII6)
m .

where the unitary transformations are given by equation (VIIL8). This result greatly
simplifies if there is no lower state interaction (e.g. Lyman lines), in which case one obtains

f <nqubl Lll(t)’”qa’na> dQ = Z <nqublnla'na><nla’na!”qanla>‘5m“mb[<nlamc| nqc'nr>]2

8n?

1

(3
exp {— i;nq(;’i.g(r, o, 0, u)} . (VIIL17)

This simplified relation may also be used for the higher series members of the Balmer,
Paschen etc. series where lower state interactions contribute only a negligible amount of
broadening to the final line profile.

IX. EVALUATION OF THE THERMAL AVERAGE #'Y(1) FOR HYDROGEN

Having performed the spherical average over the Euler @ngles Q we can rewrite equation
(V1.3) in the form

(' qymy s ngyimlF O’ gumi,; nggm,y = (— 1) 7™ 3 (2L — DXKn'gomeln i

x (' Lmldn'qomly (n'gimin’ Lim > ' Ly ' gymg > {ng i nl ym ><nlym Jngm >

LSl >( L, I, L)( l L L)( I N L)
x {nqmnlym >{nl,mlng,m
Cngamdntym, TG0 —m, m, M|\—m, m, M{\-m. m, M
x ( hoh L) F( L4 (X.1)
7 t,nq.,n,q. .
—my i, M e 9
where
F(t,n q,,n',q) = 2nn, (dv vf(v) ‘ dp p | dro®(t, to, p.v) (IX.2)
and

{3 f .
d(t, 1y, p. 1) = exp {~ i-;(nqc—n'q(‘v—l-m:. Toe P l‘)} — 1. (1X.3)
2 m
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Thus, the problem is now reduced to evaluating F(t), which will be done in this section. It is
interesting to note the similarity between equations (ViI1.13) and (IX.2) and the ¥-function
of ANDERSON and TALMAN, 1955, which is the crucial function in their classical adiabatic
theory.

We first realize that due to the symmetry of the line profile we only have to evaluate the
real part of ®(t, ¢, p, v); that is, for every positive value of (nq.—n’q)) there will be the
corresponding negative value. Hence we are left with

3 h
O, ty, p,v) = cos{i(nqc— n’q;);g(t, to- 0s v)} - 1. (IX.4)

In performing the integrals over p and ¢, in equation (IX.2) we account for shielding by
setting the interaction potential V and hence also ® equal to zero whenever the distance of
the perturbing electron is larger than the Debye length D. We also introduce a strong
collision cutoff p,,.. In principle we can let the impact parameter go to zero because the
functions @ and F(t) do not diverge for small impact parameters as they do in some second
order theories. However, for numerical purposes this would result in very large computer
times due to the growing fluctuations in the integral. For this reason we will choose p,,;, to be
small enough so that when we are interested in large frequency perturbations Aw where
perturbers at small impact parameters are quasistatic, the rest of the integral from 0 to
Pmia May then be replaced by the static limit. In the dipole approximation this gives rise to
the well known Holtsmark A2~ %%-wing (see also Section X). According to the validity
conditions of the classical path theories (see paper I) the minimum impact parameter g,
will be of the order of

po = Z+nla, (IX.5)

where 7 is the De Broglie wavelength.
We now concentrate our attention on the integral

G(t, p, ) = jd[o (e, tg, p, v). (IX.6)
For convenience we consider the collision sphere as shown in Fig. 1. The perturbing
electronn moves along the classical straight line trajectory L and we are interested in the

interaction from some time t, to some time t,+¢. Due to the Debye cutoff the 1,-integral
extends from — Tto + T where

T = %\/(DZ——;)Z) (1X.7)

and the interaction potential vanishes if the electron is outside the sphere of radius D. The
corresponding time integration limit t due to the strong collision cutoff p,,;, is given by

1
T= l,\/(ﬂé*ﬂz)- (IX.8)

Based on this model of the collision sphere we split the integral G into two parts

Gt p.v) = Ulp > po)- G,(t. p.t) + Ulpa > p)- Gyft, p. t) (IX.9)
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FiG. 1. Schematic picture of the collision sphere showing the Debye sphere, a strong collision sphere
and a straight line classical path trajectory.

where the step function U is defined to be

1 ifaz=b

. . (I1X.10)
0 ifa<b

U(a > b) ={
In order to evaluate G (t, p, v) we have to distinguish the following four cases depending
on whether the initial and final times of interaction are inside or outside the sphere.
Casel: —T < ty;to+t<T

UZ 1/2
/2 1+ p—zfo(fo +1)
gl(t, to. P U) = p—U 1— T 1)2 1)2 (IXlla)
\/{[1+—2(t0+t)2][1+—2~t(ﬂ}
p p
This is the same general expression as given in equation (VII11.13).
Case2: — T <ty; T < ty+t
2 1/2
p v p
— 4t 11—
NN, OJ( Dz)
- ¥ . (IX.11b)

gz([s thp»U)_ 2
p.U v 5
1+p—2t0

Case3:1g < —Tito+t < T
. 2 172
p v p
, ———(tg+t 1——
V2 1 b p(o+ )\/( Dz)

gs(t. lo,l),li)—_—g_—v /[ 3 :l (IX.11c)

N3
1+—(to +1)?
P
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Cased:t, < —T; T <ty+t

2 02
g4t tg, p,v) = ;z_ 1-— ﬁ) (IX.11d)
After defining
3 . h )
(Dk([? ty, 0, U) = COS E(nqc_nqc);l'gk(ts Lo, P, l’.) -1 (IXIZ)

the integral G, is given by

T—1t T
Gt p,v)=UQT > t){ f @, dry+ f @, dey + [ D, dto}
-T T—1t

o

T Tt
+U(t>2T)“cp2dto+ f @, dio + J®4dt0} (IX.13)
-T

T~ T-1

where we have separated the cases where the time of interaction is longer or shorter than the
time 27T required to cross the collision sphere.
In a similar manner we evaluate G, distinguishing between the following cases:

Case 1. ~T < ty;tog+t < —TOrT <to;lo+t<T
glt, 1o, ps V) = gylt, Lo, p, V). (IX.14a)
Case2:1 <ty < T;T <to+t
8L, 1o, p. ) = g5(L, Lo, p, 1) (IX.14b)
Case3:1p < —=T; —T <ty+t < —1

g(t’ tO’pa D) =g3([» fo,P, U)- (IX]4C)

Collisions which enter the strong collision sphere are neglected because of the strong oscilla-
tions. This vields

—r—t. T-1 T -T
Gb(t,p,l"’ = LT(T“T > f){ J (Dl dt0+ f (Dl dt0+ f (DZ dt0+ f (D3 d[o}
-T 14 T-1t -T-t
T bk St §
UG > T—z)UQZdrO+ f (D3dt0} (IX.15)

where again interaction times longer or shorter than (T—1) have been separated. In the
expressions for G, and G, we realize after a change of variables that the corresponding
integrals over @, and @, are identical. From the equations (IX.ila) and (IX.12) it 1s also
clear that @, is a symmetric function in z = to +#/2. Performing the ®,-integral one finally
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obtains
‘ T—t T
LGt p.v) = UQT > z){ f ®, dio+ f o, dro}
—t/2 T-1
+T
+UG > 2T)U @, dt0+(é—~T) -<D4} (IX.16a)
-T
and
Tt T T
LGyt py0) = UT—1 > t){ J ®, dig+ f o, dto} YU > T— z)“ o, dto}. (IX.16b)
T T—t T

We now introduce the following dimensionless variables
P Po - kT
X = B and Xg = B‘ with D = J(mee—z),

. . . 87n e?
s = @, with a),,=\/2~w,,=\/( m ),

y=1/T
) kT
w=" with v, = \/ (-2_) (IX.17)
Uay m
and the following abbreviations
R< t u-s
T J(1—x%)
2 2
p=f YY) (1X.18)
T J1-x%

With these definitions the preceding relations can be rewritten as
V2 x2+(1—x)y(y+R) i
gi(s, y, X, u) = ——- 1- 3 22712 e P2t
xXu SO+ = A0+ (1= 3+ R
. 2 2+l —x%) |2
2as, Y, x,u) = u \/[xz +y3(1— x2)]

2
gals. v, x,u) = gv(l —x?%) (I1X.19)
XU ,

and
@,(s, v. X, 1) = cos{C - gils, y, x. u)} ~ 1 (1X.20)
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where
C= C1 . Cz (IX21a)
and
C; = 3(ng.—n'q,) (IX.21b)
h ha, Nem?\ 104K
€= m-D-v,, 2kT 0'03043\/( 1018 ) T

Similarly we have for the integrals over ¢,

1

—-R 1 +1
G s, x,u) = U2 > R){ @, dy+ f @, dy} +UR > 2)“ o, dy+(§—1)(b4}
-1

-R/2 1-R

and (IX.22a)

1-R 1 1
G,,(s,x,u)zU(l>R+P){j @, dy+ J(Dzdy}+U(R+P>l){f(D2dy} (IX.22b)
P 1-R P

which leads to the thermal average

© 1
— 4 .
F(s,n,, T) = 2rnn,D? f du%u2 e f dx x,/(1—x%)2 - G(s, x, u) (IX.23)
) -0
with
G(s, x, u) = U(x > xo)- G (s, x, u)+ U(xg > x)- Gyfs, X, u). (IX.24)

These integrals have been evaluated numerically.

