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HYDROGEN STARK BROADENING CALCULATIONS WITH

THE UNIFIED CLASSICAL PATH THEORY *
C. R. Vidal, J. Cooper, and E, W, Smith

The unified theory has been generalized for the
case of upper and lower state interaction by introducing
a more compact tetradic notation., The general result
is then applied to the Stark broadening of hydrogen.

The thermal average of the time development operator
for upper and lower state interaction is presented. Ex-
cept for the time ordering it contains the effect of finite
interaction time between the radiator and perturbers to
all orders, thus avoiding a Lewis type cutoff. A simple
technique for evaluating the Fourier transform of the
thermal average has been developed. The final calcu-
lations based on the unified theory and on the one-elect-
ron theory are compared with measurements in the high
and low electron density regime, The unified theory cal-
culations cover the entire line profile from the line center
to the static wing and the simpler one-electron theory
calculations provide the line intensities only in the line
wings.

Key words: Classical path; hydrogen lines; line
wings; one-electron theory; Stark
broadening; unified theory,
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I. INTRODUCTION

For the first few Balmer lines of hydrogen, recent papers
(Gerardo and Hill, 1966; Bacon and Edwards, 1968; Kepple and Griem,
1968; Birkeland, Oss and Braun, 1969) have demonstrated fairly good
agreement between measurements in high electron density plasmas
(ne > 101 6cm-3) and improved calculations of the so called "modified
impact theory'. The experimental and theoretical half-widths differ
less than about 10%. However, measurements of the Lyman-q wings
(Boldt and W. Cooper, 1964; Elton and Griem, 1964) and low electron
density measurements (ne = 1013cm-3) of the higher Balmer and
Paschen lines (Ferguson and Schliter, 1963; Vidal, 1964; Vidal, 1965)
have revealed parts of the hydrogen line profile, for which the modi-
fied impact theory appears to break down. For the higher series
members better agreement has been obtained with quasi-static cal-
culations (Vidal, 1965). The reason the current impact theories
break down is that these theories correct the completed collision
assumption by means of the Lewis cutoff (Lewis, 1961) which is only
correct to second order. With this cutoff it was possible to extend
the range of validity for the impact theory beyond the plasma frequency.
However, in the distant wings, where the electron broadening becomes
quasistatic, the second order perturbation treatment with the Lewis
cutoff breaks down because the time development operator must then
be evaluated to all orders. Attempts to correct the second order theory
have been made already (Griem, 1965; Shen and J. Cooper, 1969), but
these theories still make the completed collision assumption by re-
placing the time development operator by the corresponding S-matrix,
and so it has to be emphasized that in conjunction with the Lewis cutoff
these theories would only be correct to second order. The impact
theory in its present form is intrinsicly not able to describe the static

wing and the transition region to the line center where dynamic effects
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cannot be neglected. To overcome this problem, several semiemp-
irical procedures (Griem, 1962; Griem, 1967a; F'. Edmonds, Schliter
and Wells, 1967) have been suggested to generate a smooth transition
from the modified impact theory to the static wing.

Recently the classical path methods in line broadening have
been reinvestigated in two review papers ( E. Smith, Vidal and J.
Cooper, 1969a, 1969b), which are from now on referred to as papers
I and II. The purpose of I and II was to state clearly the different
approximations which are required to obtain the classical path theories
of line broadening and to find out where these theories are susceptible
to improvements, In a manner similar to the Mozer-Baranger treat-
ment of electric microfield distribution functions (Baranger and Mozer,
1959, 1960), it was shown that the general therrnal average can be
expanded in two ways, one of which leads to the familiar impact tieory
describing the line center (Baranger, 1958, 1962; Griem, Kolb and
Shen, 1959, 1962). The other expansion represents a generalized
version of the one electron theory (J. Cooper, 1966), which holds in
the line wings. It is also shown that there is generally a considerable
domain of overlap between the modified impact theory and the one
electron theory. Based on these results, a '"unified theory' was then
developed (E. Smith, J. Cooper and Vidal, 1969), henceforth referred
to as paper III, which presents the first line shape expression which is
valid from the line center out to the static line wing including the
problematic transition region. The line shape obtained by the unified

theory has the form

1 = 1 -
I(w) = ;—Zlm{ d md} ’ (I.1)



where d, Aw and £(Aw) are operators. In paper III it was shown that

the familiar impact theories, which hold in the line center, may be
obtained by making a Markoff approximation in the unified theory,

while the one electron theory describing the line wings is just a wing
expansion of the unified theory. Consequently the crucial problem for
any line broadening calculation is to evaluate the matrix elements of
£(rw), which is essentially the Fourier transform of the thermal average
(see Eq. (46) and (47) of paper III). This will be done in detail in this

paper for the general case of upper and lower state interactions.

In the following Sec. II we start with a brief summary of the
basic relations which are required for the classical path approach
pursued here. We then generalize the results of the unified theory to
include lower state interaction (Sec. IV) after introducing a more
compact tetradic notation (Sec. III). From this general result we turn
to the specific problem of hydrogen by discussing briefly the no
quenching assumption (Sec. V) and deriving the thermal average 3(1)(t)
(see Eq. (47) of paper III) for the general case of upper and lower state
interaction (Sec. VI). We next investigate the multipole expansion of
the classical interaction potential in the time development operator

(Sec. VII). The thermal average 3(1)

(t) is then evaluated in two steps
by first performing a spherical average (Sec. VIII) and then an average
over the collision parameters: some reference time to’ impact para-
meter p and velocity v (Sec. IX). Appendix A gives the computer
program which we used in calculating the thermal average for dipole
interactions including lower state interactions. The large time limit
of the thermal average, which leads to the familiar impact theories in

the line center, is investigated in detail in Appendix B for different

cutoff procedures and compared with the results in the literature. In



Sec. X, a method is developed for performing the Fourier transform-
ation of the thermal average and it leads us to the crucial function for
any classical path theory of Stark broadening. This function is finally
applied in Sec. XI to the one electron theory, which forms the basis

for the asymptotic wing expansion, and in Sec. XII to the unified theory,
which describes the whole line profile from the line center to the static
wing. Numerical results are given for the hydrogen line profiles as
measured by Boldt and W. Cooper, 1964; Elton and Griem, 1964, and
Vidal, 1964, 1965. The computer program for the unified theory cal-
culations and the asymptatic wing expansion is given and explained in

Appendix C.
II. BASIC RELATIONS

In this section we will briefly outline the basic relations which
are used in our classical path treatment of line broadening.

As discussed in Sec. 2 of paper I, we are considering a system
containing a single radiator and a gas of electrons and ions. We will
make the usual quasi-static approximation for the ions by regarding
their electric field -gi as being constant during the times of interest =
1/pw. This approximation is usually very good because the region
where ion dynamics are important is normally well inside the half
width of the line except for a few cases such as the n-g lines of
hydrogen (Griem, 1967b). The complete line profile I(w) is then given
by the microfield average (see Eq. (3) of paper II)

(o)

Iw) = J[P(ei) I (w,si) de. (IL. 1)

where the normalized distribution function P(ei) is the low frequency
component of the fluctuating electric microfields. Due to shielding effects
P(@!i) depends on the shielding parameter ro/D where r and D are the

o

mean particle distance and the Debye length (for electrons onlyjrespectively,



With the static ion approximation we have reduced the problem
to a calculation of the electron broadening of a radiator in a static
electric field Bi. The resulting line profile I(w,ei) is then simply
averaged over all possible ion fields to give the complete line profile
I{w). The static ion field will be used to define the z-axis for the
radiator and the ion-radiator interaction will be taken to be the dipole
interaction eZ{:‘,i where -eZ denotes the Z-component of the radiators
dipole moment,

If the unperturbed radiator is described by a Hamiltonian Ha’
we may then define a Hamiltonian for a radiator in the static field
ei by

H =H +eZ¢, (I1. 2)
o a i

The complete Hamiltonian for the system is then given by
= P -
H-= H0 + Ve(R, X, V, t) (1I. 3)

where Ve denotes the electron radiator interaction. In this equation,

—>
X

-—

— - > - -> -3 PN
d 3N t = . = ..
X and v are ’ veclors X (X s XN), v (Vl, VZ, B VN),

1’ 72
which denote the positions and velocities of the N electrons and R
denotes some internal radiator coordinates., For one-electron atoms,
-ﬁ is the position of the ""orbital" electron relative to the nucleus.

The interaction Ve will be regarded as a sum of binary interactions,

— D> W = s
Ve (R, %, v, t)= Z Vl(R’ xj, vj, t) (11. 4)
J

where V1 denotes the interaction between the radiator and a single
electron. As is well known the line shape I(w,ai) may be given by

the Fourier transform of an autocorrelation function C(t) (Baranger, 1962)

[oe]

Tw.e,) = }1— Re/eiwt C(t) dt (IL 5)
(o]
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In the classical path approximation, the correlation function for electric

dipole radiation is given by

C(t):Tra{d<T (t)dT(t)) a} , (I1. 6)

>
where @ and Py denote the dipole moment and the density matrix for
the radiator. The thermal average denoted by the subscript av

represents the average over electron states (see Eq. (47) of paper I)

<T‘;(t) d T (t)) ='/d§d$ P (X)W(¥) T’;(fi,sz v, t) d Ta(‘ﬁ, x,v,t) (IL7)

where P(X) and W(V) are the position and velocity distribution functions
for the electron perturbers (defined by Eqs.(37) to (40) in paper II)

The time development operator for the system T (R, X, ¥, t) is the

solution of the differential equation

>
2T (1) = [HO + Ve(t)] T (1)

(II. 8)
and it may be written in an interaction representation defined by
Ta(ﬁ, %,9,t) = exp (-itH_/n) Ua(‘ﬁ, %9, t) (IL 9)
where
2 U0 =V (0 V() (11. 10)



and
\76 (£) = exp (itH_/n)V_(t) exp (-itH_/h) . (IL. 11)

It should be noted that ’{’e(t) is identical with Ge(t) in paper II except
that we have not yet made the no quenching assumption which removes
the unperturbed part Ha in the Hamiltonian Ho in Eq. (II.11). Using
the time ordering operator &, Ua(t) may be written in the form

t
U (R,%,9,t) = ™ exp { . -;— Ove(ﬁ, x,v,t’) dt’ } . (11.12)
To evaluate the trace over atomic states in Eq. (II. 6), it is convenient
to use the Ho eigenstates la), |by, ++- with the eigenvalues Ea’ E

b
Hence, using Ua(t) we have

. ~ —iwdct
Cl(t) = E(a\dlb) (cldld)e (I1.13)

abcd

[<b|U;(t)lc> (d] Ua(t)la)]av <a!pa!a>

where

Wy = (Ed-EC)/h (I1. 14)

In paper II and IIl, the correlation function C(t) was evaluated
for the case of no lower state interactions in order to keep the math-
ematics as simple as possible because one of the Ua(t) operators in
Eq. (IL 13) may then be replaced by a unit operator. In this paper we
will give a more general evaluation of C(t) which includes lower state
interactions. For this purpose we introduce in the next section a more
compact tetradic notation. Furthermore, it should be noted already

at this stage that we will interchange the sequence of approximations



with respect to paper II by deriving the generalized unified theory
before making the no quenching approximation. This makes the results
of the unified theory also useful for situations where the no quenching
approximation cannot be made like, for example, microwave lines,
III, THE TETRADIC NOTATION

The purpose of the tetradic notation which we shall use is to
write the product of the Ua(t) operators in Eq, (II.13) in terms of a
single operator. To do this we first consider the product of the matrix
elements {(a|Ala’)and (8| B|g8’) where A and B may be any arbitrary
operator, This product may be written in terms of the direct product

A® B according to
(alAla’y (8IBIB’Y = (e8| ABBla’8’Y, (IIL. 1)

where the product states laB) = la)Ig) are essentially the same as the
states of Barangers ""doubled atom''(Baranger, 1962). This direct
product, A®B, is a simple form of tetradic operator. If one of the
operators A or B happens to be a unit operator I, we may conveniently

denote this fact by means of superscripts £ and r according to

(a8l AZI|a’8")= (ap] Atla’8") = (al Ala’) by (IIL. 2)

BI
(@8115Bla’8’) = (a8IB la’s’) = (8|Ble") s  , . (I1L. 3)
That is, a superscript { denotes a '"left"" operator which operates only

on the "left' subspace (in this case the Ia), la’) subspace) and a

superscript r denotes a ""right'' operator which operates on the "right"



subspace. It is thus clear that any ''left'" operator will commute with

any ""right'" operator:
rat, 8B¥1=o. (I1L. 4)

With this notation, the thermal average in Eq. (IL. 13) can now be

written in the more compact form
(I1I. 5)

[CEMCIERELAT] 5] = [cetolonm ato 3.

’[(cd| U;'*(t) UZIba>] av

(cd] [U;* (t) U, (t)] LV

We have chosen to write (bl U:(t)! c) as (cl U:(t)[b) simply for con-
venience in the derivation given in later sections. Noting the definition

of U (t) given in Eq. (IL.12), we define operators V& (R %,V, t) and
(R X, ¥, t) so that

}(III. 6)
- i t
(R,f,ﬁ*,t):oexp{-;— Ver(R ,?f',t’)dt’}.

Since any '"left' operator commutes with any '"right' operator, we

have

t
!/*-—\ ~
Ua(R,f,‘—;,t) U:(ﬁ,i‘f,t):f&exp{ ;—f?f( R, ,-*’tl)dt;}

YR, %, %, t) (IIL. 7)

10



where

~

= or o o i SO N
')/e(R, X, v,t)= V (R, X,V,t) - V" (R, X, 7, t). (111, 8)

e €

We have now succeeded in replacing the two Ua(t) operators by a more
general tetradic operator ?j((t) which operates in both ''left" and "'right"
subspaces. Eq. (IIL. 5) thus becomes

[(b\U;(t)\c) (d!Ua(t)la>] v = (cd][c'v((t):lavlba).
(I11. 9)

It is important to realize that the tetradic operator aU((t) is formally

the same as the operator U (t); that is, it satisfies the same type of
a

differential equation

. a = -— ~ = e = -
hSURX V=7 (REIOURZT,1). (I11. 10)

This means that all of the line broadening formalism which has been
developed for Ua(t)’ will be directly applicable to 6.UZ(t).

To make the formal correspondence more complete we use the
operators Hf; , HZ, Vi (R, %,7,t) and V:(ﬁ, X, 7, t) to define the tetradics

T}CO and '[/e(ﬁ, %, V, t) according to

v = H - H (IIL. 11)
(0] (o] (o]
N - b3 _
T(RET0=VIRETY -V ®REFY . (UL12)

11



Since any left operator commutes with any right operator we have
~r O l r O
Ve (t) = exp {ltHo/h ’ Ve(t) exp {-1tHo/h} (IIL. 13)
. r .
= exp {11:!-(‘0/?1} Ve(t) exp { 1€(-Co/h}

Hence
(I11. 14)

o~ T . = - .
7 (R %, V,t) = exp { 1ﬂCo/h} 7 (R, X,V, t) exp -lﬂ-Co/h
which is formally the same as Eq. (II.11). It is also obvious that both
‘Ve and 7 will be given by a sum over binary interactions 9f1 or ‘1_71

e

just as in Eq. (II. 4).

= _x . - 9 = a
7 (R%9,t) ZJ‘I(R, %07, t) (IIL. 15)
j
Y (R,7,t)= VIR 2,v.t) - Vi (R Z,v.,t) (I 16)
1 ’ J’ j’ 1 E) j, j: 1 ] .j’ j, .

The formal similarity between the operators Ho’ Ve(t), Ve(t), Ua(t),
etc. and the tetradic operators L ?re(t), %e(t), Q[ (t), etc. will greatly

simplify the treatment of the thermal average for the general case of

upper and lower state interactions.

12



Iv. THE GENERALIZED UNIFIED THEORY
Using the tetradic operators as defined in the previous section

we have for the correlation function

C(t)= D (aldlb) (c[dlay e ““(alp_|a)
abcd

(cd|F (t) | ba) (IV. 1)

— - 5
where ¥ (t) denotes the thermal average of‘UI(R, %, v, t):

()= (YW,

:fd:?d?r'P(?)W('\?)sz(ﬁ,fc,?,t) _ (IV.2)

This tetradic operator F (t) is formally identical to the operator F(t)
defined in Sec. (2. A) of paper III. It would also be formally identical

to the F(t) defined by Eq. (19) of paper II if we would make the no
quenching approximation at this point. To preserve generality, however,
the no quenching approximation will be deferred until a later section

when we specify the ‘_a), |_b), *** eigenstates to be Ho eigenstates for

hydrogen.

13



Following the formalism developed in Sec. 2 of paper III, we
define an operator %R, %, 7, t) by

—

HRET t) = P(X) WY (R Z 9 0) (IV. 3)
so that
F(t) = fdi‘ 47 HR, %, ¥, t) (IV. 4)

(cf. Eqgs. (11) and (12) of paper III). From Eq. (III.10) we see that

in 2 3 (RR270:=7EX70HRRNY) (IV.5)
which is formally the same as Eq. (13) in paper IIIl. We next introduce
a projection operator P which is identically the same as the operator P
defined by Eq. (14) of paper III (the fact that  now operates on tetradics
does not change its definition). That is, for a_nz_function of electron
variables f(X, V) we have

P, V) = P(X) W(?) [ ax’dv’ £ (R',¥) (IV. 6)

This relation holds whether f is a matrix, tetradic or any other type

of operator. With this operator we can follow the derivation in Sec. (2. B)
£ i V_ete. v %, etc. t

of paper III replacing Ho’ Ve, Ve etc. by ,’&CO, fe ?fe etc. As a resul

(cf. Eq. (27) in paper III) we have

14



i- — - -2 247 s 7 {+-+7Y) 57
Y F(t)= -hn [exp (it wo/h) [ve(t t’) G(t-t )76(0)] -

exp (-it"5¢_/n) F(t') dt’ (IV. 7)

where
R _ ptet!
G(R,%,¥,t-t’) = & exp {--Tll— O(l-lP) "276(R, %, v,t') dt"} . (IV. 8)

Returning to Egs. (IL. 5) and (IV.1) we see that the quantity of interest

is not F(t) but rather its Fourier transform.

® ¢ iwd t
(cdlI(w)lba) J eWe ¢ (cdlF(t) ba) dt
o

[«

f eiwt(cdlexp (-iﬂ(‘o/h)'i—i(t)|ba> dt
(o}

=/ eiwt<cd1’:r;it)lba> dt (IV.9)
o
where

Ft) = exp (-ite_/n) Ft) . (IV. 10)

From Eq. (IV.7) we see that

t
%’ﬁ'(t) = -(nco/h)’ﬁ(t) - h'zfo exp (-i(t-t’)’L(‘o/h)
[?fe(t-t') Q(t-t’)"z?e(O)] 4y F(t7)dt’ (IV.11)

Solving this equation by Fourier transforms gives

-1
Jw)=1 [Awop-S(Awop)] (Iv.12)

15



where

S(Awop) = - ih'i exp (itAwop) [%e(t)q(tﬁe(m] v It (Iv.13)

and Awop is an operator defined by
r "
D = WK /s w-(HO-H*O)/h . (IV. 14)

With these results, the line shape given in Eq. (IL. 5) becomes
(cf Eq. (I.1))

lw,e) == Im » (aldlb) (c|da) (alp_la)
abcd

-1
(cdl [Awop-S(Awop)] | ba) . (IV.15)

We next simplify £(Aw op) by means of the impact approximation

(see Sec. (3.2) of paper II). Basically this approximation assumes
that the average collision is weak, that strong collisions do not overlap
in time and that a weak collision overlapping a strong one is negligible
in comparison (weak collisions are those interactions for which a low
order perturbation expansion in 7fe provides a good approximation to

(M or ¢ ; for strong collisions the full exponential must be retained).
It should be emphasized again that we make a distinction between the

impact approximation and the impact thewry. The latter contains the

impact approximation as well as other approximations like the com-
pleted collision assumption which will not be made here. We also
assume that the electron perturbers may be replaced by statistically
independent quasi particles (e. g., shielded electrons). In Sec. (3)

and Appendix B of paper III, it is shown that these approximations

16



reduce £(Aw ) to
op

t itAwop_(l)
g (Awop) = - 1Awopfe & (t) dat b o (IV.16)
o
where
(1) _ EORN —6 > >
% (t) = ne/dxldVIW( 1) ‘UZI(R, xl,vl,t) - 1] (IV.17)
and

=T _ __i_ o ’ ’
GUZI(R,xl,vl,t) = O exp { h[?fl(R’ xl,vl,t )dt }(IV.IS)

and n_ denotes the electron density.