Before we discuss the methods for obtaining the Fourier transform of F(¢) and the
actual intensity profile, it is useful to derive the small and large time limit of F(¢). The
small time limit is determined by the integrals over ®; and gives the asymptote of the
thermal average for the static wing. The large time limit depends only on the @, integrals
and yields the thermal average as required by the impact theory.

In the small time limit @, reduces to the form

3 ht
(L, r)no = cos{—(nqc—n’q;)— —2} —1 (IX.25)
2 mr

where
r= \/(pz +v%td). (IX.26)

This expression depends only on the instantaneous distance r as expected in the static
limit and the thermal average is therefore obtained immediately by the integral over r
F(t),.o = 4mnn, f r2®,(t, ), dr. (IX.27)

0
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In the small time limit where

3 L hot
5("%—” qc);i'rfz -0

<

we can then perform the integral with the result

- 2 h 177
Ft),no = —§n{3n(nqc—n’qg)ir} (IX.28)

For the limit of large times of interaction we have to solve the integral

0 D
Fit).o = ZnneJ do Uf(v)f dp pt- D, (IX.29)
0 Po

For simplicity we set p, equal to zero (for p, # 0 see the Appendix). After a change of
variables and a partial integration the integral can be rewritten as

F([),_,oo = “27Zne[D21)avfdu_ule—u CJ%P_K /ll) ]
NG
0 0

e (IX.30)

The --integral is known as Raabe’s integral (see p. 144 of BATEMAN, 1953) and can be
expressed in terms of exponential integrals. Furthermore, from equation (IX.21) we
realize that for most practical situations C « 1. Keeping only the leading term in C we
have

F(t),~,. = —4/(m)C*n,D*v,([B—In(4C?)]

3 , . h\? &am 5
- (E(nqc—nqc)—n—?—) net\/(—ﬁ) [B—In(4C*)] (IX.31)

where

4C*

2 —n'qohe)’
_ 7m(,(3(nqc nq,) “) and B = 027. (IX.32)
m kT

The large time limit of the thermal average in equation (IX.31) is required for the calculation
of the line center and all modern impact theories give the same result except for the additive
constant B whose value depends on the particular cutoff procedure applied. The Appendix
gives a summary of the different constants obtained in the literature which vary consider-
ably. To what extent this uncertainty shows up in the final line profile depends on the
value of the constant C. The influence will be small if In(4C?) is considerably larger than
the uncertainty in the additive constant B. Furthermore, the large time limit of the thermal
average aflects primarily the center of the line profile and its contribution vanishes when
moving into the line wings.

Finally we show numerical results for F(t) as obtained by means of a.program described
by VIDAL, 1970. Most of the calculations shown in this paper have been performed for
the foilowing electron density and temperature parameters. These parameters correspond
to experiments which, as stated already in the introduction, have revealed the largest
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Case n, [em ] T.[K] Experiment

A 8.4 10 12 200 BorpT and COOPER, 1964 (cascade arc)
B 36-10'7 20 400 Evron and GrIEM, 1964 (T-shock tube)
C 1.3-10%3 1850 VIDAL, 1964 (RF-discharge)

discrepancies between experiment and the modified impact theory. We will concentrate
our attention on the high density case A and the low density case C, since case B is regarded
as being less accurate because of lacking absolute intensity calibrations.

Figures 2 and 3 show the normalized thermal average F/F, as a function of the dimen-
sionless variable s = @, -t for the cases A and C. Figure 3 shows the results for three
different Stark components specified by the quantum numbers n, = nq.—n'q.. Fy is the
small time limit according to equation (IX.28) whose Fourier transform leads to the
static wing. The dashed lines are obtained with a lower cutoff p.;, = p, = A+n’a,.
It can be seen that for case C the dashed curves get closer to the static limit Fy, than for
case A. In order to obtain the thermal average F for the limit p,,;, — 0 the numerical

n, =2

T 03

=8.4-10%cm™

F(s) / T : 12200 K
Fo(s) 02 —// —
/
/
01— ]
0.07 }— _|
0.05 | —
0.03 { i ! | _
-4 -3 -2 -1 0 | 2 3
Log,p S —

F1G. 2. The thermal average F of the time development operator normalized with respect to the
static, small interaction time asymptote Iy as a function of the normalized time s = @, - t. The two
curves are obtained with two different lower cutoff parameters in the p-integral. p.;, = 0 and
P 2
Poin = ~+1%ag.



Hydrogen Stark broadening calculations with the unified classical path theory 1037

T 0.3

Fots) 02

0.1

0.07

0.0%

0.03

Log|o S—»

F1G6. 3. The thermal average F of the time development operator normalized with respect to the

static, small interaction time asymptote F, as a function of the normalized time s = @,t. The two

sets of curves are obtained with two different lower cutoff parameters in the p-integral, p.., = 0

and p.,;, = 7 +n’a,. The three different curves in every set correspond to different Stark com-
ponents characterized by the quantum number n, = ng—n'q’.

calculations were finally performed with typically p.., =~ 0.01p, so that F,,. and F,
differed less than about 0.1 per cent over at least one order of magnitude in s. For smaller
values of s, where F,,,. and F, start to differ again, F,,, is then replaced by F,. In this
manner we obtain the solid curves in Figs. 2 and 3 which are used in the following.

It should be noted that these curves are calculated on the basis of the dipole approxima-
tion. It is clear that for impact parameters p = na, higher multipole terms have to be
considered. Since the values s of interest are approximately given by s Z @,/Aw. one
expects higher multipole terms to be less important the closer F,,,. getsto Fy for p,.;, = n’ag.
This 1s consistent with the experimental fact that in case A an asymmetry of the line has
been observed which cannot be explained within the dipole approximation, while in
case C no asymmetry has been observed.

For large s Figs. 2 and 3 show the transition to F, as given in equation (IX.31). which
forms the basis for the familiar impact theories.
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X. THE FOURIER TRANSFORM OF THE THERMAL AVERAGE

Having calculated the thermal average F(t) we now focus our attention on the evaluation
of its Fourier transform

Awg) = exp(iAwgsiF(s) ds (X.1

=
Ct—8

as required by equation (V.17) (see also equation (I'V.16)) where the dimensionless variable
Awg = (Aw—Aw; - )/, (X.2)

is the frequency separation from a particular Stark component (cf. equation (V.14)) for
an ion field strength f in units of the plasma frequency @,.

The thermal average F(s) does not immediately allow a straightforward Fourier
transformation because for large s F(s) is proportional to s according to equation (IX.31),
hence i(Awg) diverges. This divergence is due to the fact that we neglected the finite life-
times of the unperturbed states involved which naturally terminate the maximum time
of interaction s. This may be taken care of by introducing a convergence factor exp(— ¢s)
which can be obtained by replacing the delta function in the power spectrum of equation (3)
in paper I by a narrow Lorentzian line with a natural width ¢ (SMITH and HOOPER, 1967).
In the final line profile, however, natural line broadening is always negligible with respect
to Stark broadening which allows us to set ¢ to zero without affecting the shape of the profile.
For this reason we will evaluate

o

1 . —
{Awg) = lim — | e ®ed“rsf(s) ds (X.3)
0T
0

F(s) is known numerically and there are many ways to perform the Fourier transform.
In order to find the most convenient method we notice that according to equations (1X.28)
and (I1X.31), F(s) has the following asymptotes

for s—0: Fy(s) = p,;s>?
and for s — o0: F(s) = p,s. (X4)
where
p, = —%n.D32nC)3? (X.3)
and
py = —4/(m)n,D3C*B—In(4C?)].

The transition from F, to F, is very smooth because the power in s changes only by
over the entire range. It has been found that F(s) may be approximated by a function G(s)
whose Fourier transform can be given analytically and whose parameters may be deter-
mined by a least square fit. The function G(s) can be given in terms of the series

G(s) = Y Gys), (X.6)
k
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where the number of terms in the series depends on the required accuracy. As a first
approximation equation (X.4; suggests

Gils) = (X.7)
§) = 5 .
T J(57 +2bys)
with

a, = p, (X.8)
and

by, = %(Pz/lh)z'
G,(s) has the small and large s behavior of F(s). It then turns out that

fors >0 F(s)— G,(s) = p3s>?
1(8) = p3 (X.9)

and fors —» o0 F(s)—G,(s) = pa,

where p; and p, now have to be determined numerically. Consequently we take G,(s)
to be

Gs(s) 025" (X.10)
§) = . .
T (87 4+2b,5)"
It then becomes apparent that G,(s) is given by
akSBk— 1
Guls) = (574 2b,5)2F 32 (X.11)
with
a = py and b, = apzk/sz—ﬂZMk_s) (X.12)
such that one obtains
for s—0: G(s)= Y, py—15 17
. (X.13)

andfor s—00: G(s)= Y py-s* k.
k=1

In this manner the Fourier transform of any G,(s) can be expressed in terms of modified
Bessel functions K, and K, . For all situations calculated it was found that G,(s) and G,(s)
were sufficient to keep the deviation F(s)-G(s) smaller than 1 per cent for all values of s.
In some situations a fit better than 2 per cent was obtained with G,(s) alone. As a further
advantage it should be noted that this method tends to suppress “noise’ introduced by
the numerical evaluation of F(s).

In the following we evaluate the Fourier transform i(k, Awyg) of any G,(s) as defined by

o0

1 .
itk, Awrg) = lim - | e~ Se9RG (s) ds. (X.14)
e~0 T
0
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Their sum will then give us the desired Fourier transform i(Awy). In particular we are
interested in i(k = 1, Awg) and i(k = 2, Awg). We have

ao

] 1 . a,s’
i (Ac =ik = 1,A = lim — ~tSaiAwps 71
i(Awg) = i Wg) 5l~»mo7t0 e e \/(5 +2b s) s
1 dZ s lAmRs
=q, li
PR f\/(SZJ—Zbls) ¥
=a hmld—{ bite~idor) g [b (e—iAwg)]} (X.15)
! £=0 7td82 RIS ’
Introducing
Z‘ = blA(l)R (X16)

one finally obtains

i\(Awg) = a, - b2 -e‘iz‘{ng”(Zl)+H‘1“(ZI)[1 —i]}
1

= a,-b¥(cos Z,—isin Z,)
YWZ,)\ . J(Zy)
27, )+1(J0(Zl)+ Y(Z,))—- 27, )] (X.17)

X [(JI(ZI)_ YolZ,)+

Here HY" and H{!’ are Hankel functions and J,, J,, Y, and Y, Bessel functions. These
functions like all the other functions used in this paper are consistent with the definitions
as given, for example, by the NBS Handbook of Mathematical Functions (ABRAMOWITZ,
1969). For large arguments Z, it is also useful to have the asymptotic expansion

3a.-b? 1 3.5.7
(Bwg) = —o bt 1) =i i
i1(Awg) 8\/(nZ,) Zl{ +l+ 1( i)— 5 8222( +1i)
9.25.7 . 9.25.49. 1t .
~ygp Tt (L) - }

3 ({2 5/2 pi\?(1—i) 105(p;\*(1+i) }
= -z 1 R ey X.18
8\/( )plAwR {+ +4(P2 Aok 32\py) AwR ) (X18)

Using equation (X.5) for p, the latter relation gives us exactly the Holtsmark A2~ %
wing for all Stark components

ig(Awg) = mn,D3C¥% . Awg 32, (X19)
In a similar way one derives
: : 1 T — £5,iA@RS a2S5
I{Awg) = itk = 2, Awg) = ll_{r;; g~ Seldwr (71 2bos s
(12 ] d’% Ars (Asz

||

2 (X.20)
3 ;~on de? db, /s +2b2s
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With
ZZ = bzAQ)R (le)
one finally obtains
. , | j
I{Awg) = a26 2. e B HINZ,) (11623362, —i15)+ H{NZ Y1623 +i28Z,—3)}
b
- “26 2(cos Z,—isin Z,) (X.22)

X {[=362,Jo(Z,)+J (Z,)(16Z] ~ 3)— Yo(Z,)(16Z3 — 15) - 28Z, Y{(Z,)]
+i[J(Z,)(16Z2 —15)4+28Z,J ((Z ;) —36Z, Yo(Z,)+ YI(Z,)(16Z5 - 3)]}.
The asymptotic expansion for large Z, is given by

15 ayb, S35 35.63
13a3bs y —anfy i 22 (14— Py X.23
64 Jn O AL TTY 7 ALl (X.23)

If one requires an even better fit of G(s) to F(s) the general transform i(k, Awg) as defined
in equation (X.14) is given by
4512k —2)! 1 LR Ea

. T — k+1 " -
@—ar s im DT e, e,

i(Awg) =

itk, Awg) = {ebemiAeRIK ([h, (e~ iAwg)]} .
(X.24)

Finally we want to show that this technique always gives the static wing according to
equation (X.19) for large Aw. For this purpose one has to perform the Fourier transform
of the smal! time limit of G(s) as given in equation (X.13).

. = 1T .
i (Awg) = lim {Awg) = Y ka_lllm—J g~ glbwrsgktl 2 g
k=1 e—»0 T
0

Aog—=oc

1 & (k+1)! 3 o
- 77? zl (Ezk—+‘1k—!l)2k—1exp|:1§(5+k)]AwR (k+3,2)

k=

R AN | ~ 5 ps . 57 ps .
=2 A 2 1—iy+ ot 1
8\/(n)Awf{2{ Pl +l)+2 AwR( H+ 4 Aw,ﬁ( +i)

5-7-9 p, , |
AN Y P TN X.25
A0)3(1 -+ } (X.25)

One recognizes that the first two terms are identical with the first terms in the equations
(X.18) and (X.23). Hence, we always obtain the static wing for large Awg.
Another important property of i(Awg) is that for small Awy its leading terms in the
expansion are
a; 1 {a,by—a,)

if(Awg) = lim i(Awg) = —— ——5—i

X.26
Awgr—0 T A(J)%{ TEAO)R ( )

In this manner it smoothly goes over to the Lorentz profile of the unmodified impact theory.
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Before discussing the numerical results of i{Awg) we first list the constants a, and b, for
the cases A, B and C as specified at the end of Section IX. a; and b, are determined from
equation (X.8), where p, is given by equation (X.5)and p, is taken from the large time limit of
the computed F(s). p; comp. as calculated numerically may differ slightly from p, as defined
in equation (X.5), if C is not very much smaller than unity because equation (X.5) is only
correct for small C. a, and b, are determined numerically by a least squares fit. The maxi-
mum deviations from F(s) obtained with G,(s) alone and with G,(s)+ G,(s) are listed too.
In presenting the numerical results of i{Awg) we concentrate on the real part which turns out
to be the most important part. We have chosen two different normalizations. In Figs. 4 and
5, i(Awg) 1s normalized with respect to the large frequency limit i (Awpg) to show the useful
range of the static theory. The short vertical lines mark the position of the Weisskopf
frequency

3 L h -
ch = UZV /(E(nqc_n qc)%) = wp/c (X27)
for a particular component (nq.—n'q;) which according to classical arguments determines
roughly the range of validity for the static theory (see p. 321 of UNSOLD, 1955 and paper 1I).
It should be pointed out that Aw, is usually defined in terms of an average Stark splitting.
In both cases A and C Aw, describes the range of the static theory very well. If one allows

2.0 I T l

Awe

L11]

0.7

TTTTT]

0.5

T
[

f
{

|

i {Awg) 3

!