Equations (IV.15) through (IV. 18) give the line profile of the
generalized unified theory. To obtain the impact theory we simply
replace S,(Awop) by £(0) and as discussed in Sec. 4 of paper III, we have

the familiar result (cf. Eq. (44) of Baranger, 1962).
. 'f/* T
£(0)=1 (S1 S1 -1)dv (IV.19)

where S, denotes an S-matrix for a binary (completed) collision and

1
fd\) denotes the integral over collision variables, as defined in the

Appendix of paper IL

'/d\) = néf dv vf(,v)/dp anfdﬁ (IV.20)
()

In comparing Eq. (IV.19) with Barangers result it is important to note
that Barangers operators S,1 and Sf operate only on "initial" and "final"

) r
states respectively, whereas our operators S; and S1 operate on all
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possible HO eigenstates. This difference occurs because we have not
made the no quenching assumption yet.
The other limit of the one electron theory is obtained by making
a wing expansion of the unified theory; that is, the operator
-1
- i ded i f . T t
[Awop $ (Awop)] is expanded in powers o [.{',(Awop)/[\wop] o lowes

order this gives

itAw

t ! -

=Z\-1w— -i/e °p3(1)(t)dt+--- . (Iv.21)
op o

The first term, I/Awop, gives a delta function when one takes the
imaginary part required by Eq. (IV.15). To get this delta function we
approximate radiation damping effects by using (Awop + ie) in place of
/_\wop (see Sec. (3. A) of Smith and Hooper, 1967); the imaginary part of
1 /(0w op + ie) is just -mo(Aw op) when ¢-0. When this delta function term
is averaged over ion fields according to Eq. (IL. 1) it will produce the
line broadening due to the static ions alone (see Sec. 5 of paper II).
The influence of the electrons as well as electron-ion coupling is
contained in the second term of Eq. (IV.21). Hence one is interested
in the matrix elements of the Fourier transform of-:?(l)(t), which is
also the quantity of interest in the unified theory (see Eq. (IV. 16)). The
primary difference between calculations made by the unified and one-
electron theories is therefore the matrix inversion of [Awop-S(Awop)]
which is required by the unified theory but not by the one electron

=(1)

theory. Since the matrix elements of the Fourier transform of ¥ (t)
play such a central role in any classical path theory (including the im-
pact theory), the evaluation of these matrix elements for hydrogen will

be discussed in detail in the following sections.
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V. THE NO-QUENCHING APPROXIMATION FOR HYDROGEN
In the preceding section we have derived the thermal average

F(t) and its Fourier transform .9{w) for the general case of upper and
lower state interaction. In order to evaluate I(w,é'ji) in Eq. (IV.15)
we have to consider the complete trace over all Ho eigenstates
la), IbY, -+ . However, in looking at the Eqs. (IV.9), {IV.18) and
(III. 14) one realizes that due to the exponential factors only a few of all
the possible matrix elements will contribute significantly to the final
line profile at a particular frequency w. That is, we can neglect those
matrix elements for which the argument of the exponential factor is
so large that it gives rise to rapid oscillations within the range of the
time integral. Hence, if one treats well isolated lines, only those
matrix elements of Ul(t) between either ''initial" or '"final'' states
have to be considered., We may therefore state the no-quenching

approximation as
(t) = Uty vl (t) (V.1)
(vll S| 1 )

where U1 now no longer operates on the complete ''left'" or "right"
subspace, but only on "'initial"' or ''final'' states ( see also Sec. 2.2
and 7.2 of paper II).

Further approximations cannot easily be generalized and depend on
the particular problem investigated., We now apply our general results
to the problem of hydrogen., In this case the no-quenching assumption
states that we need to consider only those matrix elements of Ul(t)
and ‘Vl(ﬁ, )’El,?r'l, t) which are diagonal in the principal quantum number
n. As shown already in paper II this is a good approximation as long

as the lines investigated are well separated. For calculating the line

wings it is furthermore required that there is no appreciable overlap
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with wings of adjacent lines in the region of interest. The same is
true also in any reliable measurement of line wings,.

To show this we can proceed as in Secs. 2.2 and 7.2 of paper
II with the difference that now we are dealing with the operator
Ho = Ha + eZ.E',i rather than just Ha. Since Ha does not commute with
Z we introduce a projection operator Pn (see Sec. 2.2 of paper II)
which picks out the part of an operator which is diagonal in n. Using

this operator we split H0 into a part which is diagonal in n

H =H +eP Z¢. (v.2)
on a n i

and a part which is not diagonal in n

= - .. V.3
Hoff e(l Pn) ZFI ( )
H now commutes with PnZ because both operators are diagonal in
a
parabolic toordinates, We therefore specify their eigenstates com-
pletely by the principal quantum number n, the magnetic quantum

number m and the quantum number q which is defined to be

q9=mn;-n, ; (V. 4)

n and n, are the usual parabolic quantum numbers which obey the

relation

n=nl+n2+lml+1. (V.5)
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Knowing the solution of the eigenvalue problem

H_|nqm) = E_|nqm) (V.6)

ngm

with

E =E +eZ ¢, (V.7)
ngm n nq i

we see from a second order perturbation approach (cf. Chap. 16 of

Merzbacher, 1961) that the energy correction

? ’ / 2
@) _ anm!Hoff‘n q'm’)|

A (V.8)

ngm G Enqm-En’q'm'

can always be neglected as long as the ion fields do not become too
large. This is again equivalent to stating that the lines have to be well
separated.

As a result one is left with the eigenvalues Ea’ Eb , e
of the Hamiltonian Hon whose eigenstates |a), !b), -++1d) are the

parabolic states |nqm). This allows us to rewrite the autocorrelation

function C(t) in Eq. (IV.1) for hydrogen in the form:
<5 "| Lt rot / ‘a‘ »
C(t,E',i) L {nqama!dkn q m; Y{(n qub| nqub)
exp‘--é—.E -E ,te(zZz -2 )6.tl<nqmlp lng m )
l n n n’ nq n’q{) i ’ a a'"a' ‘a a

b

’

Y’ . 1l 1o ! r .
({n 9y my nqub|3(t)!n qama H nqama> (v.9)

where quantum numbers which refer to the lower state are distinguished

from the upper state quantum numbers by a prime.
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The matrix elements of PnZ are given by (see Bethe and
Salpeter, 1957)
3
Z = Z = —
(ngm| Z| ngm) nq”= 2 P93, (V.10)
- 2 2 . . .
with ao =h /(me") being the Bohr radius. As a further definition the

ion field ei will be normalized to the Holtsmark field strength 80

€i= 8'80 (V.11)
where 5
, Kl 2
80 = (?) e ne3 . (V.12)
This yields
e ' o4
—(z__ -2, ,)F. =M. nq, D ,q.) B {v.13)
n nqb n qb 1 1
with
’ ry _ ﬁ _i Y ll_
Awi(n, qb’n ’q-b) - ( 3) M Z (nqb n qb) m ne .
(V.14)

hw is now the frequency shift of a particular Stark component char-
acterized by the quantum numbers n, 9y n’ and ku> due to the Holtsmark
field strength E‘,o. Introducing the frequency shift pp = w-w where

the frequency of the unperturbed line wo_ is given by

w s = (En-En,)/h (V.15)
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the line profile I{Aw, B) can be written in the form

_ Re i BRI PR B
I{Aw, B) = —-—ﬂ E (nqama! d! n qama)(n qub! d! nqbrnb)
(V.16)

! ! 7. 1.7 ’.
(nqama! pal_ nqama)<n q m;; nqublg((n)! n’q m’; nq m_ Y

where

(n'q/m/; nq m_lgw) |n’q’m’; nqg m_) =
b b b b a a a a (V.17)

. _ I ’. =T tat ’.
ldt exp {1(Aw AwiB)t} (n 9 m, 3 nqub!S(t)l n'q m_; nqama)

Performing the ion field average according to Eq. (IL 1) will then give
us the desired line profile once we know the thermal average &(t).
VI. THE THERMAL AVERAGE —3-(1)(t) FOR HYDROGEN
In Sec. IV. we saw that the crucial problem in any classical
path theory of line broadening is the evaluation of the matrix elements

(1)

of & '(t). With the no-quenching approximation for hydrogen a typical

matrix element in parabolic states is given by

(1)

’

17 . ’ re ! /. -
{n q s nqub!E (t)'n q_m_; nqama> =

(VI.1)

> o= - 1 7 r . . r ! .
ne/dxldvlw(vl) (n qymy nqub'cwl(t)-lln qam;, nqama)

To simplify the evaluation we transform to the natural collision vari-
ables p, v and to which denote the impact parameter)electron velocity
and some reference time of the collision (see the appendix of paper II).
The orientation of the collision axes with respect to the radius vector

-
R of the orbital electron is specified by the three Euler angles
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represented by (). Furthermore we assume a spherically symmetric
distribution of perturbing electrons; this is a good approximation as
long as the impact parameters are not too small. The velocity dis-
tribution function W(v) is related to the Maxwell distribution function

f(v) by
£(v) = 4nve W(v). (VL. 2)

With the preceding definitions Eq. (VI.1) can be rewritten as

7 V4 !t ., '_(1) 4 1 /., -
{(n q,m’ nqub|3 (t)ln q m_; nqama) =

(VL. 3)
n |
;ﬁ(fdv vf(Vy‘dp ?/dto <n,ql,)m1;;nqub rﬂi(t)'l l nlﬁgm;; m'lama'>

Next we have to know the matrix elements of the time development
operator ml(t) defined by Eq. (IV.18). This requires the matrix
elements of the interaction potential afl(t). In order to save some
writing we consider for the moment only Ul(t) and Vl(t) which after
making the no-quenching assumption may be the "initial" or "'final"
part of the corresponding tetradic operators (see Eq. (V.1)). A
typical matrix element of Qf'l(t) is given by
facd e
(nqcmclvl(t)lnqdmd = exp ijﬁ— (an -an )&it }(nqcmcl Vl(t)" nq m ).
¢ d (VL 4)

With the no-quenching assumption the unperturbed energy eigenvalues
En have cancelled. At this stage we now make another simplification

by dropping the exponential in the latter equation; this has been done
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in all previous Stark broadening calculations but it is rarely stated
explicitly. This will be a good approximation in the line wings where
the times of interest 1/Aw are small and Aw is much larger than the
average ion field splitting. In the line center, however, the argument
of the exponential can easily be on the order of unity or larger in

which case vl(t) effectively vanishes due to rapid oscillations of the
exponentials., This effect was first noted by Van Regemorter, 1964 , who
shows that this effectively introduces another cut off which may easily
be smaller than the usual Debye or Lewis cutoffs. This additional

cutoff has been included in recent calculations{ Kepple and Griem, 1968).

However, as discussed in Sec. XII it turns out that its influence on the

final line profile is in most cases negligible.

Neglecting the ion field exponentials in Eq. (VI. 4). the time

development operator U, is now given by

1
i t
U1 = & exp 3_?,/C,‘anl(t’)dt,$ (VI. 5)

where the time ordering is still required because PnVl(t) need not
commute with PnVl(t'). In paper II it was shown that this time ordering
is negligible for weak collisions (to second order) as well as quasi-
static collisions (i.e., in the distant line wings). Time ordering is not
negligible for strong collisions; however, when the thermal average is
performed, the errors due to neglecting time ordering are expected to

be small. The reason for this is that the time development operator

t
- _ _1__ ¢’ 1]
U, = exp g h.[ PV (t') dt z (VL 6)

still retains its unitarity (cf. Sec. 8 of paper II).

25



VII. THE MULTIPOLE EXPANSION OF THE CLASSICAL
INTERACTION POTENTIAL

Before evaluating the thermal average—:i(l)

(t) we briefly consider
the classical interaction potential Vl(t) due to a single electron. If the
perturber does not ''penetrate'’ the radiator, Vl( t) is given by the well
known multipole expansion

-
2 v _I®K

V.(t)=e - By [cos e(t)] (VIL. 1)
' =t [x(en™*!

where |§| is the distance of the orbital electron from the nucleus, r(t)
is the instantaneous distance of the perturbing electron, the Pk are
Legendre polynomials and §(t) is the instantaneous angle between_ﬁ
and ?(t).

In most cases it is sufficient to consider only the dipole (k=1)
term. However, to account for some asymmetries of a line, it may be
necessary to keep some of the higher multipole terms as well. In any
case, one can show that this multipole expansion is terminated after

some finite number of terms due to symmetries of the radiator.

- >
To show this we specify the angular positions of R and r(t) by

el, ®, and 92, ®, respectively and we apply the spherical harmonic
addition theorem (Eq. (4.6,7) of Edmonds, 1960)
+k
Py (cos 8) =3 (-1 CS(8), ©))* C1(8,,0,) (VIL2)
p=-k

where

cos § = cos 91 cos eZ + sin el sin 62 cos (cpl—cpz). (VII, 3)
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We may simplify the mathematics without loosing generality by choosing

a coordinate system in which ®, = 0. Using the relation

ck (s

K
Cp (8500, = 0) = (-1)° - C, (8,9, = 0) (VIL 4)

one then obtains

k k
Pk(cos 8)= Co (GI,CQI )Co (92) +

k (VIL 5)
. p -k _ k 1P ~k
S, (1) C, (85 9,=0) [C_p(el,cpl)+( D" c, (Gl,col)]
p=1
which gives for the interaction potential
® - k
2 | R| k
Vl(t)— e Z k41 [Co Pk (cos 62(1:))+
k=1 [r(t)]
(VII. 6)
< (k-p)! k p .k
- : p _
2_‘( oy Py (cos ez(t)){c_pu HF }] :
P=
The dipole case (k=1) gives the well known result
2, =
IR [1 1 f 1
V. (t)= = C cos 8 (t)+ == {C . -C. ¢ sin6,(t)
d rz(t) o 2 \/'z‘l -1 71 2
2 o N
= — Z -cos 6, (t)+ X sin g (t) (VIL 7)
2(t) 2 2

The y-component vanished because ®,= 0. Similarily one can write
down the higher order multipole terms. The necessary matrix elements

k
of Cp are given by

N o L) k 2\ fa'k2
(1,'m'\Cp1Lm) = (1) (20 +1)(22+1 000/ (VILS)

m’ pm
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From the last 3j-symbol we see that these matrix elements exist only

if 1, k, 2/ satisfy the triangle condition and their sum is an even integer.
Therefore it turns out that, within the no-quenching assumption where
one needs the matrix elements of PnVl(t), only a finite number of
multipole terms exist. The summation index k in equation (VIIL. 6) has

to obey the condition

l<k<2(n-1) . (VIIL. 9)

As an example we see that a calculation of the upper state interaction
of Lyman o requires only the dipole and quadrupole terms. This
condition also illustrates the well known fact that there is no ground

state interaction for the Lyman series,.
VIII. THE SPHERICAL AVERAGE OF THE TIME

DEVELOPMENT OPERATOR Ul,l (t)

In our evaluation of the thermal average Z-F(I)(t),defined in
Eq. (VI 3),we first perform the spherical average represented by the
integral over the Euler angles (), because it greatly simplifies the
remaining integrals over to’ p and v. This is due to the spherical
symmetry of the time development operator Ul(t) defined in Eq. (VL. 6).
It should be noted that this symmetry was achieved by dropping the ion
field exponentials in Eq. (VI. 4), thus replacing Vl(t) by Vl(t). We
will perform this average by means of a rotation technique used by
J. Cooper, 1967, and Barange:, 1958, for S-matrices. Although we
are working with the more general time development operators
Ul(t) or ’Ull(t), the rotation technique is the same.

In terms of the collision variables p, v, t0 and (), the dipole

interaction between the radiator and a perturber is given by

v (0= R [“p“+‘\7(t+to)] / [p2+yz(t+to)z] 2 (VIIL 1)
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(see the appendix  of paper II). The three Euler angles denoted by
() describe the orientation of the collision frame relative to the atomic
frame., It is therefore convenient to perform a rotation of the atomic
axis. through the angles () in such a way that R points in the same dir-
ection as P and the x axis of the rotated atomic frame points in the
same direction as™¥, In this rotated frame, the interaction potential

takes the form

N

Vc(t) = e2 [ Zp + Xv (t+t0)] /[p2+vz(t+to)2] (VIIL 2)

This rotation transforms the time development operator U1 into a new

operator U, , where U1 and U, are related to one another by

1c lc

-1
U = 87U, 8() (VIIL. 3)

where § (Q) is a rotation operator (see Chap. 4 of Edmonds, 1960). The

time development operator in the rotated frame, U is given by

1c’

_ - _}_ ’ ’
Ulc = exp { h[PnVc(t ) dt } . (VIIL. 4)

To make the form of U1C more explicit, we perform the integral over

t’ and we obtain
i eZ
U].C = exp 4- ?1— —p-T PnZA(t, to, 0, V)-PnXB(t, to, 0, V)} (VIIL, 5)

where

(v/p Nt _+t) (vt /o)
Alt,t_,p,v) = > - (VIIL 6)

Vit P st Yive /o)
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and

B (t, to’ p, V)= L - L . (VII.7)

Jl /o) (e _+t)° J1 + (vt _/p)°

Substituting Eq. (VIIL 3) into Eq. (VI. 3) we see that the integral over
N in Eq. (VI. 3) involves only the matrix elements of four rotation
operators. Since it is convenient to use spherical states |nfm) when
taking matrix elements of § (1) , we make use of the unitary trans-

formation from parabolic to spherical states discussed by Hughes, 1967,

Ingm) = Y Intm’)(ntm’|ngm)
rm’ (VIIL 8)

n-1 n-1 ‘
1 -
(ntm’Ingm) = 5 ,(-1)7 1FP q‘“"/zm" 22
m-q mtq_

2 2
using 3j-symbols and the definitions in the Eqs. (V.4) and (V.5). (An

error in the phase factor has been pointed out by H. Pfennig, private
communication). Noting that §(()) is diagonal in the angular momentum §,

the () integral in Eq. (VI. 3) may now be written

7 ’. [ ’, —
/(n 9 My nqublml(t)ln q m; nqama> dn=

(7)1
z Pt 1o oot a Vo bt + ot ot
ﬁ‘({“l qama|n *’ama> 8 m'm’ (n )('amc‘Ulc‘1r1 {’bmd
a ¢ (VIIL. 9)

(L{)) 'm!1n’q’m’y| {ng, m_|ng )
8 m/m! (n'g mpiniqm, b Mp™p
(i,b)—l (&a) |

8 mbmd <n}(’bmd‘Ulc‘-rw’ax,mc) sm m (n,e,ama_nqama>

cC a
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where the summation E denotes sums over {, L 2’ 2, , m ,m’, m
C

b ' d

and rnd. The () dependence of the integrand in Eq (VIIL 9) is contained

entirely in the four rotation operators g (). Using Egs. (4. 3, 2) and
(4. 6.1)of Edmonds, 1960, we obtain the identity

fﬂ (1,;)-1 (Lé) (z,b)-l . (!;a)

(VIIIL. 10)
4 7 4 4
-m’ m M/\Xm’m M/Vm’ m. M/\m/’
c C a a d d
Hence Eq. (VIII. 9) becomes
4 4 7. 7 ’ /. —_

' 4
Z(n q m L m )(n )L m/ In’ qb anqb blm b><m,ama|nqama)

'-m’ + m _-m_ +M-M"’

m
8rr’ E (-1 ¢ & 4°'b (2L + 1)
L, M, M’
(VIIL.11)
)
atabn/ta by D\ /0 4y Do\ 4y L
-m’ 4 - e !
m‘m M m’'m M mdmdM mbmbM

4 7 ! . ' 7 14 !,
(n {’b mg n!’bmd 'mlc(t)! n !'amc’ n"'amc )
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This result is spherically symmetric; that is, any further rotations of
the atomic coordinate system leave this expression unchanged. One

may verify this rotational invariance by rotating U, through some

lc
arbitrary angle Q/ sothat U = g —l(Q') Ul,c 8(0'). Taking matrix

elements of the new rota.tion1 zperators and making use of the ortho-~
gonality properties of the 3j-symbols one sees that the right hand side
of Eq. (VIIL. 11) did not change. Since we are free to perform further
rotations on Ulc without altering Eq. (VIIL 11), it is convenient to
rotate the X-Y plane through an angle ¢ =arctg (B/A) where A and B
are given by Egs. (VIIL 6) and (VIIL. 7). This rotation transforms U1C

into an operator ﬁl given by

i 2
U1 = exp {— oy e PnZ g(t, to, p,v)} (VIIL. 12)

where

rz_ .z

1
g(t, t o,v) = v YA +B
(VIIL. 13)

ol

2
\/? , 14 (v/p) t, (t + )