2 ne = 8.4 10" cm
tplAwg) T = 12200 K

0.4

0.07

T TT71T]
R

0.05

I
[

0.02 I | | | |
3 ) -1 0 1 2 3 4

L°gl0 AwR —

FiG. 4. The Fourier transform of the thermal average i, normalized with respect to the static,
large frequency limit i, as a function of the normalized frequency Awg = (Aw—Aw; - f)/D,.
Aw, indicates the Weisskopf frequency.
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2.9 . : I ; ‘ i .

i (Awg}
ipldwgl)

Log, AwR —_

FiG. 5. The Fourier transform of the thermal average i, normalized with respect to the static,

large frequency limit i, as a function of the normalized frequency Awg = (Aw—Aw;-f)/,.

The three different curves correspond to different Stark components characterized by the quantum

number n, = nqg—n'q’. The short vertical lines give the position of the Weisskopf frequency Aw,
for every individual component.

for a deviation of about 10 per cent at the most from the static asymptote, Aw,. may be
lowered effectively by more than an order of magnitude. A more detailed discussion is given
later with the final line profile calculations.

The other normalization with respect to the small frequency limit iy(Acwg) is shown in
Figs. 6 and 7 for cases A and C again. These plots demonstrate the useful range of the
unmodified impact theory, which is based on iy(Awg) and is expected to break down around
the plasma frequency, as can be seen in Figs. 6 and 7. In order to extend the range of validity,
the modified impact theory makes an impact parameter cutoff at v/Aw (the Lewis cutoff)
whenever this is smaller than the Debye length D ; this cutoff accounts for the finite time of
interaction to second order. More details are given in the Appendix. The corresponding
function iy ., (Awg) has been included in Figs. 6 and 7. Since the usual derivation of
iLewidlAwpg) is based on the limit of very small C, one expects the best agreement between
the Lewis result and our result, which considers the finite time of interaction to all orders,
for the situation with the smallest C. That this is in fact true can be seen from the low
density case with ng,—n'q. = 3. This component is plotted again in Fig. 8, in order to
demonstrate the importance of G,(s) for those cases where the deviation .of G,(s) from F(s)
is large (Table 1 gives a maximum deviation of 13 per cent).

Figures 6 and 7 also contain the static limit i (Awpg) (dashed lines) and the Weisskopf
frequency Aw,. It gives an idea how close the Lewis results get to the static limit. One
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F1G. 6. The Fourier transform of the thermal average i, normalized with respect to the small
frequency. impact limit i, as a function of the normalized frequency Awg = (Aw~Aw,f)@,. The
static asymptote (dashed line), the Weisskopf frequency Aw, and the Fourier transform as used by
the modified impact theory are shown.

notices that with increasing values of C the deviation of ij ., (Awg) from the static limit
becomes larger. In his line wing calculations (GRIEM, 1962, 1967a) GRIEM adjusts his “‘strong
collision term” Eg;. in such a manner that the Lewis result is identical with the static limit
at the Weisskopffrequency. In the Figs. 6 and 7 this means that the straight line representing
ILewis(Ampg) is shifted to the right until it cuts Aw,. We use here Aw, as defined in equation
(X.27) for every individual component instead of the average value Aw, = kT/(hn?) used
by Griem. Since the Lewis line would then lic appreciably above the curve i(Awg) one
realizes that this procedure definitely overestimates the electron broadening as already
observed experimentally (VIDAL, 1965; see also PFENNIG, TREFFTZ and VIDAL, 1966). A
better method would have been to adjust Egg. such that i; .. (Awg) forms a tangent of the
static limit. However, it is clear that any adjustment of Eg. effectively changes the range of
the unmodified impact theory and also defeats the purpose of the Lewis cutoff, namely to
correct the completed collision assumption to second order.

Finally it ought to be emphasized again that except for the time ordering the Fourier
transform of the thermal average i(Awg) as presented here takes into account the finite time
of interaction to all orders. Hence, for small Awg it goes over to the impact theory limit and
for large Ay it gives the static limit without requiring a Lewis cutoff.

XI1. THE ONE-ELECTRON LIMIT FOR HYDROGEN AND THE ASYMPTOTIC
WING EXPANSION ’

Having obtained the Fourier transform of the thermal average i(Awg) we are now
prepared to calculate the actual line intensity by evaluating I(w, ¢;) according to equation
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FiG. 7. The Fourier transform of the thermal average i, normalized with respect to the small
frequency, impact limit i, as a function of the normalized frequency Awg = (Aw—Awf)/@,.
The three sets of curves correspond to different Stark components characterized by the quantum
number n, = ng—n'q’. The static asymptote (dashed lines), the Weisskopf frequency Aw, and the
Fourier transform as used by the modified impact theory are shown for every individual component.

(IV.15) and averaging it over all ion fields according to equation (I1.1). As explained in
Section IV this problem is greatly simplified in the one electron limit where no matrix
inversion is required and the intensity I(Aw) is given by

o
I(Aw) = I{Aw)+ J P(B)(Aw, B) dp. (XL1)
0
TABLE 1. NUMERICAL CONSTANTS FOR THE EXPERIMENTAL CASES, A, B aAND C
Case A B C

n,=84-10%cm™* n,=36-10"7cm™3 , = 13-103%cm™3

T, = 12200K T, = 20 400K T, = 1850K

=2 n,=2 n =3 n =16 m =90
C 0.02169 0.02685 0.002669 0.01423 0.08006
I —0.05124 —0.07373 —0.01050 -0.1293 —-1.725
P2 -0.03335 —0.04990 —3932-107% —0.07696 —1.296
a; = D3 comp. —0.03340 —0.05003 —3.932.107% —0.07701 —1.323
b, 0.2125 0.2303 0.07011 0.1773 0.2941
(F —G,)/F| <0.026 <0.034 <0.13 <0012 <0.068
a, ~395-107° —6.57- 1073 2.38-107* —992-1073% —0355
b, 0.539 0.449 0.0664 1.54 0477
F—G,—G,/E  <0.004 <0.003 <0.009 <0.013 <0.013
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F1G. 8. The Fourier transform of the thermal average i, normalized with respect to the small

frequency, impact limit iy is shown as a function of the normalized frequency Awg = (Aw— AwB)/d p

for a situation where i,(Awpg) (defined in equation (X.22)) represents an important correction.
The Fourier transform as used by the modified impact theory is included.

I{Aw) is the static ion contribution originating from the first term, 1/Aw,, in equation
(IV.21) and I(Aw, B) is given by

Re ’ o f
I(A(l), ﬁ) = 7 Z <nqamaldlnlqlama><n qubldlnqub>

f dt exp{idwgt}{n'qymy ; nqymy| F )\ n'q,m., ; ngm,> (XL2)

using the definitions of equations (V.14) and (X.2). The density matrix p, is assumed to be
constant over the relevant initial states. With equation (IX.1) the last expression can be
rewritten as

(Aw, B) = Y <nlymdin' [m,><n' qymijn’ Ly (' Engldindmy Y (nlomy|ngym,y
x (nlgmiln’ qemcy <n'qemd ' lym S Cn' Ly n' gy, > Cngymy| nlymy Y nlyim  ngam >
{ngemdnlm H(—1)7 "= "(2L 1)( bk L)( ool L)
x {ng.mjnlm H(—1) M7 +
1 -m;, m. Mi\—-m;, m, M
( A L, L)( L, l,
X
—-m, m, M

where the dipole matrix elements have been transformed from parabolic to spherical states
and the summation over intermediate states {ng,m,> and |n'q,m.,> has been performed. We

L
B )I(AwR’ ﬂ’ n, )‘1/, dp» qi)v qe» qc,) (XI3)
-m, m, M
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next apply the Wigner Eckart theorem (see equation (5.4.1) of EDMONDS, 1960) to the dipole
matrix elements and replace the reduced matrix elements by the corresponding radial

’

1 I

-m pu m

matrix elements (see BETHE and SALPETER, 1957).

Cnlmld Jn'm"y = (— 1) J[(21+ )2 + 1)]
Inserting this relation into equation (XI.3) and using the orthogonality properties of the 3j-

)(0 0 0)(nllrln’l’>. (XL.4)

symbols we have
I(Aw, B) = Y <n'qymyin'lom; > {nlamyingymyy<n'lm]n'qum > {n' gomidn'lym)
x (' lymy| ' gymy > {ngymy| nlymy, > <nlym ng me) {ngamnlm,)

Lol 1

x [2L+ DL+ D2+ D)L+ 1)]”2<nla|r|n’l;><n’l;|r|nlc)(0 0 0

)

|

(1; I 1)( Lo 1)( L1 1)( Lo 1
X
0 0 OJ\—m. m M\—-m., m. M|\-m;y my M
I 1) , , ,
X B l(AwR’ ﬂ’ n,n,qy, qp, 4. qc)' (XIS)
—m, M,
If we finally replace the unitary transformation by the corresponding 3j-symbols according
to equation (VIL.8) the result is
IAw, B) =) (2, + 1)L+ )20, + DL+ 1)L+ DL 1)(1‘; ’ l)(l; o1
w, f) =Y L, +1)Q2l,+ + +1)2L+ DL+
’ ’ 0 0 oflo 00
x( I l, 1)( I L, 1 I I 1)( [ I, 1)
-m, m. M'[\—m, m, M|\-m, my M|\—-my my M
[ n—1 n—1 n—1 n-—1 n-1  n-1 l
2 2 b 2 2 ‘ 2 2 “
x
m,—q, my+q, Mmy—qg, My+4q, me—q. m.+q. m
2 2 AN 2 T\ 2 2 ¢
-1 n—1 | n—1 n-1 P =1 n—1 ’
2 2 i 2 2 ’ 2 2 ¢
X
me—qge mMetqe _ f\Me—dp motdy  \M—qp mytqy -
2 2 I\ 2 2 I\ 2 2 ’
fn—1 n'—1 I n—1 n—1i I
2 2 ‘ 2 2 b
X nllrn' I y<n'lirinl >
Mmc—q, m+q; J\me—a. mc+qc '
2 2 2 2 y
(X1.6)

X i(AwR’ ﬂ7 n, l’l,, s q;n 4., qé)
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The preceding relations hold for the general case of upper and lower state interactions.
They simplify considerably if there is no lower state interaction {¢.g. Lyman lines). Then one
obtains

n—1 n—1 2/n—1 n—1 2

—_ 1 — 1
, 2 2 2
1Mo, B) = Knlir|10>1> §

memc\ My —dp Myt dp o \Me—Ge MAL

2 2 b 2 2 ¢
X i(Awg, B, n, 45, 4.) (XL.7)

with

iu(AwR5 ﬂ’ n, qb’ qc) = i(AwR7 ﬂy h, n/ = 1’ qb’ qllb = 0> qc’ ‘1; = 0) (XIS)

Equation (X1.7) may be further simplified by evaluating the 3j-symbols and summing over
m;, and m_ with the result.

1rA10>2 =t
%}% Z [n2 +(— l)qb+"(n2 —2(]5)]

qp=—(n~1)
n—1

x 3 [PPH(= 1% - 2¢2))ifAwg, B, 1, Gy, 4.)-  (XL9)

gc=—(n—1)

I(Aw, B) =

These simplified relations may also be used for the higher series members of the other
series, whose transitions do not end on the ground state if lower state interactions contribute
only a negligible amount of broadening to the final line profile.

The foregoing relations for the one electron limit essentially represent the asymptotic
expression for the intensity in the line wings. If one is interested in frequency perturbations
Aw which are significantly larger than the average ion field splitting equation (XI.1) can be
simplified by replacing the ion field average of the electron contribution by the electron
contribution for the average ion field B,,

IAw) = I{Aw)+ I(Aw, B,,) (X1.10)
with

o)

B = f BW(B) dp. (XL11)

0

If Aw is very much larger than the average ion field splitting, then according to equation
(X.2) Awg ~ Aw/®, and I{Aw, f,,) may be replaced by I(Aw, § = 0).

I(Aw) = I{Aw)+ (Ao, B = 0). (X1.12)

In the limit § — O the equations (X1.5) to (X1.9) simplify drastically because i(Awy) depends
" no longer on the quantum numbers g, and q; which specify the Stark components shifted
by the quasistatic ion fields. This allows us to sum in equation (XL.7) over ¢, and m, which
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gives us for the case of no lower state interaction

n—1 n—1

1
2
L(Aw, p = 0) = [Knlif 10> 3 iAo, =0,n,q)
gn|M—q m-+gqg m
2 2

2 (n—1)
;‘é'Zi———‘J‘_‘?i,i Y (=1 2400, f = O,mg) (XL13)

q=—(n—1)

For the general case of upper and lower state interaction we can sum in equation (X1.6)
over q,, q,, My, My, and M and after applying equation (XI.4) we finally sum over the inter-
mediate spherical states to obtain

IAw, B = 0) = Y [Kngmidin'q'm'*iAw, B = 0,n,1',q,9). (XI1.14)

q.9",
m,m

How far into the line center the simplified relations (X1.10) and (XI.12) may be used, depends
on the required accuracy. Numerical results, which compare the asymptotic wing expan-
sions with the more rigorous unified theory calculations describing the entire line profile,
are given at the end of the next section.

XII. THE UNIFIED THEORY FOR HYDROGEN

In those cases, where the entire line profile including the line center is required, the line
intensities have to be calculated on the basis of the unified theory. It has to be pointed out
that in principal even in calculating the distant line wings the unified theory has to be used
whenever Awp in equations (X.1) or (V.17) is no longer large compared to unity. This will
happen in the final integration over ion fields whenever § is close to

B. = Aw/Awln, g,, 1, q;). (XIL1)

However, it was shown in the last section, that for large Aw one may use one of the
asymptotic expansions in equations (X1.10) and (XI.12).
In the unified theory we have to evaluate the following expression

Im ;o I
I(ACU, B) = 7 Z <nqama‘din qama><n qub'd‘nqub>
x {n'gqymy s ngymy| [Aw,, — L(Awy,)) ™ n'qzm; ; ngm,). (X11.2)

The matrix elements of Aw,, as defined in equation (IV.14) are diagonal in parabolic states
and are given by

{n'qemy; ngamJAwg|n' g s ngamgy = Aw—Aw(n, 4., 1, 4,)f (XIL.3)
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where Aw;, is defined in equation (V.14). The matrix elements of £(Aw,,) are given by

<n'gymy; ngymy| LDy ngm,; nqmgy = —in-(—1)""""[Aw~ Awyn, g,, 1, ;)]
x Y QL+ 1)’ qmin’limyy<n'lmdn' qom n' qumd n' lim > {n' Lymyln' qymy,
Lol

. L
X <nqa'na| nlama><nlamcl nqcmc><nqcmc| nlbmc><nlbmblnqub>( ' ,)
-m, m, M

(4

( Lo, L)( Lol L)( I ly L).(A B , )

X 1 w bl 7nan5 * b ¢ M

-m, m, M/\-m, m, M/\-my, my, M R v> b2 9> 4
(XI1.4)

using equations (I1V.16), (IX.1) and (X.1). This relation simplifies significantly in case of no
lower state interaction in which case we need the matrix elements

6m my
<nqubl Q(Awop)l nqama> = - ln[Aw - Awi(na qb)ﬂ]l 2 —21—:__[<nqub|nlama>
la,qc,me <*a

X <nlama|nqama>[<nlamclnqcmc>]2iu(AwRa ﬂ’ n, gy, qc) (XIIS)

Due to the delta function the matrix of the operator .# is then block diagonal in m, which
reduces the size of the matrices to be inverted to n x n or (n— 1) x (n— 1) depending on the
quantum numbers n and m. Furthermore, equation (XII.2) simplifies in case of no lower
state interaction. After transforming the dipole matrix elements from parabolic to spherical
states, applying the Wigner—Eckart theorem (see equation (XI.4))and using equation (VIII.8)
one obtains

n—1 n-—1

1
2 2
IAw, B) = [Knl|r{10))2 Y (= 1)rrm-i-lat a2
darbm m—q, m+q, m
2 2
n—1 n—1 {
2 2 Im
X gyl [Aw,,— L(Aw,,)] " HIngm. (XIL6)
m—q, m+gq, Cm T
2 2

In order to keep the mathematics simpler we concentrate in the following on the case of
no lower state interaction, because it covers the experimental situations of case A and B and
is also a good approximation to the higher Balmer lines of case C (see the list of references at
the end of Section IX). Including lower state interactions means at this stage only a more
extensive summation over 3j-symbols because the crucial function i(Awyg, ), the Fourier
transform of the thermal average, has already been evaluated for the general case of upper
and lower state interactions.
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Using the unitary transformation of equation (VII1.8), equation (XI1.5) may be rewritten
as