‘ll + (v/p )Z(to + t)2 Jl + (Vto/p )Z

The operator ﬁl has the important property that it is diagonal in

v

parabolic states (because it contains only PnZ). Hence a typical

matrix element of U1 is given by

m

{nqm)] El(t)| ngm) = exp {-i %- nq h g (¢, to, 0, v)} . (VIIL 14)

We also realize that one and the same rotation through the angle e= arctg

(B/A) diagonalizes simultaneously both time development operators
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acting on initial and final states respectively. As a result a typical

matrix element of the corresponding tetradic operator Uzl(t) is given by

— 3
<nrqrml;nqm!v(1(t)'nrq/m';nqm) = exp {-1 T(nq-n,ql)%g(’t’ top, v)}

(VIIL 15)

Substituting this identity into Eq. (VIIL. 11) the spherical average of the

time development operator Ull(t) finally becomes
/<n,q1’>m1;; nq,m, | ml(t”n'qém; s nq m ) 40 =
D nragmllniaim v (n'e fm ! In7a m ) (nalm [t fm ) (a2 (| n/afmy)
(nqama! n{’ama> ( nLamc ! nqcmc) (nquC! anmc> <anmb! nqub>

-m_-m 24 L\fa'1 L 4, L
2 ' ,
8n"(-1) a b(2L+1 a a aa !’b *'b L b b

-m’ m MJI\-m’m M/¢m’m MJI\tm/ m M
c c a a c ¢ b b
exp —1—3—(nq -n'q’)—h— g(t,t ,p,v) (VIIL. 16)
2 c c’m o’

where the unitary transformations are given by Eq. (VIIL 8). This

result greatly simplifies if there is no lower state interaction (e. g.,

Lyman lines), in which case one obtains

/(nqubl Ul(t) ‘_’nqama> da = E (nqubl m,ama) (n,t,ama! nqarna) 6rn -
a

2 2
8 .3 h
[<Mamc‘ nqcmc)] ZLa-!-l exp {-1 2 ™M m & gt’ 1:o’ P V)}

(VIIL.17)
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This simplified relation may also be used for the higher series mem-
bers of the Balmer Paschen etc. series where lower state interactions
contribute only a negligible amount of broadening to the final line
profile.
IX., EVALUATION OF THE THERMAL AVERAGE
5 )t) FOR HYDROGEN
Having performed the spherical average over the Euler angles

Q) we can rewrite Eq. (VI. 3) in the form

’

-m -
(n'q/m/; nqublﬁ(l)(t)ln'q;m;; nq_m ) = (-1) 2 mbz ;(ZL+1)

(Y Sy | 4 ’ 4 4 7 4 ! 7 ’ ’ ! ’ 745 7 4 / 14 A 7 14
{(n qamal n {,ama)<n J,amcln qcmc)(n qcmcl_n I,bmc)(n ,f,bmbln q,m/

{nqama|n4’,ama) <n'Lamc‘ nqcmc) (nqcmc| n'E’bmc> <1%bmb‘ nqub

2’ 2 L ! ’ '
a Ta La ta B\[/ 2] 2, L\/2{ 1, L

F(t,n,q ,n%q’)
-m’ m MJI\-m’ ) 17 A U T Rer T e
c c ma maM mc mCM mb mb M

(IX.1)

where

i3 ’ d = t s My .
F (t, n, qc, n’, qc) Znnefdv vf(v)-/:ip Fi/d o & (t, to 0, v) (IX.2)

and

- .3 rqry
& (t: to,p,V)— exp {_1 2 (nqc-n qc) mg (t’ to»p,V)}'l- (IX’3)

Thus, the problem is now reduced to evaluating -F—‘-(t), which will be
done in this section. It is interesting to note the similarity between
Eqs. (VIII. 13) and (IX.2) and the §-functionof Anderson ané Talman,

1955, which is the crucial function in their classical adiabatic theory.
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We first realize that due to the symmetry of the line profile we
only have to evaluate the real part of 3 (t, to,p, v); that is, for every
positive value of (nq -n’q(’:) there will be the corresponding negative

c

value. Hence we are left with

_ 3 rqry B - IX.4
@(t,to’p’v)_cos{ 2(nqc-n qc) mg(t,to,p,v)} 1. ( )

In performing the integrals over p and to in Eq. (IX. 2) we account for
shielding by setting the interaction potential V and hence also $ equal
to zero whenever the distance of the perturbing electron is larger than

the Debye length D. We also introduce a strong collision cutoff p min

In principle we can let the impact parameter go to zero because the
functions & and F(t) do not diverge for small impact parameters as they
do in some second order theories, However, for numerical purposes
this would result in very large computer times due to the growing
fluctuations in the integral. For this reason we will choose P onin to be
small enough so that when we are interested in large frequency per-
turbations Aw where perturbers at small impact parameters are quasi-
static, the rest of the integral from 0 to P rrin M2Y then be replaced by
the static limit, In the dipole approximation this gives rise to the

well known Holtsmark Ax_5/2—wing (see also Sec. X). According

to the validity conditions of the classical path theories (see Paper I) the

minimum impact parameter P nin will be of the order of

2
po-a(+n a (IX. 5)

where X is the De Broglie wavelength,
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We now concentrate our attention on the integral

G(t,p, v) =./‘dt0 5 (¢, to, 0, V). (IX. 6)

For convenience we consider the collision sphere as shown in Fig. 1.
The perturbing electron moves along the classical straight line
trajectory L and we are interested in the interaction from some time

t to some time to + t. Due to the Debye cutoff the to- integral extends
o

from ~-T to + T where

T = -%- Dz-p2 (IX. 7)

and the interaction potential vanishes if the electron is outside the
sphere of radius D. The corresponding time integration limit v due to

the strong collision cutoff P min is given by

1 [z 2
r= 2 ‘lpo-p ) (IX. 8)

Based on this model of the collision sphere we split the integral G

into two parts
G(t,p,v)= Ulp>p ) "G _(t,p,v)+ Ulp >p) -G (t,p, V) (IX. 9)
o] a o] b
where the step function U is defined to be

1 if azb
U(a>b) = (IX.10)

0 if a<b
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In order to evaluate Ga(t, p, v) we have to distinguish the following
four cases depending on whether the initial and final times of inter-

action are inside or outside the sphere.

Casel: - T<t ;t +t< T
o o 2
v 1
— : t (t +1¢t =1
> l+? O(O )
gl(t:t:pav)= - 1 - D
° P-v 2 ve 2
v
+__é— ( to+t)] [1 +-—2— to]
P p
(IX.11a)
This is the same general expression as given in Eq. (VIIL 13).
Case II: -T<t ; Tk to+t
o)
IR PR S-N, P
1'2 p o D2
gz(t’ tosO:V)'—' E—.—; 1 = N 2 = (IX.llb)
1 +—-£'to
P
CaseIIl: t <-T; t +t< T
o o v 2
LT (¢ +t) of1-85 | %
"Z’ D p "o DZ
golt,t ,p,v)= — {1 1- ” (IX.11lc)
3 o p+V v >
;/ 1 +—5 (t 4t)
2 o
p
CaselV: t «-T; T<t +t
o) o
2 _ai
= —Y - : X.
gult, t .p,v) oV 1 2 (IX.11d)
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After defining

@k(t,to.p,V)= cos {-—-(nq -n qc)-r; gk(t,to,p.V)} -1

(IX.12)
the integral Ga is given by
T-t T -T
Ga (t,p, V)= U(2'I>t){ [@ dt +f§zdto +/ §3 dto }
- o - T-t (IX. 13)
+U(t>2T){[§ dt Jf @ dt +[@ dt

-T-t

where we have separated the cases where the time of interaction

is
longer or shorter than the time 2T required to cross the collision
sphere,
In a similar manner we evaluate Gb distinguishing between the
following cases:
Casel: -T<t ;t +t<=7
o o
or t<t;;t +t< T
o o
g(t.t ,0,v)=g(tt ,p,v) (IX.14a)
CaseIl: 1<t < T; T<t + ¢t
o o
t = t,t ,p, IX, 14b
gttt ,p,v)=g,(tt ,p,v) ( )
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Case III; to< -T; - T« to+t< -T
g (t, to,p,v) = 8, (¢, t, P v) (IX, 14c)

Collisions which enter the strong collision sphere are neglected because

of the strong oscillations. This yields

—r-t  pT-t T - -T
Gb(t, 0,v)= U(T-r>t) /éldto +f¢1 dto + §2dto +]§3dto
-T T T-t L T-t
T T-t
+ U (t>T-‘1‘){f§ dt 4;/.§ dt }
2 o 3 o
T

-T-t

(IX. 15)

where again interaction times longer or shorter than (T-71) have been

separated. In the expressions for Ga and G, we realize after a change

b

of variables that the corresponding integrals over &, and §3 are

2
identical. From the Eqgs. (IX.1la) and (IX. 12) it is also clear that
& 1 is a symmetric function in z = to + Et . Performing the §4 -
integral one finally obtains
5 T-t T
1. ,0, V)= U(2T>t t + dt
Ga(t p,v)=U(RT> )L"Qldo f @2 o}
o t/2 Tt (IX. 16a)
t
+U (bZT){f@zdto+ (—z-- T) - % 4}
-T

and

b (]

T-t T
*G(t,p,v) = U(T-7>t) f@ldto +f§2dto}
T T-t

T
+ U(t>T-T){ﬁ2dto } . (IX. 16b)
T
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We now introduce the following dimensionless variables

P
=2 andx = = withD= [ KT ,
D o D 4nn62
e
8nnee2
s=m t with © =,’2-w =v—-—-— ,
P P P m

=t .
y o/ T (IX.17)
u= L with v AP
v av m
av
and the following abbreviations
LI
I ¥
2
LA (IX.18)
T
1-x

With these definitions the preceding relations can be rewritten as

nojE

2

g'l(s: Y: X, u) = -X_u. ¢

[T

2 2
gz(s,y,x,u)=£2u‘,- 1-‘/=;-i%(1=-x)ﬁ (IX.19)
i x +y (1-x)

(s y,%x,u)= — - 4f/1-x
xXu 40



and

ék(s,y, X, u) = cos { C'gk(S,y, x, u) } -1 (IX.20)
where
C = Cl. c, (IX. 21a)
and
C. = = (nq -n’q’) (IX. 21b)
1 2 c c

i 3
C. = h = ™ = 0. 030434/ D™ _ | 10 K
2 m*D-v 2kT * 18 T :
av 10

Similarly we have for the integrals over to

1-R 1
Ga(s,x, u) = U(2>R){[§1dy t[ dey}
1-R (IX. 22a)

4

+1 R
+ U(R>2) §2dy+(7-l) §4

-1

1-R 1
Gb(s,x, u) = U(‘1>R+P){f§1dy J:[ %, dy}
P 1-R

1
+ U(R+P > 1){f¢2 dy} (IX. 22b)
P

and

which leads to the thermal average

. 2rl
s, n_, T)= 2mn D/ \/—4;, - u/ dxle-x2 2:G (s, x,u) (IX.23)
[0}
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with

Gl(s, x,u) = U(x>x0) . Ga(s, x,u)+ U (xo>x)' Gb(s, x, u). (IX. 24)
These integrals have been evaluated numerically using the program
(FORTRAN IV) discussed in Appendix A. This program calculates the
thermal average F as a function of the normalized time s for the
parameters (nqc—n’qé), n_ and T. The upper cutoff is given in units of
the Debye length and the lower cutoff in units of the strong collision
cutoff o, of Eq. (IX. 5).

Before we discuss the methods for obtaining the Fourier transform
off(t) and the actual intensity profile, it is useful to derive the small
and large time limit of-}?.?(t). The small time limit is determined by the
integrals over % y @nd gives the asymptote of the thermal average for
the static wing. The large time limit depends only on the 3 4 integrals
and yields the thermal average as required by the impact theory.

In the small time limit & 1 reduces to the form

_ 3 araryh t _
¢ l(t’ r)t-ao = cos { 2 (nqc o qc) m rZ } 1
(IX. 25)

where

r= sz + vzti . (IX. 26)

This expression depends only on the instantaneous distance r as
expected in the static limit and the thermal average is therefore

obtained immediately by the integral over r

- c 2
F(t)t—»O = 41-\'nejJ r Ql(t, r)t-»O dr . (IX. 27)
o
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In the small time limit where —;—(nqc-n’qé) h . LZ -+ 0 we can
then perform the integral with the result Te
3.
f(t)t—»o = - -g— ne[3n(nqc-n'q'c) h; t] 2 (IX. 28)

For the limit of large times of interaction we have to solve the

integral

00 D
F(t)t—wo = Znnef dv vf(v)f dopt- §4 . (IX. 29)
o e,
For simplicity we set e, equal to zero (for pO:{f 0 see Appendix B).
After a change of variables and a partial integration the integral can

be rewritten as

. 2C

_ 2 ® 4 2 _uZ sin ( 2 Z)

Ht)t-—»oo = - Z'rrnetD Yoy duv_?'u e C —— dz
o

o 1+ =2

(IX. 30)

The z -integral is known as Raabe's integral (see p. 144 of Bateman, 1953)
and can be expressed in terms of exponential integrals, Furthermore, |
from Eq. (IX.21) we realize that for most practical situations C «<1.

Keeping only the leading term in C we have
Ft), = - 4\ﬁ’C2n p*v_ ¢t [B- In (4C2)J
b e av (IX. 31)

2
= - (—% (nqc-n'qé) %) net‘,ﬁl;%,ra [B- In (4C2)]
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where

4C

]

2 3 ! ’
o, ( (nqc n qc)he

2
KT ) and B= 0,27 (IX. 32)

m
The large time limit of the thermal average in Eq. (IX. 31) is required

for the calculation of the line center and all modern impact theories give

the same result except for the additive constant B whose value de-
pends on the particular cutoff procedure applied. Appendix B gives

a summary of the different constants obtained in the literature which
vary considerably. To what extent this uncertainty shows up in the
final line profile depends on the value of the constant C. The influence
will be small if - 1ln (4C2) is considerably larger than the uncertainty
in the additive constant B, Furthermore, the large time limit of the
thermal average affects primarily the center of the line profile and

its contribution vanishes when moving into the line wings.

Finally we show numerical results for F(t) as obtained by means
of the program in Appendix A, Most of the calculations shown in this paper
have been performed for the following electron density and temperature

parameters,

case n E:m- ] Te [ K]’ experiment
e

A 8. 4° 1016 12200 5. Boldt and W. S. Cooper, 1964 (cascade arc)
B 3. 6. lO17 20400 R. C.Elton and H, R, Griem, 1964(Fshock tube)
C 1.3- 1013 1850 C. R. Vidal, 1964, 1965 (RF-discharge)
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These parameters correspond to experiments which, as stated already
in the introduction, have revealed the largest discrepancies between
experiment and the modified impact theory. We will concentrate our
attention on the high density case A and the low density case C, since
case B is regarded as being less accurate because of lacking absolute
intensity calibrations.

Figures 2 and 3 show the normalized thermal average -F-‘/‘i‘; as
a function of the dimensionless variable s = ’(b’p. t for the cases A and C.
Figure 3 shows the results for three different Stark components

specified by the quantum numbers n,_ = nqc-n’qé . Fo is the small

k
time limit according to Eq. (IX. 28) whose Fourier transform leads to

the static wing. The dashed lines are obtained with a lower cutoff
2
p_. = po =X +n ao. It can be seen that for case C the dashed curves

min
get closer to the static limit Fo than for case A. In order to obtain

the thermal average F for the limit P min” 0 the numerical calculations
were finally performed with typically P nin 0.01 P, S° that Fcalc and

Fo differed less than about 0.1% over at least one order of magnitude

in s, Far smaller values of s, where fc and -I;O start to differ

alc
is then replaced by Fo' In this manner we obtain the solid

in, F
agat ¥ alc
curves in Eqs. 2 and 3 which are used in the following.

It should be noted that these curves are calculated on the basis
of the dipole approximation. It is clear that for impact parameters
p<n a higher multipole terms have to be considered. Since the
values s of interest are approximately given by s z’(ﬁp/[\w, one expects
higher multipole terms to be less important the closer Fcalc gets

- 2
toF forp . =na . This is consistent with the experimental fact

o min o

that in case A an asymmetry of the line has been observed which cannot

be explained within the dipole approximation, while in case C no

asymmetry has been observed.
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For large s Figs. 2 and 3 show the transition to -fm as given
in Eq. (IX. 31), which forms the basis for the familiar impact theories.
X. THE FOURIER TRANSFORM OF THE THERMAL AVERAGE
Having calculated the thermal average ‘f‘—(t) we now focus our

attention on the evaluation of its Fourier transform

i(AwR) =_:-f—f exp (iAsz) F(s) ds (X.1)
(o]

as required by Eq. (V.17) (see also Eq. (IV.16))where the dimension-

less variable
Mg = (Aw - Aw N B)/wp (X.2)

is the frequency separation from a particular Stark component
(cf. Eq. (V.14)) for an ion field strength 8 in units of the plasma
frequency a;p'

The thermal average F(s) does not immediately allow a straight-
forward Fourier transformation because for large s F(s) is proportio-
nal to s according to Eq. (IX. 31), hence i(AwR) diverges. This diver-
gence is due to the fact that we neglected the finite lifetimes of the un-
perturbed states involved which naturally terminate the maximum time
of interaction s, This may be taken care of by introducing a convergence
factor exp (-es) which can be obtained by replacing the delta function
in the power spectrum of Eq. (3) in paper I by a narrow Lorentzian
line with a natural width ¢ (E. Smith and Hooper, 1967). In the final
line profile, however, natural line broadening is always negligible with

respect to Stark broadening which allows us to set ¢ to zero without
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affecting the shapz of the profile. For this reason we will evaluate

® inw s
: T 1 -es R =

1(ALUR) -G]j%l:‘/- e e F(s) ds (X. 3)
o

T(s) is known numerically and there are many ways to perform the
Fourier transform. In order to find the most convenient method we
notice that according to Eqs. (IX.28) and (IX. 31), T(s) has the following
asymptotes

= 3/2
f — U ¥ =
or s-0 O(s) pls

(X. 4)
and for 50! Fm(s) = P,5 ,
where
2 3 3/2
P, = -3 neD (2 C) (X.5)
and

= 32 2]
P, = WneD C [B-ln(4C) ,

The transition from —fo to I“-m is very smooth because the power in s
changes only by 1/2 over the entire range. It has been found that f(s)
may be approximated by a function G(s) whose Fourier transform can
be given analytically and whose parameters may be determined by a

least square fit. The function G(s) can be given in terms of the series

G(s):ZGk(s) ) (X. 6)
K

where the number of terms in the series depends on the required
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accuracy. As a first approximation Eq. (X, 4) suggests

2
als
G.(8) = =——, (X.7)
1 1’ 2 7
s + 2b_s
1
with
and

2
-1
bl-g(pz/pl)

Gl(s) has the small and large s behavior of F(s). It then turns out
that

for s-0 -f‘.(s)-Gl(s)= p3s5/Z

and for s-e F(s) - Gl(s) =Py (X.9)

where P, and p, now have to be determined numerically. Consequently
we take Gz(s) to be

a SS
2
(sZ+2b2s)5/2

G,(s) = . (X.10)

It then becomes apparent that Gk(s) is given by

o g3k-1
k
G, (s) =

k (s2+2bks)2k'3/2

(X.11)
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4k-3
: - =1
with a, =P, and b (ka/ka ) (X.12)

such that one obtains

@©

1
for s-0: G(s)= (E Pop-1 © kt3
‘'

and for s-w: G(s) = E Poy sz-k . (X.13)

In this manner the Fourier transform of any Gk(s) can be expressed
in terms of modified Bessel functions KO and Kl' For all situations
calculated it was found that Gl(s) and Gz(s) were sufficient to keep
the deviation F(s)-G(s) smaller than 1% for all values of s. In some
situations a fit better than 2% was obtained with Gl(s) alone. As a
further advantage it should be noted that this method tends to suppress
"noise' introduced by the numerical evaluation of F(s).