{ngym LA Nngmy = —in(—1)+m= 1@t @A — Awn, q,)817 Y, (21, + 1)

la

n—1 n—1 | n-—1 n—1 |
2 2 N 2 2 N
X 2 Z iu(AwR’ ﬁa n, an qc)
m—g, mtd, _ N\m—g mta _ | a>o
2 2 2 2
n—1 n—1 ! 2
2 2 “
XZ (XI1.7)
me \Mm,—¢q, m.+q,
2 2 ¢

where we have used the fact that i(Awg, B, 1, q,, q.) = i(Awg, B, 1, q,, —q,) and that
i(Awg, B, 1, q,,q9. = 0) = 0. We also realize that

{ngy—m L (Awp)ng,—m) = {ngym| L (Aw,p)ng,m). (XI1.8)

I{Aw, p) as defined by equations (X11.6) and (XII.7) has been evaluated numerically and the
computer program, which also performs the final ion field average, is presented in the
report of VIDAL, 1970. The ion microfield distribution function employed is the one given
by HooPER, 1968a, 1968b, which differs less than about 1 per cent from the values determined
independently by PFENNIG and TREFFTZ, 1966.

For the experimental parameters of case C, Figs. 9 and 10 show numerical results of
I{Aw, B = 10) for n = 6 and n = 10. The fat vertical lines indicate the relative intensities
and the positions of the Stark components for the static field (ion field) f = 10 and it
demonstrates the electron broadening,

10 T T

- n=6,n=1 ~
. ank? =3

osi- Ne= 1.3-10™ cm -

T=1850 K

B=10

Q
ro—
(€]

Aw/(;,p-—.

Fi16.9. Theintensity profile of the Lyg-line is shown before the final ion field average for a normalized
ion field 5; = 10 demonstrating the electron broadening.
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FiG. 10. The intensity profile of the Ly, -line is shown before the final ion field average for a
normalized ion field §; = 10 demonstrating the electron broadening.

Figures 11-13 show the final line profiles I(Aw) after performing the ion field average
for the experimental cases A, B and C (see end of Section IX). As a first result it turns out
that for numerical accuracies of about 2 per cent it is in all 3 cases sufficient to consider only
G,(t) meaning that i(Awg, B, n, q,, q.) may be replaced by i;{(Awg, B, 1, q,, q.) as given in
equation (X.17). Although according to Table 1, G,(t) may differ from F(t) for some com-
ponents of case C by up to 13 per cent, it turns out that after summing over all Stark com-
ponents and averaging over ion fields this difference F(t)— G,(¢) is apparently smeared out
over the entire line profile and affects the final line profile by not more than about 2 per cent.
This is very convenient for practical calculations, because it no longer requires an extensive
evaluation of the thermal average anymore, but for most practical situations it is sufficient
to calculate the line intensities directly on the basis of G,(t) whose specifying constants a,
and b, are given immediately by the equations (X.8) and (X.5).

2.5 T T T T TTTT] T T T TTTIT] T T

20

ne=8.4-10cm™ _|

T =12200 K

0 Lol 1 prqul b0 gl b1
o] 0.4 q 4 10 40

AN (R) —

F1G. 11. The final Lyman-a profile normalized with respect to the asymptotic Holtsmark A

wing (ions only) for three different values of the constant B: 1.27 (KeppPLE and GRIEM, 1968), —0.34

(as derived in this paper for p;, = 1+3n%a, and p,,,, = D) and —1.34 (for p,;, = 1 +3n%a, and

Pmax = 0.6D as proposed by CHAPPELL, COOPER and SMITH, 1969). The data are from the experiment
of BoLpT and COOPER, 1964,

-5/2_
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FiG. 12. The final Lyman-x profile normalized with respect to the asymptotic Holtsmark AL~ %/2-
wing (ions only) for three different values of the constant B as explained in the caption of Fig. 11.

The data points of ELTON and GRIEM, 1964, are given.

This is even more true in view of the fact that the final line profile is partially affected by

an uncertainty in the constant B as defined in equation (IX.31). As summarized in Table 2 of

* the Appendix its actual value depends on the cutoff procedure applied, a problem which
has not yet been solved satisfactorily. The upper cutoff parameter a = p,,,,/D (sec the
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FIG. 13. The final line profiles for the density and temperature parameters of VIDAL, 1965. The

1 (03}
—A w/(;,p

asymptotic Holtsmark A1~ %2-wings for electrons and ions (dashed lines) are included.
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Appendix) and therefore also the limits on the integral { PV(t')dt’ can in principal be
decided within the frame work of the classical path theory (see also CHAPPELL, COOPER and
SmiTH, 1969). The lower cutoff parameter, however, which essentially replaces the dynamic
strong collisions not amenable in a classical path theory, can only be determined conclu-
sively from a quantum mechanical theory which is also able to handle strong collisions and
which does not yet exist. The constant B adopted here is based on a lower cutoff parameter
Pumin = #+3n%a,, which specifies approximately the region of validity for the classical
path theories (see paper I). This is also the constant used in the Lyman-a calculations of
paper HI. Numerical results based on other values for the constant B as used in the literature
(see summary of the Appendix) are also included in Figs. 11 and 12 for the cases A and B.
The largest value B = 1.27 is the one adopted in the recent calculations of KEPPLE and
GRIEM, 1968, while the smallest value of B is obtained for p,,;, = 4+ 3n%a, and choosing an
upper cutoff of p.., = 0.606D as proposed by CHAPPELL, COOPER and SMITH, 1969. For
case C this variation of the constant B does not show up in Fig. 13 and amounts to an
intensity change of at the most about 4 per cent. These variations indicate the reliability of
the classical path theories and demonstrate that for some cases the error estimates given in
the literature are too optimistic. The effect on the final line profile due to the uncertainty of
the constant B will be small if either according to equation (I1X.31)

—21n(2C) » 1 (XIL9)

or if (like for the higher series members) the number of Stark components is large which
tends to smear out the influence of the constant B. It should be pointed out again that the
unified theory is intrinsicly normalized independent of the value of the specifying constants
of a particular line. Hence, any variation of the constant B does not affect the normalization
of the line profile. .

In his unified approach to Stark broadening VOSLAMBER also presents calculations for
the case A, which show better agreement with the experiment than the calculations pre-
sented in Fig. 11. We have unsuccessfully tried to reproduce his calculations making the
same set of approximations which essentially amounts to calculating the line intensity on
the basis of equation (X1.12) where the total intensity is given as a sum of the static ion part
I{Aw) and the electron contribution I(Aw, § = 0) neglecting the ion field splitting (see the
dashed curve for § = 0 in Fig. 17). While the calculations of the thermal average presented
here have been obtained by straightforward integration of equation (IX.2), his calculations
are based on the Monte Carlo method. Numerical round off errors, which can easily be
overlooked, have been avoided in the calculations presented here by the use of seven differ-
ent expansions for the various limits of the function ® in equation (IX.3) (see Appendix A of
the NBS Monograph, VIDAL, COOPER and SMITH, 1970).

In comparing the numerical results for case C, with the experiment it has to be kept in
mind that we are comparing the higher Balmer lines with calculations for the higher Lyman
lines, because our final line profile calculations have not yet taken into account lower state
interactions. This means that in a plot of the intensity versus the wavenumbers Av, which is
essentially an energy scale, the line profiles cannot be expected to coincide because of the
difference in the Stark effect. This gives rise to different static wings as explained in detail by
VIDAL, 1965. Hence, we have to rescale the Lyman profiles preserving normalization in
order to be able to compare the measured profiles of the Balmer lines with the calculated
profiles of the Lyman lines. This means that in a plot of log I versus log AV we can compare
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the line shape of the corresponding lines directly. The agreement is remarkable. For the
higher lines. n > 8. where Doppler broadening was shown to be negligible and where lower
state interactions no longer affect the line shape noticeably, the agreement is better than 2
per cent over the entire measured line profile, which for n = 8 extends over 3 orders of
magnitude in intensity. In particular, the calculations show also the surprisingly large range
of the Aw ™ *'%2-wing, which extends to 1/10 of the maximum intensity. This fact is not
explainable by a purely static theory considering also shielding effects. (See PFENNIG, 1966.)
For the lower lines the calculated profiles have to be folded into a Doppler profile in order
to achieve similarly good agreement. For the lower line we also expect in the line center some
influence due to lower state interactions on the line shape which is partially removed again
by Doppler broadening.

A more detailed study of the Aw ™~ 3/2-wings reveals some other interesting facts. In Fig. 13,
the dashed lines indicate the asymptotic Aw ™ >/2-wings ; except for n = 5 and n = 6, what
appears to be a Aw ™ >/2-wing in the measurements and calculations is not the asymptotic
Holtsmark Aw ™ >/2-wing in the region of interest. If one extends the calculations to even
larger frequencies A, all the wings will eventually coincide with their asymptotic limit. In
the paper of VIDAL, 1965, Table I1 gives a list of the electron densities, which were evaluated
under the erroneous assumption that the measured Aw™ */2-wing was the asymptotic
Holtsmark wing ; it was stated that for H, to H,, the electron densities coincide with +4 per
cent. A more careful analysis of the values, which have been plotted again in Fig. 14, reveals

T\ T T T T T T T T
o5 ),.x,—;-""!—"_
[ X.
m |25 N =
o
x
N 1SRG TS N DUUR SN NV N N N ¥

4 56 7 8 910 11 12 13 14

FiG. 14. Plot of the electron density values as a function of the principal quantum number n.
which have been evaluated by VIDAL, 1965, under the assumption that the A4~ **-wing revealed
by the experiment is identical with the asymptotic Holtsmark A2~ */2-wing for electrons and ions.

asystematic trend. For large and very small principal quantum numbers the electron density
values rise above the average value, while the minimum value was obtained for n = 7.
From Fig. 13, it now becomes apparent that the electron densities based on the asymptotic
Holtsmark wing will go up for increasing n. For smaller n the quantum number dependence
of the electron density is masked by Doppler broadening which raises the wings again and
explains the increasing values of electron density for small n. Another important result can
be seen from Fig. 13. For small principal quantum numbers the line intensities are much
smaller than predicted by a quasistatic theory. This was observed first by SCHLUTER
and AviLa. 1966 and the effective electron densities for a quasistatic theory as a function
of A/ show the qualitative behavior measured by them after unfolding the Doppler broad-
ening. This observation together with the measurements of BoLDT and CoOPER, 1964,
suggested the semiempirical procedure proposed by EDMONDS, SCHLUTER and WELLS,
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1967. A detailed quantitative comparison requires for the first series members a considera-
tion of lower state interactions, which is in process.

For the parameters of case C, KEppPLE and GRIEM, 1968, have already calculated the
lines Hg and H,. These calculations have been extended to H,, by BENGTsoN, KEPPLE
and TANNICH, 1969, using identically the same computer program. The results are plotted
in Fig. 15 and comparing the line shape for the higher series members, for which lower state
interaction becomes negligible, with our results in Fig. 13 one realizes a significant
difference. In particular, their calculations do not reveal the AA™ %2 decay in the near line
wing for intensities smaller than about 75 of the maximum intensity at Aw = 0 which is
discussed above. It should be pointed out that the ion field dependent cutoff, which has
been introduced by KEPPLE and GRIEM, 1968, to account for the usually neglected exponen-
tial in equation (V1.4) cannot be responsible for it. This has been tested in our calculations.
One can understand this by realizing that for the higher series members the effect of
dynamic broadening due to the electrons as described roughly by the constants p, in
equation (X.5) turns out to be much smaller than the halfwidth of the total line, which is
essentially determined by quasistatic broadening.

As another interesting result, Fig. 16 shows a plot of a calculated Lyman-$ profile
for two different values of the constant B(B = 1.27 and B for p.;, = 1+3n%a,), which
allows also some qualitative statements concerning H,. We realize that changing B affects
the very line center, where the profile shows the two humps and the near line wing, but it
does not change the intensity around the halfwidth significantly, which may be understood
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F1G. 15. The Balmer line profiles for the density and temperature parameters of VIDAL, 1965, as
calculated by KEPPLE and GRieM, 1968, and by BENGTSON, KEPPLE and TANNICH, 1969.
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F1G. 16. The Lyman-§ profile for two different strong collision cutoffs pyy,-

as an effect of the normalization. This is in agreement with experimental observations of
WENDE, 1967, which show that the calculations of GRIEM, KOLB and SHEN, 1962, over-
estimate the near line wing. It also explains the good agreement of experimental and
theoretical halfwidths in high density plasmas (see GERARDO and HILL, 1966) because
the line intensity around the halfwidth is rather insensitive to the exact value of B.
Finally, in Figs. 17-19, we compare the unified theory calculations (solid curves) with
calculations based on the one-electron theory in order to see how far into the line center
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F1G. 17. Comparison of the unified theory calculations with the one-electron theory calculations
for Lyman-a. The vertical line marks the position of the shifted Stark component for an ion field

B = b
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Fi1G. 18. Comparison of the unified theory calculations with the one-electron theory calculations
for n = 5. The vertical line marks the position of the outermost, shifted Stark component for an
ion field 8 = 8,,.-

the asymptotic wing expansions as given in equation (XI.10) or (XI1.12) may be used.
In all Figures the short vertical line indicates the position of the outermost, unperturbed
Stark component for an average ion field f,,, which is given by Aw = B, Aw; (n,q = n—1)
where Aw; is defined in equation (V.14). The dashed lines correspond to the one-electron
theory calculations for § = 0 according to equation (XI.12), while the dash-dotted lines
give the results for § = B,, according to equation (XI.10). First of all we realize that, as
expected, the one-electron result for = §,, diverges when Aw approaches B, Aw{n, q =
n—1). However, in all three cases we see that for frequencies

Awz 58, ,Aw; (n,g = n—1)

25 T T TTTT T 1
One-Electron =
Theory A~ ——~——"TTTT=<
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1.5+ Unified Theory
R n=8
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F1G. 19. Comparison of the unified theory calculations with the one-electron theory calculations
for n = 8. The vertical line marks the position of the outermost, shifted Stark component for an
ion field 8 = f,,.



Hydrogen Stark broadening calculations with the unified classical path theory 1059

the one-electron theory calculations according to equation (XI.10) coincide with the
unified theory calculations to within 1 per cent and better. For slightly released accuracy
requirements one may also apply the simpler one-electron theory calculations based on
equation (XI.12) with 8 = 0. In particular we see that for small principal quantum numbers
the useful range is very much larger than for the one-electron theory calculations with
B = B.. because, for § = 0, the one-electron theory diverges only at Aw = 0. We also
realize that for the line intensity range of practical interest both asymptotic wing expressions
with f = 0 and B = B,, become less useful with increasing principal quantum number.
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APPENDIX

THE LARGE TIME LIMIT OF THE THERMAL AVERAGE F(r)

In equation (IX.31) the large time limit of the thermal average has been given, which is of the form
F(t),. = At(B~In(4C?)). (1)

This form has been obtained by most modern impact theories. The additive constant B varies depending on
what type of cutoff has been used. In the following we derive the different constants B for the different cutoff
procedures which have been used and compare them with the numbers given in the literature.