In the following we evaluate the Fourier transform i(k, AwR) of

any Gk(s) as defined by

1L\w s
i(k,A0p ) = 11m ——-/ Gk(s) ds (X.14)

Their sum will then give us the desired Fourier transform i (AwR). In

particular we are interested in i(k’:l,Au)R) and i(k = 2, AmR). We have
] 1 -es iAsz als
) T - 1 _
11(/\wR) = i(k= 1, AwR) =0 = e e ds
A s +2b s
1

1Aw s

A= (X.15)
n’b ’/'"l—s +2bs

b, (e-iprw )
g []; |
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Introducing

one finally obtains

-iZ
. _ 2 1 y..(1)
i,(Awp)=a, *b/ - e {1HO (z))+H

.bz

%

i sin 7
1 (cos Z1 isin 1)

Yy

221

(z,)

[(Jl(zl) - Y ()4

where H((l))and H(l)

1 are Hankel functions and J o’ J

functions.

(1
1

1’
These functions like all the other functions used in this

)

) + i(Jo('Zl) + Yl(.21)

(2,

(X.16)
[ i
=]

ZZ1

(X.17)
REACY

2

3

Y and Y, Bessel
o 1

report are consistent with the definitions as given, for example, by

the NBS Handbook of Mathematical Functions (Abramowitz, 1969).

For large arguments Zl it is also useful to have the asymptotic

expansion
2
a.*b
1 1 1 ., 5 3-5-7
i(ws)= - == —-—{l + 1+-——z(l—i)-———-—
1'"" R 8 "nzl’ Zf 824 2-82221
* 257 * 49
--9——3-—-3—(1-)%-'925544911 (1+)+-- ........
2.8z 87z
1 1
' 2
3 J2 P - P
Y lAwRS/Z{ 1+i+_~j;_(_1_) -9 _lgzé(p.i)
P2) Mg 2
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(1+i)

(X.18)

2
_++...}

(1+i)

2
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Using Eq. (X.5) for P, the latter relation gives us exactly the Holtsmark
A;\- wing for all Stark components

) 3.3/2 -5/2

ig(wp)=mn D°C pp” (X.19)

In a similar way one derives

iNg s a.s
: o _ .1 f® -es "UR® 2
12(AwR) = i(k=2, AwR) = éi%l?l e e ds:

a 3 2
-5 VNN T - T S - ds . (X. 20)
3 e»0 m 3 .2
de db2 s + 2bzs

With
Z2 = bZAwR (XZI)
one finally obtains
a b -iZ
. _ 2 2 2 (1) . 2 .
12(AwR)— Z e {HO(ZZ)(ﬂéZZ 3622-115)
(1) 2 .
+ H1 (ZZ) (16Z2 + 12822-3)
a b (X.22)
=22 (cos Z_-1isin Z_)
6 2 2

2 2
{[—3622J0(Zz) +3,(2,) (162,-3) - Y _(Z,) (16Z;-15) - zszzjrl(zz)]

. 2 ’ 2
+ i [JO(ZZ) (1622-15) + ZSZZJI(ZZ) -36Z2 Yo(ZZ)+Y1(ZZ)(1622-3€,}'



The asymptotic expansion for large Z2 is given by

7

L 35.63 . .
i([\wR)=—(1)—Z— 22 7, 2(1-1- 22 (1+4) - 2(1-1)+...),
2 VT 2 1282

(X.23)

If one requires an even better fit of G(s) to F(s) the general transform

i(k, AwR) as defined in Eq. (X .14) is given by

ik, AwR)
- k+1 2k-2 ¢ b, (e-ipw
4 b2y lim, Lkt 4 d yle-is R)K b (emin_y
= Tak-4)t Yk éSd ¢ K+l 2k-2 ol k RY( -
d e d bk

(X.24)
Finally we want to show that this technique always gives the static wing

according to Eq. (X.19) for large aw. For this purpose one has to

perform the Fourier transform of the small time limit of G(s) as given
in Eq. (X.13).

= E: ’ YRr® k+1
i (Aw ) 11r1r21 . i(Aw )_. Py 1 = % s

@

3
1 (2k+1)! e |12 410 -(kt 5-)
VL 22k+1k'p2k-1 *P 2\ 2 Mg

(X. 25)
P P .
3 2 1 5 Ps3 5.7 Ps
== /—— — = dop (1) + 2 = (1-1) + 2L 2 (1+4)
8 2 { P, ( 2 2
T 1 bog

A Aw
R

p
NI R A }

Aw
R
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One recognizes that the first two terms are identical with the first

terms in the Eqs. (X.18) and (X.23). Hence, we always obtain the

static wing for large Aw

R’
Another important property of i(AwR) is that for small AwR its
leading terms in the expansion are
o) 11 (albl'az)+
i(awg)=lim o HAwp)= = = 2 T w0 T
R w_~0 R m TAW
° MR Aw R (X. 26)

In this manner it smoothly goes over to the Lorentz profile of the un-
modified impact theory.
Before discussing the numerical results of i(AwR) we first list

the constants a and bk for the cases A, B and C as specified at the end

of Sec. IX. 2y and b1 are determined from Eq. (X.8), where P, is

given by Eq. (X.5) and P, is taken from the large time limit of the

computed f‘-(s). as calculated by the program of Appendix A

Pa comp.
may differ slightly from p, as defined in Eq. (X.5), if C is not very
much smaller than unity because p is based on Eq. (A.18),

2 comp.
which is true for any value of C and goes over to Eq. (X.5) for small
C. a, and b2 are determined numerically by a least squares fit,
The maximum deviations from f(s) obtained with Gl(s) alone and with

Gl(s) + Gz(s) are listed too.
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In presenting the numerical results of i{(Aw_) we concentrate on the real

R
part which turns out to be the most important part, We have chosen
two different normalizations. In Figs. 4 and 5, i(AwR) is normalized
with respect to the large frequency limit i (AwR) to show the useful

@

range of the static theory. The short vertical lines mark the position

of the Weiskopf frequency

Aw, = vaVZ/ <i2(nqc-n’q(’:) %) = 'qu/C (X.27)
for a particular component (nqc—n’q’c) which according to classical
arguments determines roughly the range of validity for the static
theory (see p. 321 of Uns%ld, 1955 and paper II). It should be pointed
out that ch is usually defined in terms of an average Stark splitting. In
both cases A and C A describes the range of the static theory very
well. If ane allows for a deviation of about 10% at the most from the
static asymptote, Ay  may be lowered effectively by more than an order
of magnitude. A more detailed discussion is given later with the final

line profile calculations.

The other normalization with respect to the small frequency
limit io(/\wR) is shown in Figs. 6 and 7 for cases A and C again. These
plots demonstrate the useful range of the unmodified impact theory,
which is based on io(AwR) and is expected to break down around the
plasma frequency, as can be seen in Figs. 6 and 7. In order to extend
the range of validity, the modified impact theory makes an impact para-
meter cutoff at v/pw ( the Lewis cutoff) whenever this is smaller than
the Debye length D; this cutoff accounts for the finite time of interaction
to second order. More details are given in Appendix B. The corres-

ponding function i is (AwR) has been included in Figs. 6 and 7. Since

Lew

the usual derivation of i . (Mv_ ) is based on the limit of very small C,
Lewis R
one expects the best agreement between the Lewis result and our result,

which considers the finite time of interaction to all orders, for the
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situation with the smallest C. That this is in fact true can be seen
from the low density case with nqc-n’qé = 3. This component is plotted
again in Fig. 8, in order to demonstrate the importance of GZ(S) for
those cases where the deviation of Gl(s) from F(s) is large (Table I
gives a maximum deviation of 13%),.

Figures 6 and 7 also contain the static limit iw(AwR) (dashed
lines) and the Weiskopf frequency /_\wc. It gives an idea how close the
Lewis results get to the static limit. One notices that with increasing
values of C the deviation of iLewis(AwR) from the static limit becomes

larger. In his line wing calculations (Griem, 1962, 1967)Griem adjusts

his ""strong collision term'' E__, in such a manner that the Lewis result

B8
is identical with the static limit at the Weiskopf frequency. In the Figs.
thi that th trai i ti i i
6 and 7 this means tha e straight line representing i ewis ([\wR) is
shifted to the right until it cuts /\wc. We use here ch as defined in

Eq. (X.27) for every individual component instead of the average value

[\wc = kT/(’h_nZ) used by Griem. Since the Lewis line would then lie

appreciably above the curve i([\wR) one realizes that this procedure

definitely overestimates the electron broadening as already observed

experimentally (Vidal, 1965; see also Pfennig, Trefftz and Vidal, 1966).
. that i

A better method would have been to adjust EBB , such tha lLewis(AwR)

forms a tangent of the static limit. However, it is clear that any

adjustment of E effectively changes the range of the unmodified

BB’

impact theory and also defeats the purpose of the Lewis cutoff, namely

to correct the completed collision assumption to second order.

Finally it ought to be emphasized again that except for the time
ordering the Fourier transform of the thermal average i(AwR) as pre-
sented here takes into account the finite time of interaction to all orders.

Hence, for small aw it goes over to the impact theory limit and for

R

large Aw ., it gives the static limit without requiring a Lewis cutoff,

R
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XI. THE ONE-ELECTRON LIMIT FOR HYDROGEN AND THE
ASYMPTOTIC WING EXPANSION

Having obtained the Fourier transform of the thermal average
i([\wR) we are now prepared to calculate the actual line intensity by
evaluating I(w,ei) according to Eq. (IV.15) and averaging it over all
ion fields according to Eq. (II.1). As explained in Sec. IV. this problem
is greatly simplified in the one electron limit where no matrix in-

version is required and the intensity I(pAw) is given by

{aw) = Ii(z\w)+[ P(8) I (Aw,B)ds . (XI.1)

I(Aw) is the static ion contribution originating from the first term
i
I/N"op in Eq. (IV.21) and I{Aw, B) is given by
— .IE \ / 4 4 4 4 7
I(pw, B) = = L(nqamald]n q, ma) ({n qubldlnqub)
(XI.2)

/dt exp { iAth} <n,ql’)ml’); nqubl"( )(t)|n 'q’ ma; nq_m }

using the definitions of Eqgs. (V.14) and (X.2). The density matrix P,
is assumed to be constant over the relevant initial states., With Eq.

(IX.1) the last expression can be rewritten as
= 4 4 ! 4 / 4 /7 ’ ? 4 4 I‘d
I(Aw, B) Z(m,amaldln !,amaﬂn qubln x,cmbﬂn 1l |m,cmb>
| 1,1 ’ [ ’ I I 1p 7 ’ 7, 2
(nt _m, lngq m Y(n's’'m/In’q/m’)(n qcmcln tym{n’t/m/!In’q/m/

Ty Ty,
(nqubl m,bmb> <m,bmc| nqcmc) (nqcmc| m”amc> (-1) (2L+1)

NX X X i(pwp.8, 0,0, sy qbq q)
-mm -mmM mmM mmM

(XI. 3)



where the dipole matrix elements have been transformed from parabolic
to spherical states and the summation over intermediate states lnqama)
and |n’q;m;) has been performed. We next apply the Wigner Eckart
theorem (see Eq. (5.4.1) of Edmonds, 1960) to the dipole matrix

elements and replace the reduced matrix elements by the corresponding

radial matrix elements (see Bethe and Salpeter 1957).

e, /:; 1 2'\f2 12
(numld In’s’'m’) = (-1) \[(24,+1)(21;'+1 {ne|rin’2")
M mp m’/J\00 0

(XI. 4)
Inserting this relation into Eq, (XI.3) and using the orthogonality

properties of the 3j-symbols we have
- 1t 4 ly 7 / ly 7 / P 4
Hw,8) = Y (n'q/m/In’s/m/)(nt m, Ing m)(n's/m|n'a/m])

(n'q(':‘:ng n ,{'l;mc,) (n’{,émél n’ql’)mt’)) (nqbrnbl n{bmb> (anmCl nqcmc>

wi-

(ng_m Int _m ) [(2&a+1)(2r,;+1)(21,c+1 M2 41 )] (nt,_lxln’2 M(n's |rlne )

4 4 {/ 4 1 14 4
LN N 1 U 1 10 Jé 1 1y {,bl \ /0 b 1 L. {’c 1
0 0 O 0 0O -m’ m MY \-m"’ ’ e’ e’
. c mC mCM mb mb M mbmbM
. 4 4 4
1(AwR,B,n,n » 9y 9y 9o 9 ) (XI.5)

58



If we finally replace the unitary transformation by the corresponding

3j-symbols according to Eq. (VIIL 8) the result is

I(rw, B) =_E(24,a+1 M2p [+1)(20, +1)(20,/+1)(20, +1)(21./+1)

3 ’ ! ! XI1. 6
1(AwR, B, n, n', q., al, 9, qc) ( )
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The preceding relations hold for the general case of upper and
lower state interactions. They simplify considerably if there is no

lower state interaction (e.g., Lyman lines). Then one obtains

/n-l n- 2 n-1 n-1 2
n-1  n-l 1 -1 o1
NI ETUYED DI I o
= my Clb b Clb ] mc qcmc qc
b’ el 2 2 my > >— -m_
9, qc ' »
i(wg.8.m9,,49) (XL 7)

with

. -2 r r _ 1 _
1u(AwR’ B,n: q-b’ qc) - l(AwR’ Bsn:n - 1’ Clb, qb" O’ qc, q.C - 0)-
(XI. 8)

Equation (XI. 7) may be further simplified by evaluating the 3j-symbols

and summing over m, and m with the result.

2
[ (nllrl10}] 2 2 2
I (pw,B)= n +(-1) (n"-2q )
: 410" qz":-(n-l) ’
-

n-1 ) qc"'n

XZ n + ("1) (nz'zqi) iu(AwR’ B,n: qb: qC)

c1C=-(n-1)

(XI.9)
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These simplified relations may also be used for the higher series
members of the other series, whose transitions do not end on the
ground state if lower state interactions contribute only a negligible
amount of broadening to the final line profile.

The foregoing relations for the one electron limit essentially
represent the asymptotic expression for the intensity in the line wings,
If one is interested in frequency perturbations Aw which are significantly
larger than the average ion field splitting Eq. (XI. 1) can be simplified
by replacing the ion field average of the electron contribution by the

electron contribution for the average ion field 8

(pw) = I (Aw) + I (Aw, eav) (XI.10)
with
By =fBW(e) ds . (XI.11)
(o]

If Aw is very much larger than the average ion field splitting, then
according to Eq. (X. 2) Ay g > Aw/wp and I{pw, Bav) may be replaced by
I(Aw, 8= 0).

I(aw) = Ii(Aw) + I{pw, B= 0) (XI.12)

In the limit 8 » 0 the Eqgs. (XI. 5) to (XL 9) simplify drastically because
i(AwR) depends no longer on the quantum numbers qb and qt') which
specify the Stark components shifted by the quasistatic ion fields. This

allows us to sum in Eq. (XL, 7) over qb and m, which gives us for the

b
case of no lower state interaction
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2

n-l ol
I (pw,8=0)= l<n1!r‘.10>'.22 e f,{ow, 8=0,n, a)

qm
m-q m+tq
2z 2z ™
(XI.13)
2 (n-1)
- '<n1‘2r'10>- z :(n2+(-1)q+n (nZ-ZqZ)) i (Aw,8=0,n,4q)
2(n -1)n :
q:-(n-l)

For the general case of upper and lower state interaction we can sum in

’
b

we finally sum over the intermediate spherical states to obtain

Eq. (XI. 6) over 9y q};, m,, m and M and after applying Eq. (XI. 4)

KAw, B=0) = Z }(nqmld\n’q’m'ﬂz i(mw,8=0, n, n’, q, q')
q,q’ (X1.14)
m, m’
How far into the line center the simplified relations (XI.10) and (XI.12)
may be used, depends on the required accuracy. Numerical results,
which compare the asymptotic wing expaﬁsions with the more rigorous
unified theory calculations describing the entire line profile, are given
at the end of the next section,
XII. THE UNIFIED THEORY FOR HYDROGEN

In those cases, where the entire line profile including the line
center is required, the line intensities have to be calculated on the basis
of the unified theory. It has to be pointed out that in principal even in
calculating the distant line wings the unified theory has to be used when-
ever AwR in Eqs. (X.1) or (V.17) is no longer large compared to unity.
This will happen in the final integration over ion fields whenever B is

close to

R = ! q! . .
i Aw/Awi(n, 9., qb) (XII. 1)
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However, it was shown in the last section, that for large Aw
one may use one of the asymptotic expansions in Eq. (XI.10) and (XI.12).

In the unified theory we have to evaluate the following expression
= .I_n} te ! ’ t ’ |
I(pw,B)= - E <nqamaldln qama)(n qub!d nqub)
(XII. 2)
-1
t o ? ’. - ln’a’ ’., .
(n q.m/; nqubl [Awop S(Awop)] n'q m/; nq m )

The matrix elements of Awop as defined in Eq. (IV.14) are diagonal in

parabolic states and are given by

! !
(n'q/m!; nqama\moopln’q;m;; ng_m )= pw-Aw,(n,q . n ;q)) R
(XIL 3)

where Aw. is defined in Eq. (V.14). The matrix elements of s(Awop)are
1

given by

(n'q/m!; | q'm’s _
. qb b nqb b £(/\w )l nqama, nqama) =

-m_-m,_ 2
"iTT'(']-) 2 [Aw—/\wi(n’ qb:n': q-{)) Fﬂ E (ZL+ 1)

{n’q rn"n L 'm )(n { m’ln q m’)(n q; m"n L m’}(n me’ln’q};m{)}

(nq_m_Int_m Ynt m Ing m ) (nq m_ Ing, m d{nr, m Ingy m,y

a
’ 7
l»’ Lb ,t,b L Lb »?/b L
. !
1([\(,0 8 n, n, qb,q » 9 ’qC)

-rn m M’ -m’ m M/ -m/ m M/
c

(XII. 4)
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Egs. (IV.16), (IX.1) and (X, 1). This relation simplifies sig-

nificantly in case of no lower state interaction in which case we need the

matrix elements

2
(ngymy| 800w ) na,m,) = - i [y (n a,) J

E —Z-Ea_l_—l— (nqub| n&ama) ( n,{,ama‘ nqama) [( n,Lamcl nqcmc)]
L b q. ’ m
a’ ¢’ ¢

1u(AwR, B, n, q, qc) . (XII. 5)

Due to the delta function the matrix of the operator £ is then block
diagonal in m, which reduces the size of the matrices to be inverted

ton x nor (n-1) x (n-1) depending on the quantum numbers n and m.
Furthermore, Eq. (XII 2) simplifies in case of no lower state interaction.
After transforming the dipole matrix elements from parabolic to spherical
states, applying the Wigner-Eckart theorem (see Eq. (XI. 4)) and using
Eq. (VIIL 8) one obtains

7% /n1 nal
2 . n+tm-1- > 5 > 1
Kaw,8) = [{nllrl10)] E (-1)
4y ™ m-q, mtq, _
2 2
n-1 n-1 1\
2 2 .
Im
! 0 (nqul [Awop-S(Awop)] ‘nqam} . (XIL 6)
t m-q. mtq
\ b b
5 2 2

In order to keep the mathematics simpler we concentrate in the
following on the case of no lower state interaction, because it covers the
experimental situations of case A and B and is also a good approximation

to the higher Balmer lines of case C (see the list of references at the
64



end of Sec. IX). Including lower state interactions means at this stage
only a more extensive summation over 3j-symbols because the crucial

function i(Aw _,, 8), the Fourier transform of the thermal average, has

R

already been evaluated for the general case of upper and lower state
interactions.
Using the unitary transformation of Eq. (VIIL 8), Eq. (XII.5)

may be rewritten as
qa+qb
2

n+m-1-
(nqu|£(Awop)‘nqam> = - in(-1)

\

n-1 n~1 ’ n-1 n-1 ’
2 2 ’ 2 2 ’
[/\w-Awi(n, qb) BT E (2!,a+1) a a
I’a m-qa m+qa o m-qb m+qb )
2 2 7) 2 m
n-1 n-1 ’ 2
2 2: ilwg, 8, m, 9, qczz 2 2 a (XIL. 7)
q>0 m
C -
c mC q'C mC+qC -m
2 2 c

where we have used the fact that iu(Aw o

R’ B: n, qb, qc):: lu(AwR’ B,n: qb: -q )

and that i (Aw_., B, n, 9 9. = 0)= 0. We also realize that
u

R

- - = XII.
(nq, ml;:(Awop)lnqa m) <nqul£(Awop)lnqam> (XIL. 8)
A computer program (FORTRAN IV), which evaluates I{A\w, B) according

to Egs. (XIIL 6) and (XII. 7) and also performs the final ion field average
according to Eq. (II.1) is presented in Appendix C. The ion microfield
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distribution function employed is the one given by Hooper, 1968a, 1968b,
which differs less than about 1% from the values determined independ-

ently by Pfennig and Trefftz, 1966.