The various methods to evaluate F,, the large time limit of F(z, n,, n,, T), differ essentially in three respects,
namely by the upper and lower limits of the p-integral and by the limits of the ¢-integral in equation (VIIL4).
Based on the completed collision assumption (BARANGER, 1962), the limits of the latter integral are usually
extended from — co to + 0o0. This approach, however, is not quite consistent with the cutoff at the Debye length,
which would rather require the integral to go from — T to + T as done in this paper (T is defined by equation
(IX.7)). We therefore have to investigate the following integrals:

¢ +T
for fPV,(t’) dt’ — f PV(t)dr (Case A)
0 Ir
¢ 4 ‘ 2C
Fa = 2=n,a- D)?v,t J.du—u3e_"2 f dx x[cos(—\/(l—xz) —1] 2)
Jr axu
[+ Xmin
and
' +oo )
for f PV(r)dl — f PV(t)dr (Case B)
V] ~
T4 - 20
F% = 2nna- D)zv“tJ. du—aude f dx x[cos(—) - 1] 3)
Jr axu
0 Xmin
where
Xmin = pmin/(a'D)' (4)

The factor a = p,,,,/D is usually taken to be one and has in some papers (¢.g. GRIEM et al., 1962) been varied to 1.1
or to 0.606 as proposed by CHAPPELL, COOPER and SMITH, 1969. As a lower cutoff we consider in particular the
three cases of pin = 0, pin = Z and ppi,, = 3(ng—n'q’)A = 2CD/u by setting

b 2C
Xemin =~ (5)
a u
In the following we will set a = 1. In order to recover the dependence on the upper cutoff parameter a, we only
have to replace in all the following relations C by C/a. First of all, one realizes that with x,,;, < 1 the lower limit

on the u-integral is given by
uy =b-2C. (6)
Hence, we have to evaluate the following two integrals
1

I =f du u3e-"’f dx x[cos(% J(1~x2))—1] )]

o/t

and
1

K 2¢
P = J.du we f dx x[cos(—)—l]. (8)
xu

uofu
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The second integral can be simplified after a change of variables and a partial integration to

el
=7J‘ue “cost—|—11du. 9)
2 u

After expanding the cosine and another change of variables we have

© (_1¥2C ka —ulz
P )( ) fe d (10)
4 o (2R Sz
which can be expressed in terms of exponential mtegrals
e Cred § 0 (ZC)“ ). an
= U u
ey W= (2K °

With the lower cutoff parameters stated above (b < 1) and typical densities and temperatures of interest one
usually has uo < 0.1 (see equation (IX.21)). Since for k > 2, Eud) = 1/(k— 1) +0(u3) one obtains to lowest order

in u}
e P Y
) 7 (2k)! k-1
C2|: )2 Z{ 1 1 1 }( 4C2)k 1]
= |—E({u o ey
2 1(vo) Ll w8\ w3
ST e o
=5~ J(ud)~ 3] (e e +5 . —1
- o))
2C ug uo Ug Uo
which yields ct
= —{3@— 1)+1n(4C2)+2K( ) +0(u0)] (13
where K is defined as K(z) = —cos Z+§1:_Z_C1(Z) (14)

and Ci is the cosine integral. Equation (13) was obtained already by SHEN and COOPER, 1969. Their constant 4
is identical with our constant 2C.
The other integral I° of equation (7) one can obtain by evaluating

@® 1
Al =fduu3e"‘1 f dxx[cos( J(1—=x?) )—cos(%g)] (15)

uofu

so that
I*=1"+AlL (16)
If we again expand the cosine functions, AI can be given by
1
© (IC 2k k~ l k! .
Al = Z( ) Jd w? 2k "‘zjx"l’dx
v (2R S 0]'(’( M o

2
= — [e™ "~ u3E,{up)]

2
= (2C)ZH[ 5
6 Py s E,_ (“2)‘E(u2)—kje i 1= g
"k;(zk)! o it Bl =k

224u2 L3 (2c)2k—2k—14 (‘1)1'
20 S 2k 5 = )2 —2)

which gives us to lowest order in 1}

- [Ex- l(ué)AEk‘j(ué)} (17)

Uy
2

C
Al = 7—[1 +0Wd)]. (18)
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This means that for the same lower cutoff Case A and B as defined in the equations (2) and (3) differ only by a
constant | in their additive constant B. As a result we have

[ ™ e 15 B~ tnac 19
© = 2("‘1—"4); N n )] (19)
where the constant B for the different cutoff parameters is compiled in the following Table 2.

TABLE 2. THE CONSTANT B FOR DIFFERENT CUTOFF PARAMETERS

+T + o
f PV ()dr f Py(t)dr
r e
Prmin = 0 0.27 1.27
Poin = 4 0.23 - 0.27 1.23 - 1.27
Prin = 3IM A —1.66 -0.66

In order to compare our results with the numbers given in the literature we rewrite equation (19) as

Fo=—A-t-[Bo~y~In(ym)] (20)
where yqi, as introduced by GRIEM, KoLB and SHEN (GRIEM et al.,, 1959) is given by
41me(ehn2 2 2 n? 24C2 2
Ymie = 3\ kT | T 3\3mg—rg)]
Consequently, B and B, are related by the following relation
2 nZ 2
By = B+y+1n[~(—) ] 22
3\3n,

Comparing equations (19) and (20) one notices that for a particular line the value of the square bracket as derived
here depends on the quantum number n, for that particular state. This is also true for the paper of SHEN and
CoOPER, 1969, who consider our case (b) with infinite limits on the r’-integral. Otherwise the constants given
in the literature are independent of n, because the lower cutoff parameter is usually based on an average Stark
splitting. If we set ng—n'q’ = n?/2, which corresponds approximately to the average Stark splitting and also
gives the results for the Stark shifted component of Lyman-a, we have

By, = B—064. (23)

This yields directly for n, = n?/2 the B, values corresponding to the B values in Table 2.
The following constants B, have been given in the literature:

GrieM, KoLB and SHEN, 1959; (equation 29): B, =
GRriem, KoLB and SHEN, 1962 ; (equation 2): By, = 1.0
GRIEM, 1965 .

KeppLE and GRIEM, 1968 {neglecting quadrupole term): By = 0.58
SHEN and COOPER, 1969 ; By = 0.58

Recently the time development operator (S-matrix) has been evaluated for Lyman-a including time ordering by
solving the differential equations for the S-matrix elements (BACON, 1969). Again the square bracket depends
on (ng —n'q’) and the average value B, = 1.1 considering only the dipole term. It should, however, be stressed that
one should not overinterpret these numbers because within the classical path approximation there is always
some uncertainty about the “‘correct” constant B because of the ambiguous lower cutoff. This is due to the fact
that the classical path approximation breaks down roughly for p 2 7 (for details see paper I). For most cases
this has no significant effect for the Stark broadening of hydrogen because the dynamic broadening is primarily
due to weak collisions. More details are given with the discussion at the end of Chapter XII. The situation is quite
different for the broadening of ionized lines where strong collisions are very important and where the uncertainty
of the classical path approximation accounts for part of the still existing discrepancies between theory and
experiment, which are large compared with the Stark broadening of hydrogen. '

So far we have considered F, , which is the basis of the unmodified impact theory. In order to extend the
range of validity beyond the plasma frequency the modified impact theory introduces the Lewis cutoff by con-
sidering only those collisions for which the duration of a collision, which is typically p/v, is smaller than the time



Hydrogen Stark broadening calculations with the unified classical path theory 1063

of interest being typically 1/A. For this reason the modified impact theory introduces an upper cutoff
Pmax = MIN(D, v, /Aws) (24)
or
Pamad D = MIN(1, 1/Amg).

[t should be noted at this stage that in the following relations we not only have to replace C by C/a but also Amy by
a Awyg. In order to obtain the dependence on the upper cutoff parameter «. Considering the usually applied case (b)
{equation (3)) we have to evaluate the following integral for Awg > 1

@ 1jAwr
. 2¢ ,
I = f duwe™ J. dxx[cos(»A) - 1] (25
xu
upAwgr uafu

where the lower limit on the u-integral is determined by the condition uy/u < {/Awg. After a change of variables
and a partial integration one obtains similar to equation (9)

17 I (2ca
b= _—— J. ue | cos ©r —1|du. (26)
2Aw} u
upAwg
Expanding the cosine again and performing another change of variables the result is
2 > —1 k 2C ka e-—uéAw}i:
p oyt )(7 f‘k_dz. (27)
4,5 k) \ug z
This gives us then
c? W e (—1¥f2C)\ 2
p_ T 2A 02y 10 o 2A 12
I = 5 E,(uiAwR)+ 2 k:zz a0 “0) E(uiAw}). (28)

Evaluating the exponential integrals E, for small arguments only we finally have

CZ
n= 7[—51(H5A(0ﬁ)+51(u5)] +I

= C?lnAwg+ I (29)

which gives us for Awy > 1 the log-dependence of the ®,,-matrix elements in the modified impact theory. A more
appropriate way for applying the Lewis cutoff, which avoids the discontinuity at Awg = 1, is to take as an upper
cutoff p,. = MIN(D, t/Aw). This case is worked out in the Appendix B of the report of VIDAL, 1970

Similar results can be obtained for Case A, which are not included because they are no longer required. The
derivation for Case B has been included, in order to obtain consistent relations which allow a comparison with
the calculations done in this paper. The results for Case B as given here differ slightly from the results in the
literature which also vary from paper to paper depending on the average matrix elements used and on what
lower cutoff and average velocity has been applied.