For the experimental parameters of case C, Figs. 9 and 10
show numerical results of I{paw, B = 10) for n= 6 and n= 10. The fat
vertical lines indicate the relative intensities and the positions of the
Stark components for the static field (ion field) 8 = 10 and it demon-
strates the electron broadening.

Figures 11 to 13 show the final line profiles I(Aw) after per-
forming the ion field average for the experimental cases A, B and C
(see end of Sec. IX). As a first result it turns out that for numerical
accuracies of about 2% it is in all 3 cases sufficient to consider only
Gl(t) meaning that i(AwR, B, n, qb, qc) may be replaced by
il(AwR, 8, n, 9y qc) as given in Eq. (X. 17). Although according to
Table I, Gl(t) may differ from F(t) for some components of case C
by up to 13%, it turns out that after summing over all Stark components
and averaging over ion fields this difference F(t) - Gl(t) is apparently
smeared out over the entire line profile and affects the final line
profile by not more than about 2%. This is very convenient for
practical calculations, because it no longer requires an extensive
evaluation of the thermal average anymore, but for most practical
situations it is sufficient to calculate the line intensities directly on
the basis of Gl(t) whose specifying constants 2 and b1 are given
immediately by the Eqgs. (X. 8) and (X. 5).

This is even more true in view of the fact that the final line
profile is partially affected by an uncertainty in the constant B as

defined in Eq. (IX. 31) or (B.19). As summarized in Table II of
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Appendix B its actual value depends on the cutoff procedure applied,

a problem, which has not yet been solved satisfactorily. The upper

cutoff parameter a = p x/D (see Appendix B) and therefore also the

m
limits on the integral jPV (t’) dt’ can in principal be decided within
c

the frame work of the classical path theory (see also Chappell, J.
Cooper and E. Smith, 1969). The lower cutoff parameter, however,
which essentially replaces the dynamic strong collisions not amenable
in a classical path theory, can only be determined conclusively from a
quantum mechanical theory which is also able to handle strong collisions
and which does not yet exist. The constant B adopted here is based on
a lower cutoff parameter P onin = X + —-23-— nzao, which specifies approxi-
mately the region of validity for the classical path theories (see paper
I). Numerical results based on other values for the constant B as
used in the literature (see summary of Appendix B) are also included

in Figs. 11 and 12 for the cases A and B. The largest value B = 1,27
is the one adopted in the recent calculations of Kepple and Griem,

1968, while the smallest value of B is obtained for Pomin = X + —;——nzaO
and choosing an upper cutoff of P ax = 0. 606D as proposed by Chappell,
J. Cooper and E. Smith, 1969. For case C this variation of the con-
stant B does not show up in Fig. 13 and amounts to an intensity change
of at the most about 4%. These variations indicate the reliability of

the classical path theories and demonstrate that for some cases the
error estimates given in the literature are too optimistic. The effect

on the final line profile due to the uncertainty of the constant B will

be small if either according to Eq. (IX. 31)

-2 In (2C)>>1 (XII. 9)
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or if (like for the higher series members)the number of Stark com-
ponents is large which tends to smear out the influence of the constant
B. It should be pointed out again that the unified theory is intrinsicly
normalized independent of the value of the specifying constants of a
particular line. Hence, any variation of the constant B does not affect
the normalization of the line profile.

In comparing the numerical results for case C, with the
experiment it has to be kept in mind that we are comparing the higher
Balmer lines with calculations for the higher Lyman lines, because
our final line profile calculations have not yet taken into account lower
state interactions. This means that in a plot of the intensity versus the
wavenumbers Ay, which is essentially an energy scale, the line profiles
cannot be expected to coincide because of the difference in the Stark
effect. This gives rise to different static wings as explained in detail
by Vidal, 1965. Hence, we have to rescale the Lyman profiles preserv-
ing normalization in order to be able to compare the measured profiles
of the Balmer lines with the calculated profiles of the Lyman lines.
This means that in a plot of log I versus log AJ we can compare the
line shape of the corresponding lines directly. The agreement is
remarkable. For the higher lines, n = 8, where Doppler broadening
was shown to be negligible and where lower state interactions no
longer affect the line shape noticeably, the agreement is better than
2% over the entire measured line profile, which for n = 8 extends over
3 orders of magnitude in intensity., In particular, the calculations show

_5/2- wing, which extends

also the surprisingly large range of the Aw
to 1/10 of the maximum intensity., This fact is not explainable by a

purely static theory considering also shielding effects. For the lower
lines the calculated profiles have to be folded into a Doppler profile in

order to achieve similarly good agreement. For the lower line we
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also expect in the line center some influence due to lower state inter-
actions on the line shape, which is partially removed again by Doppler
broadening.,

A more detailed study of the Aw-s/z-wings reveals some other
interesting facts. In Fig, 13, the dashed lines indicate the asymptotic
Aw-s/z—wings; except for n= 5 and n= 6, what appears to be a A(”-S/Z
-wing in the measurements and calculations is not the asymptotic
Holtsmark [\w-s/z-wing in the region of interest. If one extends the
calculations to even larger frequencies Aw, all the wings will ,eventually
coincide with their asymptotic limit, In the paper of Vidal, 1965,
Table II gives a list of the electron densities, which were evaluated

-5/2

under the erroneous assumption that the measured Aw -wing was
the asymptotic Holtsmark wing; it was stated that for H4 to H14 the
electron densities coincide within 4+ 4%. A more careful analysis of
the values, which have been plotted again in Fig. 14 reveals a syste-
matic trend. For large and very small principal quantum numbers the
electron density values rise above the average value, while the min-
imum value was obtained for n= 7. From Fig. 13, it now becomes
apparent that the electron densities based on the asymptotic
Holtsmark wing will go up for increasing n. For smaller n the
quantum number dependence of the electron density is masked by
Doppler broadening which raises the wings again and explains the
increasing values of electron density for small n. Another important
result can be seen from Fig. 13. For small principal quantum numbers
the line intensities are much smaller than predicted by a quasistatic
theory. This was observed first by Schliter and Avila, 1966 and the
effective electron densities for a quasistatic theory as a function of A)

show the qualitative behavior measured by them after uzifolding the
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Doppler broadening. This observation together with the measurements
of Boldt and Cooper, 1964, suggested the semiemperical procedure
proposed by Edmonds, Schliiter and Wells, 1967. A detailed quantitative
comparison requires for the first series members a consideration of
lower state interactions, which is in process.

For the parameters of case C, Kepple and Griem, 1968, have

already calculated the lines H, and H These calculations have been

6 7°
extended to le by Bengtson, Kepple and Tannich, 1969, using identically
the same computer program. The results are plotted in Fig. 15 and
comparing the line shape for the higher series members, for which
lower state interaction becomes negligible, with our results in Fig, 13
one realizes a significant difference. In particular, their calculations

5/2

smaller than about 1/10 of the maximum intensity at aow = 0 which is .

do not reveal the A\ decay in the near line wing for intensities
discussed above. It should be pointed out that the ion field dependent
cutoff, which has been introduced by Kepple and Griem, 1968, to account
for the usually neglected exponential in Eq. (VI. 4) cannot be responsible
for it, This has been tested in our calculations. Omne can understand
this by realizing that for the higher series meémbers the effect of
dynamic broadening due to the electrons as described roughly by the
constants P, in Eq. (X.5) turns out to be much smaller than the half«
width of the total line, which is essentially determined by quasistatic
broadening.

As another interesting result, Fig. 16 shows a plot.of a calculated
Lyman-g profile for two different values of the constant B(B = 1,27 and
B for P onin = X + % nzao), which allows also some qualitative state-
ments concerning HB. We realize that changing ‘B affects the very line
center, where the profile shows the two humps and the near line wing,

but it does not change the intensity around the halfwidth significantly,
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which may be understood as an effect of the normalization. This is in
agreement with experimental observations of Wende, 1967, which show
that the calculations of Griem, Kolb and Shen, 1962 overestimate the
near line wing. It also explains the good agreement of experimental and
theoretical halfwidths in high density plasmas (see Gerardo and Hill,
1966) because the line intensity around the half width is rather insensitive
to the exact value of B.

Finally in Fig., 17 to 19, we compare the unified theory cal-
culations (solid curves) with calculations based on the one-electron
theory in order to see how far into the line center the asymptotic
wing expansions as given in Eq. (XI.10) or (XI.12) may be used. In
all Figures the short vertical line indicates the position of the outer-
most, unperturbed Stark component for an average ion field Bav’
which is given by pw = Bav Awi (n,q = n-1) where Awi is defined in
Eq. (V.14). The dashed lines correspond to the one-electron theory
calculations for 8 = 0 according to Eq. (XI.12), while the dash-dotted
lines give the results for B=Bav according to Eq. (XI.10). First of
all we realize that, as expected, the one-electron result for g = Bav
diverges when Aw approaches BavAwi(n’ q = n-1). However, in all three

cases we see that for frequencies
Aw > 5 eav Awi(n, q = n-1) (X11.10)

the one-electron theory calculations according to Eq., (XI.10) coincide
with the unified theory calculations to within 1% and better. For slightly
released accuracy requirements one may also apply the simpler one-
electron theory calculations based on Eq., (XI.12) with 8 = 0. In
particular we see that for small principal quantum numbers the useful

range is very much larger than for the one-electron theory calculations
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with g = Bav because, for B = 0, the one-electron theory diverges only
at pow = 0. We also realize that for the line intensity range of practical
interest both asymptotic wing expressions with g = 0 and g8 = 8

av
become less useful with increasing principal quantum number,
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APPENDIX A
PROGRAM FOR CALCULATING THE THERMAL AVERAGE .F-"(t)

This section gives a complete listing of the program which was
used to calculate the thermal average -f(t) as discussed in Sec. IX. In
order to understand the program the following explanations may be of
help.

1. Calculation of @k (s, vy, x,u)

Function PHI( K,AY) calculates §1, 3 and §4 as defined by

2’
the Egs. (IX.17)-(IX.21). In order to assure sufficient numerical
accuracy for computing ék (s, y,x,u), series expansions have been
applied whenever one of the different By (s,y,x%, u) becomes very small,

The following expansions have been used abbreviating

r= p2+v2ti /D= x2+y2 (l-xz)
2
a=p/ p2+v2t = x/r
' ° (A. 1)
‘/ 2 22 " 2
w-vto/ 0 +vto = l1-x y/r
and v = vt/ pZ + vzti = us/r

(a) g (s,vy,x,u)

a< 0.0l and y> 0

2 _ 3
6 = 3 {1 . x(4+:()2 2, _‘Y(16+80Y+40Y4 47y 4
r (1+y) 8(1+y) 128(1+y)
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3 4
N (96+448y+1024y>+1520y >+880y +252£+33£) 6,

1024(1 ++)°
(A.2)

a< 0.01 andy < - 2

xu 8(1-y)° 128(1-y)* 1024 (1-«,)6
(A. 3)
vy < 0.01
5 2. 42 2 3
~2 1) wey - 3-11w") L+ (9-17w") - T
2 8 8
2 4. ot
+(31-350w +447w )= + ...... (A. 4)
128
y > 100
ooy 2
2(1-w) (1+w) 5w-1 (3+4w-15w )
x|V T 2
8y
2 3
(11-83w-59w +195w") _ ]} (4. 5)
64y

(b) gz(s, Y, X, u)

(x/y)2 < 0.0002 andy>0

y-u 8 128 \vy

2 2 .4
g, = {a-y) :1- (4y)3-y) (—yx—) + (31-42y+7y2) LY (.x_)

74

2 3 3 2 .3
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2 .3 (4y) 6
- (187-443y4297y% 33,7y . (LHY) (j—‘) ‘...

128
(A.6)
(x/yY< 0.0002 andy< 0
= i 1 (_li)z x g 11+10v-5 2 (:[_'Y)Z X 4
827 xu s \y) ¢ 5y )T \y)
(A.7)
f1-y! <3.107°
(1-y)V1-x 11 2
g, = o {1+(1 x7) (1-y) + (1-x )(1-?x ) (1-y)°
5 2 3
¥ (1-x2) (1- ) (1-y) 4 } (A.8)

2. Calculation of G(s, x, u)
Function GN(AX, AXS) calculates G(s, x, u) as def1ned by the
Egs. (IX.22) and (IX. 24). This integral has been solved by rewriting

it in the following way.

'
i

G(s, x,u) = Gl(s, x,u) + GZ(S’ x,u) + G4(s,x, u) (A.9)

The new integrals Gk(s; k, u) are only funétions of @k(s, V., X, u) and

turn out to be o
R ’ 1-R

1-

G, = Ulx > x ) U2 > R) f 3 dy + U(x > x) U(l > R+P)f 3 dy
R P |
"2 (A.10a)
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1~

P if x<x
G, = U1-R>K)[ & dy with K= ° (A.10Db)
R .
K -‘E‘ 1fx> Xo
1 +1
G2 = Ulx > xo) [U(Z >R) / §2dy + U(R > 2)/ @2 dy]
1-R 1 -1 1
+ Ulx_> x) [U(l > R+P)[ 3,dy + U(R+P >1)/ @Zdy]
1°R P (A.11a)
1 -1 if x>x
G, =f 3,dy with B = MAX (1-R, K) and K= °
B Pif x< xo
(A.11D)
and
R R
G4-—U(x>xo) U(2 >1) ('—2—-) §4 (A.12)

The first integral is split up at most into three parts

-X +x 1-R
G1 =f §ldy+[ Qldy +f Qldy (A.13)
-X x

K

if every upper limit is larger than the lower limit using a different
convenient change of variables in every part., The integration is per-
formed in all cases by means of Weddle's rule (subroutine WEDDLE).
The number of points besides the initial point is firstly taken to be 6

and is doubled in every iteration by calculating only the values in between

the old values until the integral changes less than a preset relative

value called DG.
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3. Function GUS (AU) calculates the x-integral and is defined by

GUS(AU) = = uZ e ™ H(s, u) (A.14)

v

1
H(s, u) = 2/ le-xZ G(s, x, u) dx (A.15)
o

The integral is performed in two parts
2 -tn(x )

X
[0} o
H(s, u) =f 1-z G(s, \[Zu) dz + zf e-zz‘ll-e-zz G(s, e 2, u) dz
(o] [o]

(A.16)

where

by means of Weddle's rule again using a technique as described before
for G(s, x,u). The new test parameter, which determines the number
of iterations, is called ACC and is given in the main program. The
old test parameter DG has been made a function of ACC, x and u in
order to calculate those values of G(s, x, u) with the highest accuracy
which give the largest contribution in the final velocity integral. For

very small values of u-s the integral has been approximated by

Ha(s,u)= - CZ- S2 [l— - ] {A.17)

X
(o]

This limit does not lead to the static wing, as F(t) in Eq. (IX.28)

-
does because of the lower cutoff X - As explai.nedt ix? Sec. IX. this cut-
off is necessary in order to avoid rapid fluctuations in the integrals
which require more integration steps and longer computer time. For
practical calculations X is chosen small enough so that over at least

one order of magnitude in t the calculated F(t) comes as close as

required to the asymptotic limit F(t)t -0
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For us > 2 the following relation is applied

1 ©
2[ le-xZ G4(s,x,u)dx=-C-sf _s_1n__(_lé>_-__z) dz
o o

14z
(A.18)

2 2
+ 3 (1-b Kl(b) +b Ko(b) )

where

For simplicity x_ has been set to zero for this relation without
affecting the final result noticably. For very large s Eq. (A. 1!_8)
leads to Eq. (IX.31). However, Eq. (A.18) does not require C to be
small as Eq. ( IX. 31) does. The Raabe integral is calculated by the
function SNZ and the modified Bessel functions KO and K. by the

subroutine BESMOD.

1

4, The final thermal average (s, n,n T) as defined in Eq.
(IX.23) is calculated in the main program FSTEST. The best results
for the velocity integral have been obtained by Gauss's quadrature
formula (function GLQUAD). The values F'S in the program are given

by

]

FS F(s,n,, n, T) . (A.19)

N S
2 D3 k e
e

The main program reads in the temperature T, the electron density

n_, the quantum number n_, two cutoff parameters, which specify

k'
the lower and upper cutoff of the x-integral by

o . =STRONG - p
min o (A.20)

0 = CUT. D
max
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where Py is given by Eq. (IX.5). Finally the main program reads in
the initial value of s for computing the thermal average and the number

of values which proceed according to s s.* 10 . The program also

k
gives the asymptotic thermal average ll:-alding to the static wing which
is called GS and calculates the relative thermal average in units of
this asymptotic value. Furthermore, the function KLOCK provides
a means to test the computer time for every individual value of FS.

The results are shown and discussed in Sec. IX.
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PROGRAM FSTEST
CALCULATION OF THE THERMAL AVERAGE FS
INTEGRAL FS OVER U IS TESTED FOR DIFFERENT L IN GAUSS QUADRATURE
COMMON/PDS/S/PDCON/C15C2sCONsBCON/PDRAD/BRAD/PDACC/ACCsDGoNGN
COMMON/PDSTR/STRONG
EXTERNAL GUS

500 READ(60s100) TEMPsDENSTY sQNUMsQsCUT »STRONGs SS» K
IF(DENSTY«EQeDe} CALL EXIT
WRITE(615104) TEMPs DENSTYs QNUMs Qs CUTs STRONG
T = TEMP*1.E-4
RELDEN = DENSTY*1.E-18
Cl = 145 * Q * QNUM
C2 = 0403043 * SQRTIRELDEN)/{T * CUT)
WRITE (619105) C1,C2
NK = QNUM * Q + 0.01
CON = C1 = C2
BCON = 14414213562 * CON
CT3 = CUT *¥ 3
BRAD = Teb6TE-3%*SQRT(RELDEN/T ) #QNUMK#2¥ STRONG/ CUT
NUM 0
ACC 3eE-4

7 DO 1 I = 1,K

NUM = NUM + 1
SS = 55 * 1040
S = 85 / CuUT
FSOLD = 040
GS = -14671085516 #* (CON®CUTH*SS) ** 1.5
GSAS = —(CON®SS)**2% (1412837916717 (C2*STRONG) — le) * CUT
PRINT 200s5S5Ss GS»s GSAS
DO 20 L = 395
LLL = KLOCK(0O)
FS = GLQUAD (GUS»0.0+540sL) * (T3
FFGG = FS/GS
DACC = ABSU(FSOLD - FS)/FS)
LLL = KLOCK(0) - LLL
PRINT 300s FS» FFGGs DACCs LLL
IF(DACC4LTeACC) GO TO 50

20 FSOLD = FS

50 PUNCH 400955Ss FSs DACCs NKs CUTs STRONGs DENSTYs TEMPs NUM

1 CONTINUE

GO TO 500

100 FORMAT( 2E1042y 4F10els E10e2s I5)

104 FORMAT (1Hls* TEMPERATURE = *E1l4e5s 10Xs % DENSITY = *E14,5//

1 * QUANTUMNUMBERS N = *¥F6419s10Xs% (N1 - N2) = *F641//
2 * DEBYE CUTOFF FACTOR = #*FB8¢3510Xs* STRONG COLLISION FACTOR = ¥
3 F8e3)

105 FORMAT (/7% C1 = ¥ Fl4e6 o 10X ¥ C2 = * El4,6)
200 FORMAT (///% S = #E154799Xe¥ GS = #F1T7e4999Xs%* GSAS = #E1749/)
300 FORMAT (* FS = *E17¢99% FS/GS = #E17,99% DACC = *E17e9s
1 * LLL = #I8/)
400 FORMAT (E10e3s E15e79 E10e2s I5s F741ls F7e3s 2E11e3s 14)
END
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10

20

30

FUNCTION GUS(AU)
COMMON/PDS/S/PDCON/C19C29CON9BCON/PDU/U/PDXM/ XM 9 XM2
COMMON/PDRAD/BRAD/PDACC/ACCIDGsNGN/PDSTR/STRONG
DIMENSION F{(192)s H(192)

GUS = 0.0

U = AU

IF(SeEQe0e0) RETURN

XM1 = C2*STRONG/U

IF(XM1eGEele) XMl = le - 1eE-9

XM2 = XM1 + BRAD

IF(XM2sGEele) XM2 = le - 1leE-9

CONS = CON * S

uz2 = U % U

FU = 22567583342 #* U2 % EXPF(-U2)
us = U # S
IF({US/STRONG)+«GTe2eE-6) GO TO &
GUS = —CONS * CONS * (14/XM1 = 1.) * FU
RETURN

NGN = O

GD = 00

IF(USeLTe2e¢) GO TO 8

NGN = 1

PA = 2. * CON/U

XMM = XM2 # XM2

SXM = SQRT{ls = XMM)

CALL BESMOD (PAs FIOsFI1sFKOsFK1)
GD = —CONS * SNZ(PA) + 2.%{1++PAX(PA#FKO - FK111/3,
GUOLD = 00

G10LD = 0.0

G20LD = Q.0

N =3

DO 100 K = 1ls6

GUS = GD

DG = ACC/FU

N =2 %N

NN = 2

IF(KeEQel) NN =1

AN = N

ANN = NN

IF(KeEQel) GO TO 10
DACC = ABS(DG1l/GUOLD)
IF(DACCSLTeACC) GO TO 40

GO TO 20

FO = GN(0e0s140)
DQ1 = XM1 * XM1
DQO = Dn1/AN

DQ = DQO * ANN

Q = DOO - DQ

DO 30 J = 1sNsNN
Q = Q + DQ

X = SQRT(Q)

XS = SQRT(1le - Q)
F(J) = GN(XsXS) * XS
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CALL WEDDLE (DQOsNsFsGUS1sFO)
40 GUS GUS + GUS1
IF(KeGEWs6) GO TO 50
DGl = GUS1 - G10LD
G1OLD = GUS1
IF(DGleEQeOe) GO TO 50
DO 45 J = 1N
L=N+1-J
45 F(2 * L) = F(L)
50 IF{XM]eGE«0e99999999G) GO TO 90
IF(KeEQel) GO TO 60
DACC = ABS(DG2/GUOLD)
IF(DACC«1L.TeACC) GO TO 80
GO TO 65
60 XO = SQRT(1le. - DQ1)
HO = GN(XM1sX0) * XO * DQl

"

DYl = -LOGF(XM1)
65 DYO = DY1/AN
DY = DYO ¥ ANN
Y = -DY1 + DYO - DY
Nl = N -1
DO 70 J = 1sN1sNN
Y =Y + DY
X = EXPF(Y)
X2 = X ® X
XS = SQRT(1le - X2)
DG = ACC/XS
70 H(J) = GN(XeXS) * XS # X2
HIN) = 0.0

CA'.L WEDDLE (DYOsNsHsOUTsHO)
GUS2 = 2,0 * OUT
80 GUS = GUS + GUS2
IF(KeGEs6) GC TO 9C
DG2 = GUS2 - G20LD
G20LD = GUSZ2
IF(DG2eEQe0e) GO TO 90
DO 85 J = 1sN
L=N+1-1J
85 H(2 * L) = H(L)
90 DACC = ABS{{GUS - GUOLD)/GUS)
IF(DACCeLTeACC) GO TO 120
100 GUOLD = GUS
120 GUS = GUS * FU
RETURN
END

FUNCTION GN(AXsAXS)
COMMON/PDS/S/PDU/U/PDCON/C13C2sCONSBCON/PDXD/X9XS9X29DX2
COMMON/PDACC/ACCsDGsNGN/PDXM/ XM1 s XM2

DIMENSION F(768)s G(768)s H{T768)s D(768)

GN = Q0

X = AX
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10

13

15
18
20

XS =
X2 =
DX? =
GNOLD
G10oLD
G20LD
G30LD
G4OLD
R = U
R1 =
R2 =
Pl =
P2 =
N =3
DO 10
GN =
N = 2
NN =
IF(Ke
AN =
ANN =
QA =
TF (X,
IF (K.
QA =
IF (R1
QB =
IF(R1
IF (QA
IF(Ke
DGG =
IF (DG
GO TO
DQ1 =
DQO =
DG =
Q =D
DO 10
Q= Q
Q2 =
Y = Q
F(J)
CALL
Gl =
GN =
IF(Ke
DG1 =
GlOLD
IF (DG
DO 15
L =N
F(2 *
QA =
QB =

.—X2

EQel) NN = 1

N

NN

-R2

GE«XM1} GO TO 5

EQel) P1 = SQRT(XM1#XM1

P1
«LE.P1) GO TO 50
-X
LTe=X) @B = R1
+GE+QB) GO TO 20
EQel) GO TO 7
ABS(DG1/GNOLD)
GeLTeDG) GO TO 13
8
(QB + R2) ** (1e/34)
DQ1/AN
DQO * ANN
Q0 - DQ
J = 1sNesNN
+ DO
Q * Q
B - 0 % Q2
= PHI(1,Y) * Q2

WEDDLE (DQOsNsFsOUT»040)

3.0 * OUT
Gl
GE.8) GO TO 18
Gl - G10LD
= Gl
1«EQe0e) GO TO 18
J = 1N
+ 1 - J
L)y = F(L)
-X
X

X2)/XS
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23

25

30

31

32
33
35

36

37

40

42

45
50

55

IF(Rl1eLES«X
IF{QAGE.Q
IF(KeEQel)
DGG = ABSH
IF(DGGelLTe
GO T0O 25
FO = PHI(1
DY2 QB -
DYO Dy2/
DY = DYO *
Y = QA + D
DO 30 J =
Y =Y + DY
G{J)Y = PHI
CA'.L WEDDL
GN = GN +
IF{KeGESS8)
DG2 = G2 -~
G20LD = G2
IF(DG2+EQe
DO 32 J =
L =N+ 1
Gl2 # L) =
QA = X
IF{QA+GEWR
IF(KeEQel)
DGG = ABS|{
IF(DGGelL Te
GO TO 37
HO PHI(1
QO le/R1
DQ3 le/Q
DQO DQ3/
DQ = DQO *
Q Q0 + D
PO 40 J =
Q = Q + DQ
Y = 1./0
H{J) = PHI
CALL WEDDL
GN = GN +
IF(KeGES8)
DG3 = G3 -
G30LD = G3
IF(DG3.EQ.
DO 45 J =
L =N+ 1
H{2 * L) =
IF(ReLTele
QA = R1
IF(XeGE o XM
IF(KeEQel!
IF(R1.LTWP
IF({KeEQel)

) QB = R1

B) GO To 35
GO TO 23

DG2/GNOLD)

DG)Y GO TO 31

s QA)

QA

AN

ANN

YO - DY
1sNsNN

(1sY)

£ (DYOsNsGsG2sFO!
G2

GO TO 33

G20LD

O0e«) GO TO 33
19N

- J

G(L)

1) GO TOo 50
GO TO 36
DG3/GNOLD)
DG} GO TO 42

sR1) * R1 * R1

A - QO

AN

ANN

Q0 - DQ
1sNsNN

(lsY) % Y ¥ Y
E (DQOsNsHsG3sHO)
G3
GO TO 50
G30LD

Oes) GO TO 50
1N

- J

H{L)

E-6) GO TO 80

2) GO TO 55

P2 = SQRT(XM2#¥XM2 - X2)/XS

2) QA = P2
GO TO 57
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DGG = ABS(DG4L/GNOLD)
IF(DGGeLTeDG) GO TO 63
GO TO 58
57 DA = PHI(2+QA)
DY4 = 1. - QA
58 DYO = DY4/AN
DY = DYO #* ANN
Y = QA + DYO - DY
DO 60 J = 1sNsNN
Y = Y + DY
60 D(JY = PHI(2sY)
CALL WEDDLE (DYOsNsDsG4sDA)
63 GN = GN + G&
IF(KeGEe8) GO TO 70
DG4 = G4 - G40LD
G40LD = G4
IF(DG4eEQeDe) GO TO 70
DO 65 J = 19N
L =N+ 1-J

65 D(2 * L) = D(L)
70 IF(R2+LEels} GO TO 80
IF(KeEQeal) G5 = (R2=-1e)¥PHI(4sY)

GN = GN + G5

80 DGG = ABS((GN - GNOLD)/GN)
IF{DGGeLT«DG) GO TO 120

100 GNOLD = GN

120 IF{NGNeEQel) GN = GN - G5
RETURN
END

FUNCTION PHI(KsAY)
COMMON/PDS/S/PDU/U/PDCON/C19C2sCONsBCON/PDXD/X9sXS9X25NX2

Y = AY
PHI = 00
FAC = 0.0

IF(KeGTe2) GO TO 30

RI = 14/SQRT(X2 + Y % Y % DX2)

IF(KeGTe1) GO TO 10

C X #® RI

W Xs * Y ¥ RI

G = U # § % RI

IF(CeGTe0e01) GO TO 3

IF(Y.LT.O.) G = -G

AG = 14/ABS(1le + G)

IF(AGeGTe2e) GO TO 70

GI = (C * AG) *x 2

IF(GelLTe=1e) GO TO 1

FAC CON * S * RI ¥ RI #* AG

ARG FAC * (le + GI % G ¥ 04125 * (4e + G))
IF(CelLTeleE=-3) GO TO 40

AG =(((0e0546875%#G+043125)%G+0e625)#G+0125) ¥G*GI*G]1
GO TO 35
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FAC 2.0 % CON/(X*U)

tnn

ARG FAC ¥ (le — GI % 04125 ¥ G * G)
IF(CelTelsE-3) GO TO 40

AG = —(04125+0,0390625%G) * GI * GI * G¥*3
GO TO 35

IF(GeGTe0s01) GO TO 5
FAC = CON % RI * RI * §

W2 = W % W

ARG = FAC * (((14375%W2 — 04375)%G — WI¥*G + 1.)
IF(GelLTe3eE=4) GO TO 40

AG = (3.4921875%¥W2-2,734375)%W2+0.2421875

AG = (AGH*G — (2e125%¥W2 - 1.125)%W) * G #*% 3

GO TO 35

IF(GelLTea100e) GO TO 8

FAC = BCON * SQRT(1le = W)/ (X*U)

Gl = 1e/G

ARG = FAC * (((0e625%¥W=04125)1%¥GI=0,5)%GI*(la+W)+1a)
IF{GlelLTe3eE-4) GO TO 40
AG=((1e5234375%W-0,4609375)%W-0,6484375)%W+0,0859375

AG = (AGHGI+((0425-049375%*W) ¥W+041875) )% (1a+WIH*GI¥*3
GO TO 35

A = (le + G*W)/SQRT(le + GX*(2e%¥W + GI})

GO TO 20

AG = ABStIY)

BY = ABS(le. — YY)

IF(AGeLTeleE-10) GO TO 15

GI = (X/Y) ¥*¥ 2

IF(GleGTe2eE~-4) GO TO 15

IF(YeLTeOe) GO TO 13

FAC = CON * BY / (AG * U)

ARG = FAC % (1e=04125%(1e+Y1*(34-Y)I*GI)
IF(GleLTeleE=6) GO TO 40

AG = ((0e05468T75%Y-0432B8125)%Y+0s2421875)%#(GI*(1le+Y)) **2
GO TO 35

FAC = 240 % CON/{X¥U)

ARG = FAC % (1e-04125%¥GI*#BY*%2)
IF(GleLTeleE—-6) GO TO 40

AG = ((2.-Y)#0s0390625%#Y+0,0859375)#(GI*BY)*#2
GO TO 35

IF(BYeGTe3sE~3) GO TO 18

IF(BY.LT.I.E-ll) RETURN

FAC = CON * XS ®* BY / U

ARG = FAC ¥ (le+((1e—14375%#X2)%BY + 1,)%DX2%RY)
IF(BYelLTe2eE—-4) GO TO 40

AG = (le = 20125%X2)¥BY*(BY®DX2) *¥ 2
GO TO 35
A = (X2 + Y % DX2) % RI

IF(A«GEs1e} RETURN

ARG = BCON * SQRT(l. - A)/(X¥*U)
GO TO 40

[IF(XeFQeNe) RETURN

ARG = CON * 240 #* XS / (X * U)
GO TO 40

ARG = ARG + FAC ¥ AG
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[aNaNe!

[aRaNe!

40 IF(ARGeLTe0e) GO TO 60
IF(ARGeGTe 0405} GO TO 50

PHI = -(0e5 — ARG*ARG/24.)*ARG*ARG
RETURN

50 PHI = COS{ARG) - 1.0
RETURN

60 WRITE (6191U0) ARGs FAC» Kso Xs Us Y, S
100 FORMAT (% ERROR NEGATIVE VALUE OF ARG IN PHIs ARG = #E1749s
1 * FAC = ¥E1749/% K = #11s% X = #FE17.99% U = #¥E17,9,
2 * Y = ¥E1T7eG9* S = ¥E1749)
RETURN
70 WRITE (615200) G
200 FORMAT (* PHI NOT ACCURATE ENOUGH s G = #E17,9)
CALL EXIT
END

SUBROUTINE WEDDLE (DXs Ns Fs Ay FO)

F IS THE FUNCTION TO BE INTEGRATED RY WEDDLES RULE

FO IS THE VALUE OF THE FUNCTION TOC BE INTEGRATED AT SOME STARTING
POINT WHICH IS NOT INCLUDED IN THE INPUT ARRAY F

DIMENSION F(N)

A = 04,0

Is Ks 6
SUM = SUM + F(J)
GO TO (8s 1Us 123 10s 8y 14)y 1
A = A + 5.0 * SUM
GO TO 15
10 A = A + SUM
11 GO TO 15
12 A = A + 660 ®* SUM
13 GO TO 15
14 A = A + 240 % SUM
15 CONTINUE
16 A = 043 * DX ¥ (A + FO + FI(N))
17 RETURN
END

OO NN P WN
lw)
O
o
(G
1

FUNCTION SNZ(X)
SNZ(X) CALCULATES RAABES INTEGRAL OVFR SIN(X*Z)/(1.42%2) DZ
DIMENSION AA(6)s BB(4),s CC(4)

DATA((AA(I)sI= 196) = =~0e577215663 Ne99999193y —-0s24991055,

1 0405519968y =0600976004s 0400107857

DATA((BB(I)sl= 194) = 845733287401, 180590169730 846347608925,
1 062677737343)

UATAC(CC(ITI)sI= 194) = 945733223454, 2566229561486

1 2140996530827y 349584969228)

SNZ = Q.
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IF(XeEQeOe) RETURN

A = ABS(X)
IF(AeGTes40e) GO TO 100
A2 = A * A

EMA = EXPF(-A)
IF(AeGTe0e2) GO TO 10

EEA = ((({A2/T72e¢+1e1%#A2/42e+1e)%¥A2%0405+1e)*A2/6e+1s)*A
GO TO 20
10 EEA = 0.5 * (EXPF(A) - EMA)
20 IF(A«GTele) GO TO 30
SUM = AA(1)
Z = A

DO 25 J = 246

SUM = SUM + AA(J) * 7
25 2 = 7 ¥ A
EIT = SUM - LOGF(A)
SNZ = EEA * EIT
GO TO 40
30 SUM = ({((A+BB(1)1#A+BB(2))#A+BB(3))*A+BB(4)

SUMM = (((A+CC(1))#A+CC(2) ) *A+CC(3))*A+CC(4)

EIT = SUM/(SUMM * A)

SNZ = 0e5 * EIT % (1 — EXPF(=24%A))
40 PROD = A

SUM = A

DO 45 J = 1,200
A = 2 » J + 1
PROD = PROD * A2/ (AJ*#(AJ-1.))
SUM = SUM + PROD/AJ
PT = PROD * 1.E+10
IF(SUM«GT«PT) GO TO 50
45 CONTINUE
50 PT = SNZ + SUM * EMA
SNZ = SIGNF(PTsX)
RETURN
100 PROD = 1le/X
A2 = PROD * PROD

SUM = PROD
DO 110 J = 15100
Ad = 2 * J

PROD = PROD % A2 % AJ * (AJ - 1.)
SUM = SUM + PROD
IF(AJeGEsA) GO TO 150
PT = ABS{(PROD # 1,E+10)
IF(ABS(SUM) «GTePT) GO TO 150
110 CONTINUE
150 SNZ = SuUM
RETURN
END

SUBROUTINE BESMOD(XsFIOsFI1lsFKOsFK1)
BESMOD CALCULATES THE MODIFIED BESSELFUNCTIONS I0s I1ls KO AND K1
BY MEANS OF POLYNOMIAL APPROXIMATIONS AS GIVEN IN THE
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C

10

20

30

40

60

1

1
2

1

1
2

1

1

1

1

NBS HANDBOOK OF MATHEMATICAL FUNCTIONSs PAGE 378
DIMENSION A(7)9B(9)sC(T7)sD(I)sE(T)IsF(TI9G(T)sH(T)

DATA ((A(I)sl = 1,7) = 0.0045813, 0.,0360768s 0.42659732,
1020674925 3.08994245 345156229, 140)

DATA ((B(I)sI = 159) = 0400392377s -0.016476335 +0.02635537,

~04020577065 0s400916281s -04001575655 0400225319, 0,01328592,

0639894228) |

DATA ((C(I)sI = 1,7) = 0.00032411» 0,00301532, 0.02658733»
04150849345 0.51498869s 04878905945 045)

DATA ((D(I)sl = 1,9) = —0400420059 0+01787654» -0.02895312

0e02282967y —0401031555s 0001638019 —0e003620185s-0.03988024

039894228)
DATA ((E(I)ol = 147) = TebbE—-69 1e075E-4s 0400262698, 0.0348859,
0230697565 04227842+ ~0e457721566)
DATA ((F(I)sl = 1,7) = 04000532089 -0.00251540, 000587872
-0e010624469 0402189568 —=0.07832358y 1425331414)
DATA ((G(I)s] = 147) = —44686E-59 -0,00110404s -0,01919402>
—0618156897y —06672785799 0a15443144y 160)
DATA ((H(I)sI = 1,7) = =0.000682459 000325614y -0.00780353,
04015042689 ~0,03655629 0623498619 1625331414
XS = 00
XE = 0e0

IF(XelLTe2e) GO TO 10
XS = SQRT(X)

XE = EXPF(X!
IF(XeGTe3s75) GO TO 20

Y = X/3e75

Y2 =Y * Y

FIO = ((CCIY2FALLYHA(2)IRY24A(3) ) ¥Y2A(4) ) RY24+A(5) ) XY24+A(6))%Y2+1
FI1 =(0C00Y2¥C (1) +CI2) ) ®Y2+C{3))#Y24+C {4 ) *¥Y24+C(5))1*¥Y24C(6))%#Y24045
FI1 = F11 % X

GO T0 40

Y = 3475/X

FIO = B(1)

FI1 = D(1)

DO 30 K = 249

FIO = FIO ¥ Y + B(K)
FI1 = FI1 * Y + D(K)
XEX = XE/XS

FIO = FIO % XEX

FI1 = FI1 * XEX
IF(XeGTe2e) GO TO 60
Y = X/2e

Y2 =Y * Y

FKO = E(1)

FK1 = G(1)

DO 50 K = 297

FKO = FKO * Y2 + E(K)
FK1 = FK1 * Y2 + G(K)
XEX = LOGF(Y)

FKO = FKO - XEX #* FIO
FK1 = FK1/X + XEX # FI1
RETURN

Y = 2.0/X
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N NN

70

1

1
1

1
2

1
2

1
2
3
4

1
2
3
4

1
2
3
4
5
6
7
8

1
2

FKO = F(1)
FK1 = H(1)

DO 70 K = 297

FKO = FKO * Y + F(K)
FK1 = FK1 * Y + H(K)
XEX = 14/(XS * XE)
FKO = FKO * XEX.

FK1 = FK1 * XEX
RETURN

END

FUNCTION GLQUADI(F sAsBsL)
GAUSSIAN-LEGENDRE QUADRATURE OF F FROM A TO B WITH 49691020

40 OR 80 NODES FOR L =

1,

2

39 4o

54 6

COMMON/GLQADAT/X1(2)sW1(2)9X2(3)sW2{3)sX3(5)sW3{(5)sX4(10)sWa(10),
X5020)sW5020)sX6(40) 9W6{40)

DATA  ((X1(I)s
DATA  ((W1(I),
DATA  ((X2(I),
DATA ((W2(I)s
DATA ((X3(1),
+9739065285
DATA ((W3(I)>»
c0666713443
DATA ((X4(I)s
¢99312859925
«6360536807
DATA  ((W4(l)s

«0176140071»
e1181945320,
DATA ((X5(1)»
e9982377097»
«9020988070s
e6719566846
¢3419940908)»
DATA ((W5(1)»
«0045212771»
«0334601953>
« 0574397691
«0728865824»
DATA {X6(1)»
09995538227
e9749091406
¢9132631026
«8169541387»
ehB896376443
¢5361459209>
3623047535
01747122918,
DATA ({well)y
«0011449500»
«0086839453,

I 14+2)
1+2)
1+3)
1+3)
1+5) =

0633667
1+5) =

49451349]
I = 1+10) =

«9639719273

«5108670020
I = 1+10) =

« 0406014298

01316886384
I = 15,20) =

9907262387

e 8659595032

e6125538897

«2681521850
I = 1,20) =

00104982845,

«0387821680

00613062425

00747231691
I = 1440) =

09976498644

9654850890

e 8966755794

e 7938327175

e 6608598990

e5028041119

03256643707

«1361640228»
I = 1s40) =

e 0026635336

«e0101617660,

o nn

6

(LA L T TR T T | I}

o OO e =

«8611363116,
¢3478548451
09324695142,
e 1713244924,

«6794095683
«2190863625,

«9122344283
«3737060887

e 0626720483,
«1420961093,

«9772599500
«8246122308>
«5494671251
«1926975807

e 0164210584,
«0438709082
« 0648040135,
«0761103619»

¢9942275410,
09545907663
«8787225677
e 7695024201 s
«6310757730
e 4686966152
« 2885280549,
«0974083984

«0041803131,
«0116241141,

90

«3399810C436)
6521451549
«6612093865,
«3607615730,

«4333953941,
e 2692667193,

+8391169718,
2277858511,

« 0832767416,
1491729865,

¢9579168192,
« 7783056514
4830758017,
«1160840707,

e 0222458492,
¢ 0486958076,
+ 0679120458,
« 0770398182,

09892913025,
09422427613
8594314067
e 7440002976
06003306228,
«4338753708,
«2509523584,
«0585044372,

« 0056909225,
+ 0130687616,

«2386191861)
«4679139346)

«1488743390)
e2955242247)

7463319065,
«0765265211)

«1019301198,
«1527533871)

«9328128083,
«7273182552,
4137792044,
«0387724175)

« 0279370070,
00532278470,
«0706116474,
«0775059480)

«9828485727,
«9284598772,
«8388314736,
«7173651854,
e5686712681,
¢3983934059,
¢2129945029,
«0195113833)

«0071929048,
«0144935080,



100

[e<BE NI o G BN S WY

«0186268142)
00249225358
00302723218
«0344731205
«0373654902»
«0388396511>

+01995061C9
«0260752358,
003121017425
«0351605290,
«0377763644
+0389583960

«01589618369 0172746521

«0225050902s 40237218829,

(282598161 «¢0292883696>

«03294193%94s 40337332150

«0363737499s 40368977146

00384249930y 40386617598
TO = (A + B)/2.
T1 = (B ~ A)/2.
Y = Qe
GO TO (19293949596) L
DO 10 K = 152
Y=Y+W1(K)#(F(TO=T1#X1(K})+F{(TO+T1%#X1(K)})
GO TO 100
DO 20 K = 13
Y=Y4+W2 (KYR(F(TO~T1*X2 (K +F{TO+T1%#X2(K)))
GO TO 100
DO 30 K = 195
Y=Y+WA LK) F(F(TO-T1I#X3(K))+F(TO+T1*X3(K)) )
GG TO 100
DO 40 K = 1910
Y=Y4+W4 (K)R(F(TO-T1%¥X4(K))+F{TO+T1#X4(K) )
GO TO 100
DO 50 K = 1920
Y=Y+WSIK)#(F{TO-T1%¥X5(K))+F(TO+T1%¥X5(K)))
GO TO 100
DO 60 K = 1940

Y=Y+W6 (K)¥{F(TO-T1*¥X6(K))+F(TO+T1*X6(K)))

GLQUAD=Y*T1
RETURN
END
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APPENDIX B
THE LARGE TIME LIMIT OF THE THERMAL AVERAGE .F-(t)
In Eq. (IX. 31) the large time limit of the thermal average has

been given, which is of the form

F(t), = At (B-tn (4C%y). (B.1)

This form has been obtained by most modern impact theories. The
additive constant B varies depending on what type of cutoff has been
used. In the following we derive the different constants B for the
different cutoff procedures which have been used and compare them
with the numbers given in the literature.

The various methods to evaluate _fw ,the large time limit of
f‘(t, n n. T), differ essentially in three respects, namely by the
upper and lower limits of the p-integral and by the limits of the t’-
integral in Eq. (VIIL 4). Based on the completed collision assumption
(Baranger, 1962), the limits of the latter integral are usually extended
from -» to + », This approach, however, is not quite consistent with
the cutoff at the Debye length, which would rather require the integral
to go from -T to + T as done in this report (T is defined by Eq. (IX. 7)).

We therefore have to investigate the following integrals:

t +T
a.) forf PVC(t') At/ — PVC(t’) dt’ (case a)
o -T
o 5 1
f:’ = erne(a- D)Zvavtﬁu\-/%_ u3e“u dx x [cos (f;lcz:- l-x2 -1]
° *min (B.2)
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and

t +eo

b.) fol:/ PVC(t') dt/! ——— PVC(t’) dt’ (case b)
b ° 2 4 s 2!
—_ 3 -
F =2mn (a-D)v__ t fdu=,u e v dx x |cos (—2-%) -1 (B. 3)
© e av A !’TT ‘ax
x .
min
where
*min ~ pmin/ (a- D). (B. 4)

The factor a = pmax/D is usually taken to be one and has in some

papers (e.g., Griem et al. 1962) been varied to 1.1. or to 0, 606
as proposed by W. R. Chappell, J. Cooper and E. Smith, 1969,

As a lower cutoff we consider in particular the three cases of

_ _ _ P! = .
P nin = 0, pmin_% and Prnin = 3(ng-n’q’)x = 2CD/u by setting
X . = _.1_)_ . _2_(.:_ (B. 5)
min a u

In the following we will set a=1. In order to recover the dependence

on the upper cutoff parameter a, we only have to replace in all the

following relations C by C/a.

< 1 the lower limit on the

First of all, one realizes that with x
min

u-integral is given by

u = b-2C. (B. 6)

Hence, we have to evaluate the following two integrals

dx x [cos (——Z-g— l-x2 )'—1] (B.7)
xu

% uo/u
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and

@

1
b f 3 g / [ 2C ]
I = duu e dx x |cos (————) - . (B. 8)
xu
u uo/u
The second integral can be simplified after a change of variables and

a partial integration to

2
u,e"UL [COS (—ZTC-) - ] du (B.9)

o
After expanding the cosine and another change of variables we have
2 0 k o) -uzz
Po e 5 LU 2C K e ° 4 (B.10)
T4 (2k)! \u k :
k=1 © 1 z

which can be expressed in terms of exponential integrals

5 2 N 2k
b C 2 o (-1) 2C 2
I'=- —— E )+ — k—zz G <———uo> E (u) . (B.11)

With the lower cutoff parameters stated above (b < 1) and typical
densities and temperatures of interest one usually has u < 0.1 (see
Eq. (IX. 21)). Since for k> 2 Ek(ui )= 1/(k-1) + O(uz) one obtains

2
to lowest order in u0

b c? 2 % f2cy
k=2 o
5 o k-1
N TS EE D DR S S 1 ac?
2 170 = 2T 200 T xR0 2
= u
2 2 2 °
C 2 Yo 2C 2C
= [—El(uo) -2 (EE) { cos <_‘;-_o—) + %(TJ-;) -1}
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<l - fo ) (-

Ly c?
-T2

[3(y-1)+&n (4c”) + 2K () + O(ui)] (B.13)

where K is defined as

K (z) = 1’°°z‘°’z + s“;z - Ci (2) (B.14)

z

and Ci is the cosine integral. Eq. (B.13) was obtained already by Shen

and Cooper, 1969. Their constant A is identical with our constant 2C.

The other integral 1% of Eq. (B.7) one can obtain by evaluating

o 2 1
Al =/ du u3e_u[ dx x [cos (E_C_;_ l-xz )-COS (2—9)]
ux ' ux

a u_/u (B.15)

so that

= 1P 4 a1 . (B.16)

If we again expand the cosine functions, AI can be given by

o0 k"'l 1
2k '
_ (2C) Nk (1Y [ 3-2k —u® 1-2j
1= e 2 et e o
k=1 j=0
Y u /v (B.17)

2
2 -u
C o 2 2
= = [ e -uoEl(uo)]
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5 - 2k-2 © o
C 2 1 2C 2 2 -u _z
+ —=— 2 — (== E -E - o 4nz
2 Y (2k)! (u [k-l(uo) L) kf e *-1 dZ]
k=2 o 1 z
2k-2
2 ® k-1 '
¢,z k! f2C (-1)’ B (W2)E ()
2 o 4w (2K)! u_ 2 :j!(k-j)!(Zj-Z) k-1"%" " k- %o
) , (B.17)
which gives us to lowest order in u_
2
- < [1 : om] (5. 18)
2 o

This means that for the same lower cutoff case a.) and b. ) as defined

in the Eqs. (B.2) and (B. 3) differ only by a constant 1 in their additive

constants B, As a result we have

— 3 n 2 8mm 2
- o —_— rnlal) — ill -
F = (2 (ngq-n’q’) ) n_ t T [B 2n (4C )] (B.19)

[c<]

where the constant B for the different cutoff parameters is compiled in

the following Table 2,

The constant B for different cutoff parameters.

Table 2.
+T 4o
f PV (t’) dt’ PV (t’) at’
c c

T ~ 0
p_ .. =0 0.27 1.27
min
0. =X 0.23 - 0.27 1.23-1.27
min

= -1. - 0. 66

P min 3nkx 1. 66
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In order to compare our results with the numbers given in the 11t~

erature we rewrite Eq. (B.19) as

F =- At l|:B Y¥-tn (y . )] (B. 20)
o min

@®

where Y in as introduced by Griem, Kolb and Shen (Griem et al., 1959)
is given by

2 2
_ 4nne ehnZ _ _g_ nz 4C2 B.2
Ymin~ 3m KT = 73 3(nq-n’'q’) - (B.21)

Consequently, B and Bo are related by the following relation

2 2\2 |
B = B +vy+in [— _— . (B.22)
o 3 nk

Comparing Egs. (B.19) and (B. 20) one notices that for a particular

line the value of the square bracket as derived here depends on the

quantum number n, for that particular state, This is also true for the

k
paper of Shen and Cooper, 1969, who consider our case {b) with infinite
limits on the t’-integral. Otherwise the constants given in the literature
are independent of n, because the lower cutoff parameter is usually
based on an average Stark splitting. If we set nq-n’q’ = n2/2, which

corresponds approximately to the average Stark splitting and also

gives the results for the Stark shifted component of Lyman-~q, we have
Bo = B- 0, 64 . (B.23)

This yields directly for n, = nZ/Z the B values corresponding to the

B wvalues in Table 2.
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The following constants Bo have been given in the literature:

Griem, Kolb, Shen, 1959; (Eq. 29) : B =0
o
Griem, Kolb, Shen, 1962; (Eq. 2) : B =1.0
o
Gri 6
riem, 1965 (neglecting quadrupole term): B = 0.58
Kepple, Griem, 1968 °
Shen, Cooper, 1969; B = 0.58
o

Recently the time development operator (S-matrix) has been evaluated
for Lyman-a including time ordering by solving the differential equations
for the S-matrix elements (Bacon, 1969), Again the square bracket
depends on (nq-n’q’) and the average value Bo = 1.1 considering only
the dipole term. It should, however, be stressed that one should not
overinterpret these numbers because within the classical path approxi-
mation there is always some uncertainty about the '""correct” constant
B because of the ambiguous lower cutoff. This is due to the fact

that the classical path approximation breaks down roughly for p< x

(for details see Paper I). For most cases this has no significant effect
for the Stark broadening of hydrogen because the dynamic broadening is
primarily due to weak collisions. More details are given with the
discussion at the end of Chap. XII. The situation is quite different for
the broadening of ionized lines where strong collisions are very im-
portant and where the uncertainty of the classical path approximation
accounts for part of the still existing discrepancies between theory

and experiment, which are large compared with the Stark broadening
of hydrogen.

So far we have considered _FTOO, which is the basis of the un-
modified impact theory. In order to extend the range of validity beyond
the plasma frequency the modified impact theory introduces the Lewis
cutoff by considering only those collisions for which the duration of a
collision, which is typically p/v, is smaller than the time of interest
being typically 1/pw. For this reason the modified impact theory

introduces an upper cutoff
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P ax = MIN(D,v_ /aw) (B.24)

or

P rmax/ D= MIN (1, 1//00)

It should be noted at this stage that in the following relations we not

only have to replace C by C/a but also aw_, by a Aw_,, in order to obtain

R R
the dependence on the upper cutoff parameter a, Considering the us-
ually applied case (b) (Eq. (B.3)) we have to evaluate the following

integral for Mo > 1

[ 2 /AwR
1° =f du ule ¥ dx x[cos (—2—9—> - ] (B.25)
L xXu

u Aw u
oA( R o/u
where the lower limit on the u-integral is determined by the condition

uo/u < I/AwR. After a change of variables and a partial integration

one obtains similar to Eq. (B.9)

@ 2 2CAw
Ib = S ue ¥ |cos — R -1} du (B.26)
L 2 u
2 M
R

u AW
o R
Expanding the cosine again and performing another change of variables

the result is

2 o © -u,‘2 2Z
b Yo (-l)k 2 . e OAwR
I = —f E ) (——-u / — dz . (B.27)
k=1 o z
1
This gives us then
2 k 2k
2 u i 2
b c 2 2 o (-1 [2C o
©-- 5 E (uOAwR) 7 Z; (21! \u_ kMR
=2
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Evaluating the exponential integrals Ek for small arguments only we

inally have

2
b C f2 2 2 b
IL = 5 l-t.l(quwR) + E1 (uo)]+ I

- c%n pog + ° (B.29)

ich gives us for Aw_ > 1 the log-dependence of the @ab-matrix elements

R
in the modified impact theory. A more appropriate way for applying the

Lewis cutoff, which avoids the discontinuity at Aw, = 1, is to take as

R
an upper cutoff
P ax = MIN (D, v/nw)
or pmax/D= MIN (1, u/AwR) (B. 30)
which for case b leads to the following integral.
Me 209/ 0wy
b 3 -u 2C
I = du u e dx x |cos|]—} -1
L xu
uO[\wR uo/u
(B. 31)
o 1
2
3 - 4
+f duueu/ dx  x [cos (Z_C_) _lJ
xu
AtDR u_/u
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These integrals are identical to
@ a/dw

2
Ib = du u3e-u/ dx x [cos <2C) -1]
L xXu

o R o (B. 32)

and after a partial integration we have

(o]

b 1 I 2Cm g .
L = uu e CcoOs - _"_"_2 -
Aw u

2
R m

2 2 CAw
" duuse [cos ( > R) 1| (B.33)
Aw N u
Gl 2
+ %/ du ue " [cos (Z—uC—) —]

Aw
R
Expanding the cosine functions, IL can be evaluated in a similar

manner as above with the result

2
b C 2
- < -2

IL= = [EI(NDR) El(quwR):l

o . 2k-2 (B.34)

2 (-1)° {2¢C
+2C (ZK)1 (uo) Eoko1 (2 twg)
2k-2

2 (-1) 2
te Z(Zk)' <Aw ) [Ek(AwR) - 2K 2k- I(AU-’ )]
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For Aw R’<" 1 with 2C<<1 and b2 1 the latter result may be simplified

to give

b C2

2 b
IL = —5 [EI(A(UR) +vy +24n (AwR)] +1 (B. 35)

which for AwR - 0 reduces down to Iz = Ib and which has no discontinuity

at A‘”R = 1. Furthermore, we see that for AwR - o Eq. (B.34) goes over
to
_sz
b _ U UMR . f2c) e R fac
L, Aw = 2AW co u 4 © Aw
R R o R

(B. 36)
which does not lead to the static limit,

Similar results can be obtained for case a, which are not
included because they are no longer required. The derivation for case
b has been included, in order to obtain consistent relations which allow
a comparison with the calculations donz in this paper. The results for
case b as given here differ slightly from the results in the literature
which also vary from paper to paper depending on the average matrix
elements used and on what lower cutoff and average velocity has been

applied,
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APPENDIX C

PROGRAM FOR CALCULATING THE FINAL LINE PROFILE I(Aw)

In the following a complete listing of the program is given which
was used to calculate the final line profile I{Aw) on the basis of the unified
theory for the case of no lower state interactions.

1. The Fourier transform of the thermal average
The complex function FOUTR calculates essentially the Fourier

transform of the thermal average as defined by
FOUTR = i pw> i | 8, n ) (C.1)
=1 A(DR lu AwR’ (=] ’ qb’ qC M

where

DOM = pwp = (Aw-pw { n, q) e)/ap. (C.2)

It uses the Eqs. (X.17) and (X.22) for calculating il([\wR) and iz(/_\wR)

respectively. The required Bessel functions JO , J Yo and Y. are

1’ 1
evaluated by the subroutine BSJYO0l. For large and small arguments

M, these relations are replaced by their asymptotic expansions (X.18),

R
(X.23) and (X.26). The specifying constants Py» Py b, a, and b,

(P1, P2, Bl, A2, B2) are set in the function AIIM and1 arz calculated
once for all the Stark components in the main program STBRHY. The
function FOUTR can be replaced by another short function FOUTR listed
at the end of the program, which then makes the program calculate

line profiles according to the modified impact theory.
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2. Calculation of I(Aw, B)

The function AIIM calculates I{pAw, R) as defined by Eq. (XII 6).
It establishes first of all the matrix of the §-operator according to
Eq. (XII.7) and calculates the array

T B = -
AMATR (NBN, NAN) 5q A g (nqul,Si(Awopquam) (C.3)

alb
for the m values 0 and +1. The required 3j-symbols are calculated
once in the main program and their values are stored in three different

arrays according to the following definitions

—~ - 1
SAR (NLA, NQC)=(2¢_+ 1)2 2 2 2 \(c.4)
mC m -q mCJrqc o
2 2 c
where NLA = I'a and NQC = .
n-1 n-1
2 2 Ta
SJQL (MCT, NBN, NLA) = (C.5)
m—qa rn+qa
2 2 -m
and
SSJJ (MCT, NBN, NAN) =
g 2 /n-l n-1 \ [ml nol
2 2 2 2 2
(-1)
m—qa m+qa . m-qb m+qb o
2 2 \ 2 2
( C.6)
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where MCT = m and NAN and NBN are numbering indices specifying
the q, and q, . The matrix AMATR is then inverted by the subroutine
CGAUSSEL, which is able to solve systems of linear, complex equations
by Gaussian elimination. Multiplying the inverted matrix by the 3j-
symbols according to Eq. (XII. 6) yields finally {aw, B).
3. The final line profile I{Aw) |

The main program STBRHY calculates the final line profile by
performing the ion field average according to Eq. %(II. 1). It first of
all reads in the ion microfield distribution function for 0 <« R < 30 in
steps of 0.1, which has been calculated in a separiate program for the
particular shielding parameter rO/D. It then reads in the density s
the temperature T, the upper principal quantum number n, the wave-
length %, the average value of the static ion fields fBav’ the initial
value Aw, the logarithmic stepwidth, the total number of points, a
parameter which specifies the number of ion fieldTintegra’cion points
and finally 6 numbers, which specify the Gz-function and hence iz(/_\wR)
for all Stark components and which may in practically all cases be set
to zero. These 6 numbers are obtained from the éhermal average

described in Appendix A,

The program then calculates the constants Pl, pz, bl’ a2 and b2
for all Stark components and stores them in the array FPAR. 12 is
calculated according to Eq. (X.5). P, is determined on the basis of

Eq. (B.19) where the constant B is given by

B=20.27- ZK(—}I;—) . (C.7)
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The K-function is defined in Eq. (B. 1{4) and is calculated for a lower

3 2 .
cutoff P min - x + —n a, by setting

3 2 C.8)
b= +> n ao)/3nkx (

The necessary cosine integral is calculated by the function COSINT.

As a next step the main program evaluates all the required
3j-symbols by means of the function S3J, which in turn uses the function
FCTRL to calculate all the necessary factorials. The numbers are
stored in arrays according to the definitions in (C.4), (C.5) and (C. 6).

In performing the ion field average the microfield distribution
function is calculated by the function WFLD, which uses a 5 point
interpolation on the values read in initially for 8< 30 and otherwise
uses the asymptotic expansion given by Hooper, 1968b. As a function
of aw and B, which determine the shape of the ion field integrand, the
ion field integral is subdivided in intervals, which are integrated
separately by means of Weddle's rule (subroutine WEDDLE) using a
convenient change of variables in every interval. Furthermore, the
program calculates the asymptotic wing expansion according to
Eq. (XI.12) and the unified theory for 8= 0 and 8 = Bav performing
not the ion field integral. All three values are normalized with

-5/2

respect to the asymptotic Aw -wing.

106



100
120
150

170
180

190
577
200

230

PROGRAM STBRHY

PROGRAM FOR CALCULATING THE STARKBROADENING OF HYDROGEN ON THE
BASIS OF THE UNIFIED THEORY FOR NO LOWER STATE INTERACTION
DIMENSION FF(1000)s PFAC(6)s S5J(20), STRONGI(20)

COMPLEX FOUTR

COMMON/FDAT/P1sP2,B14+A2,82,PPFF
COMMON/PSTR/NNNsNM1sBETsFPAR(6920)
COMMON/PSJD/SSJJ(2920920)s SJQLI2920+20)s SAR(20,20)
COMMON/PFW/FIELD(301)

FIELD(1) = 040

READ 100s (FIELD(I)s I = 25301)

FORMAT (6E12e4)

READ 150+DENSTEMPsNNNsALAMsBAVGINsDGGsNTOTsNFAC (PFAC(I)sI=1+6)
FORMAT (2E10e2s I5s 4F10e2s 2I5/6F1045)

IF (EOFs60) 577s 170

PRINT 180s DEN» TEMP» NNNs ALAM

FORMAT (1H1ls* DENSITY = #E12.4% TEMPERATURE = *E12.4

1 * QUANTUMNUMBER =%*12% WAVELENGTH =%F8,2% ANGSTROM*//
2 13X s ¥P1X18Xs¥P2%¥ 18X s *B1l*18X s ¥A2X18Xs*B2% 17X sy *STRONG*/)

IF (NNNeLE«20) GO TO 200

PRINT 190

FORMAT (* PROGRAM NOT EXECUTED BECAUSE N IS LARGER THAN 20%)
CALL EXIT

SDEN = SQRT(DEN)

FAC = 20644936 * TEMP * SQRT(TEMP/DEN)

NM1 = NNN - 1

NEVODD = MOD{(NNNs2)

AN = NNN

ANZ2 = AN * AN

AN1IM Oe¢5 * (AN ~ le!

CFAC 4e5645E~7 * AN * SDEN/TEMP

DEBROG = 2¢1027E-6/SQRT(TEMP)

RMIN DEBROG + AN*AN*7.9376E-9

DO 230 K = 1s NNN

AK = K - 1

SSH(KI={AN2+( (=14 )**¥MOD(NM1+K 82} ) ¥ (AN2=2 AK*AK ) )/ (24 ¥AN¥ (AN2~1,))
BET = 546558E-5 % AN # DEN*%¥(1e4/6s)

ARRAY FOR G-FUNCTION CONSTANTS

ASY = 0.0

DO 270 K = 1sNM1

QC = K

C = CFAC * QC

Pl = ~1.671086 * FAC * C * SQRT(C)

BS = 3. * AN * QC * DEBROG/RMIN
STRONG(K) = 0e269-2¢%(((1e—COSF(BS))/BS+SINF(BS))/BS—COSINT(BS))

PPFF = -1.128379 * FAC * C * C

P2 = PPFF * (STRONG(K!) — 2¢%LOGF(2+%C))
FPAR(1sK) = P1

FPAR(2sK) = P2

FPAR(3sK) = Q0e5 * (P2/P1)%%2
FIN = LOGF (AN*QC)
FPAR(4sK) = P2 * ((PFAC(3)*FIN + PFAC(2)) * FIN + PFAC(1))
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270

240

280

325
450

350
375
650

680
720
780

FPAR(59sK) (PFAC(6)*FIN + PFAC(5))%FIN + PFAC(4)

FPAR(6sK) PPFF

ASY = ASY + 2 * FPAR(1sK) * SSJU(K+1) :

PRINT 2409 ((FPAR(KsI)sK = 195)sSTRONG(I)s I = 1sNM1)

FORMAT (6E2044)

PRINT 280s FAC» CFACs BET»s ASYs DEBROG» NFAC

FORMAT (/% FAC =%E12e49%* CFAC =%*E12.4s* BET =%E12449% ASY =¥F12.4,
1 * DEBROG =*E12.49* INTEGRATIONFACTOR =%12//
2 EX#DOM*GX#DLAM*SX* I TOT*EX* IHOLTS*GX*ASY* 1OX¥WING* 7TX*WHOLTS*7X
3 FWSTAT*TX¥WWOO*BX*WWBB* B X*WWNG*/ )

ADLFAC = 4423538E-15 * SDEN * ALAM #* ALAM

oM

3JSYMBOL-ARRAYS SSJJ(MCTsNBNsNAN) AND SJQL(MCTsNBNsNLA)
DO 650 MCT = 192

AMA = MCT -1

NLIM = NNN + 1 = MCT

NGB = =NLIM - 1

DO 450 NBN = 1sNLIM

N@B = NQB + 2

QB = NQB

FMB1 = (AMA - QB) #* 0.5

FMB2 = (AMA + QB) % 045

DO 325 NLA = 1sNNN

ALA = NLA -1

SJQLIMCTsNBNsNLA)} = S3J(ANIMsANIMsALAIFMB1sFMB29y—AMA)

CONTINUE

DO 375 NBN = 1sNLIM

DO 350 NAN = 1sNLIM

AABB = (—1.)%*MOD(NAN+NBN»2) ¥ SJUQL(MCTsNBNs2) * SJQL(MCTsNAN»2)
SSJJ(MCTsNBNsNAN) = AABB

CONTINUE

CONTINUE

3JSYMBOL-ARRAY SARINLA»NQC)

DO 780 NQC = 1-NM1

QC = NQC

DO 720 NLA = 1sNAN

ALA = NLA - 1

FBB = 0O,

DO 680 NMC = 1sNLA

IF (NEVODD « NE«MOD{NMC+NQC2?) GO TO 680
AMC = NMC - 1

FCF = 2

IF(NMCeEQel) FCF = 1.

FMC1 = 0e5 * (AMC - QC)

FMC2 = 0e5 * (AMC + QC)

FBB = FBB + FCF * (S3J(ANIMyANIMsALASFMC1 sFMC29—AMC) ) %%2
CONT INUE

SAR(NLASNQC) = FBB * (2e%ALA + 1)
CONTINUE

CALCULATION OF THE IONFIELD INTEGRAL

NN6 = 6 * NFAC
ANN6 = NN6
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N12 = 12 * NFAC

AN12 = N12
N30 = 30 * NFAC
AN30 = N30

G = GIN - DGG

DO 950 MM = 1sNTOT

G = G + DGG

DOM = 10« *% G

DLAM = ADLFAC * DOM

WING52 = -042992067103 * ASY/(SQRT(pDOM) * DOM * DOM)
FHOLTS = O

AWING = O

DG 815 NQC = 1sNM1
P1 = FPAR(1sNQC)
P2 = FPAR(2sNQC)
Bl = FPARI(3sNQC)
A2 = FPAR(4sNQC)
B2 = FPARI(5sNQC)

PPFF = FPAR{6sNQC) ;
AWING = AWING + SSJINQC+1)*AIMAG(FOUTR(DOM) ) *2,/ (DOM*DOM)
QC = NQC
BETFAC = BET * QC
BCRIT = DOM/BETFAC
815 FHOLTS = FHOLTS + S5SJ(NQC + 1) * WFLD(BCRIT) 7/ BETFAC
AIRES = Q.
IF(DOMeGTo{—3e%P2}) GO TO 840
BCRIT = (DOM — P2)/((AN =~ 1le)*BET)
DB = BCRIT/ANN6

B = 0o
DO 820 J = 1sNN6
B =8+ D8
820 FF(J) = AIIM(DOMsB) * WFLDI(B)

CALL WEDDLE (DBsNN6sFFsAIIIs0e)
AIRES = AIIIl
DY = 1e/{(BCRIT*AN30)

Y = Qe
DO 830 J = 1sN30

Y =Y + DY
B = le/Y
830 FF(J) = B * B * ATIM(DOM,B) * wWFLD(B)
CALL WEDDLE (DYsN3OsFFsAIlI»0s)
AIRES = AIRES + AIII
GO TO 980
840 BCRCR = DOM/BET
EPSPS = -P2/BET
DO 957 NQ = 1sNM1
NG
BCRCR/ANQ
EPSPS/ANQ
IF(NQsEQs1) GO TO 907
SL1 = 1e/(GAM - BCR)
GO TO 908
907 SL1 = O
908 SL2 = 1e4/EPS

(s3]

[a)

pol
wonn
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913
914

917

927

937

957

967

SL3 = 1e/(BCR + EPS)
SL4 = le/(BCR - EPS)

GAM = 0¢5 * (BCR - EPS + (BCRCR + EPSPS!/(ANQ + 1le))

IF{NQeEQeNM1l) GAM = 05 * (BCR - EPS)
SL5 = 1¢/(BCR — GAM)
CRIT = SL2 ~ SL5
Y = SL1
IF(NQeEQsl) GO TO 913
B = BCR + le/Y
FA = AIIM(DOMsB) * WFLDI(B)/(Y * Y)
GO TO 914
FA = Qe
DY = (SL2 -~ SL1)/ANN6
DO 917 J = 1sNN6
Y = Y + DY
Y1 = 1e/Y
B = BCR + Y1
FF(J) = Y1 * Y1 * AIIM(DOMsB) * WFLD(B!
CALL WEDDLE (DYsNN6sFFsAIIIsFA)
AIRES = AIRES + Alll
Y = SL3
B = lo/Y
FA = B * B * AIIM(DOMsB) * WFLD(B)
DY = (SL4 - SL3)/ANN6
DO 927 J = 1sNNé6
Y = Y + DY
B = 1e/Y
FF(J) = B * B * AIIM(DOM,B) * WFLDI(B)
CALL WEDDLE (DYsNN6sFF2AIIIsFA)
AIRES = AIRES + AIII
IF(CRITeLE«Oe) GO TO 977
Y = SLS
= BCR ~ le/Y
= AILIM(DOMsB) * WFLDI(B)/Z(Y * Y)
= CRIT/AN12
937 J = 1sN12
= Y + DY
1 = 1le/Y
B = BCR -~ Yl
FF(J) = Y1 * Y1 * AIIM(DOMsB) * WFLD(B)
CALL WEDDLE (DYsN12sFFsAIIIsFA)
AIRES = AIRES + Alll
IF(GAMeLTe 5¢) GO TO 968
Y = 1./GAM

B
FA
DY
Do
Y
Y

FA = GAM * GAM * AIIM(DOMsGAM) * WFLD(GAM)
DY = (0e2 - Y)/AN12

DO 967 J = 1»#N12

Y = Y + DY

B = 1le/Y

FF(J) = B ®* B * ATIM(DOMsB) * wFLD(B!
CALL WEDDLE (DY sN12sFFsAIIIsFA)

AIRES = AIRES + AIII

SL4 = 0e2

GO TO 977
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968
977

947

980

950

978

220

500
600

700

2

SL4 = 1e/GAM

B = Oe

DB = 1le/({SL4 * AN30)

DO 947 J = 1sN30

B =8 + DB

FF(J) = AIIM(DOMsB}) * WFLDI(B)
CALL WEDDLE (DBsN30OsFFsAIIIs0e)
AIRES = AIRES + AIIl

WING = AIRES/WING52

WISTAT = AIRES/FHOLTS

WINHOL = FHOLTS/WINGS2

WWOO = (AIIM(DOMs Oe«) + FHOLTS)/WINGS2
WWBB = (AIIM(DOMsBAV) + FHOLTS)/WINGSZ
WWNG = (AWING + FHOLTS) /WINGH52

PRINT 9789DOM9DLAM9AIRES’FHOLT59WIN652hWING WINHOLsWISTATS
WWCOOs WWBBs WWNG

FORMAT (11E12e4)

GO TO 120

END

FUNCTION AIIM(DOMsB)

CALCULATION OF I(DOM,8B)

COMPLEX DFTR(ZU)9AMATR(20940)9FOUTR’AREF
COMMON/FDAT/P1lsP2+81sA2+B2sPPFF
COMMON/PSTR/NNNyNM1sBETsFPAR(6+20)
COMMON/PSJD/S5JJ(2920920) s S5JQLI12520520)s SAR(20520)

AIIM = Qo

DO 800 MCT = 1.2
AMCT = MCT

NLIM = NNN + 1 - MCT
NL22 = 2 # NLIM

NQB = —=NLIM - 1

DO 750 NBN = 1sNLIM

N@B = NGB + 2

QB = NQB

DOMRB = DOM - BET * QB * B
DO 220 NGQC = 1sNM1

Pl = FPAR(1sNQC)

P2 = FPAR(2sNQC)

Bl = FPAR(3sNQC)

A2 = FPAR(4sNQC)

B2 = FPAR{5sNQC)

PPFF = FPAR(6sNQC)
DFTR(NQC!) = FOUTR{DOMRB!

DO 700 NAN = 1sNLIM

AREF = (0.90.)

DO 600 NQC = 1sNM1

FAA = 040

DO 500 NLA = 1sNNN ‘

FAA = FAA + SJQLIMCTsNANsNLA) #* SJQL(MCTsNBNsNLA) * SAR(NLASNQC)
AREF = AREF + FAA * DFTR(NQC)

AMATR(NBNsNAN + NLIM) = (OesQe)

AMATR(NBNsNAN) = 642831853072 * ((~14)%*%MOD(NAN+NBNs21)) * AREF
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[aNaNa)

AMATR (NBNsNBN+NLIM) = (1490
750 AMATR(NBNsNBN) = AMATR(NBNsNBN) + DOMRB
MATRIX INVERSION
CALL CGAUSSEL (AMATR»20sNLIMsNL22sNRANK)
DO 795 NBN = 1,4NLIM
DO 793 NAN 1sNLIM
793 AIIM = AIIM + AMCT*SSJJ(MCTsNBNsNAN)*AIMAG(AMATR (NBNsNAN+NLIM))
795 CONTINUE
800 CONTINUE
AIIM =-AIIM * 0,3183099
RETURN
END

THE FOLLOWING FUNCTION FOUTR MAY BE REPLACED BY THE FUNCTION FOUTR
AT THE END OF THE LISTING TO OBTAIN THE MODIFIED IMPACTTHEORY
FUNCTION FOUTR (DOM)

FOURIERTRANSFORM OF THERMAL AVERAGE FOR UNIFIED THEORY
COMPLEX FOUTR
COMMON/FDAT/PlsP2+B1yA2+B2 yPPFF
ARG = ABSF(DOM)
Z = Bl * ARG
IF (Z4LE«0+001) GO TO 600
IF (Z4LE+40e) GO TO 300
FACl = —02992067103 * P1/(SQRT(ARG) * ARG * ARG)
CC = FAC1 * ({le — 143125/2)%0e¢625/2Z + 1le)
SS = FACLl # ((~le— 13125/2)%0e625/2 + 1le)
GO TO 500
300 CALL BSJYO1 (Zs AJOs YOs AJls Y1)

FACL = Y1/(24%Z) + AJ1l - YO
FAC2 = AJO + Y1 - AJl/(24%2)
CINE = COSF(2)
SINE = SINF(Z)

CC = P2 * Bl * Bl * (CINE * FAC1 + SINE * FAC2)
S5 = P2 * Bl * Bl * (CINE * FAC2 - SINE * FAC1)
IF (A2eEQeQe} GO TO 500

Z = B2 % ARG

IF (Z4GTe1l0e) GO TO 400

CALL BSJYOl (Zs AJOs YO» AJls Y1)

FACL = ((AJ1-YO)*16%Z2~36e*AJO~28¢%Y1)*Z+154%Y0~34%AJ]
FAC2 = ((AJO+Y L)% 16¢%¥Z2~36e%YO+28e*AJ1)IHZL-154%AJ0—3,%Y1
CINE = COQSF(Z)
SINE = SINF(Z)

CC = CC + A2¥B2*(CINE * FAC1l + SINE * FAC2)/6.
SS = SS + A2*B2¥(CINE * FAC2 - SINE * FACl)/6e.

GO TO 500

400 FAC1 = 041322319336 * A2 * B2 * Z¥*(-345)
CC = CC + FACL * (le = (3e9375/2Z + le)%*44375/2)
SS = SS - FACL * (le — (3e9375/Z — l1le)*44375/2)

500 IF (DOMeLTeOs) SS = =SS
FOUTR = ARG * ARG * CMPLX(~S5,CC)
RETURN

600 SS = (P2%Bl - A2) * DOM
FOUTR = 03183099 * CMPLX(SSs—P2)
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RETURN
END

SUBROUTINE WEDDLE (DXs Ns F»s As FO)

INTEGRATION SUBROUTINE
DIMENSION F(N)

A = 0.0
K=N-1

DO 15 I = 19 6
SUM = 0,60

DO 6 J = 1y Ks 6
SUM = SUM + F(J)

GO TO (8y 1Us 12y 10y 8y 14)y 1
A= A+ 560 ¥ SUM

GO TO 15

A = A + SUM

GO T0 15

A = A 4+ 660 ¥ SUM

GO TO 15

A = A + 2¢0 * SUM

CONTINUE

A = Q0e3 * DX * (A + FO + F(N))
RETURN

END

FUNCTION WFLDI(B)

CALCULATION OF THE ION MICROFIELD DIST#IBUTION FUNCTION USING A
5POINT INTERPOLATION FOR THE DATA READ INTO THE MAINPROGRAM
COMMON/PFW/FIELD(301)

WFLD = 0.0

IF (BelLEe30¢0) GO TO 200

SBS = 1./(B ¥ SQRTI(B))

WFLD = ((21e6 * SBS + 74639} * SBS + 14496) * SBS/B

RETURN

IF (BeLEeOeO) RETURN

J (B + 0.2) 1060

L J -1

IF (JeGTe2) L
IF (JeGTe3) L
IF (JeGTe300)
LLL = L + 4
DO 75 K = LslLLL
AK = K = 1
TERM = 1.0
DO 74 M =
IF (KeEQeM
AM = M -~ 1
TERM = TERM * (10.%B ~ AM)/{AK - AM)
CONT INUE

TERM = TERM * FIELD(K)

WFLD = WFLD + TERM

RETURN

END

*

~ un

LebLibL
) GO TO 74
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FUNCTION 53J (FJls FJ2s FJ3» FMls FM2, FM3 )

CALCULATION OF 3J4-SYMBOL
S53J=0e0
IF(ABS(FM1 + FM2 + FM3) o.GTe 0,001) GO TO 153
FM3=FM1+FM2
A=FJ2+FJ3+FM1+¢005
B=FJ]1~FM1+005
C==FJ1+F J2+FJ3+4005
D=FJ3+FM3+.005
E=FJ1-FJ2-FM3+4005
F=FJl1-FJ2+FJ3+005
G=FJ1+FJ2-FJ3+005
H=FJl1+FJ2+4FJ3+10+005
E2=FCTRL(B)*FCTRL(FJ1+FM1)*FCTRL(FJ2-FM2) *FCTRL{FJ2+FM2)
IF (E2) 15391539145
145 E1=(FCTRL(C)*FCTRL(F)/FCTRL(H))*FCTRL(G)*FCTRL(D)*FCTRL(FJ3-FM3)
IF (E1) 153s 153, 150
150 E1=SQRT(E2)/SQRTI(E1)
I1=XMAX1F(0e0s —-E+0e01)
[12=XMIN1F(As Cy D)
IF (I2-11) 153» 1519 151
151 DO 152 I=11s12
FI=1
E2=FCTRL(FI’*FCTRL(C—FI)*FCTRL(D-FI)/FCTRL(A-FI’
152 53J=53J+((("l.O)**XMODF(I,Z))/Ez)*FCTRL(B+FI)/FCTRL(E+FI)
U=ABS(FJ1+FM2+FM3)+0,001
S3J=53J%((—1,0) ¥¥XMODF(XFIXF(U)s2))/E1

FM3=-FM3
153 RETURN
END

FUNCTION FCTRL(A)

CALCULATION OF FACTORIALS REQUIRED BY FUNCTION S3J
DIMENSION FCTI(20)

DATA ((FCTI(I}9s1=1520) =1¢092409660+24409120.09720,0+504040»
40320¢0936288040+3628800+0939916800405479001600405
6227020800e098717829120040513076743680C040,
2.0922789888E13y 3e55687428096E14y 64402373705728E15
1.2164510040883 E17s 2.4329020081766 E18)

BN

IF(A) 50560970

50 IF(A«GEe(—-0el) ) GO TO 60
FCTRL = 040
RETURN

60 FCTRL = 140
RETURN

70 1 = A + Qel
IF (1 «EQe O) GO TO 60
IF (I-20) 140+140,130

130 F=2040
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FCTRL=FCTI(20)
DO 131 J=21»1
F=F+100
131 FCTRL=FCTRL*F
GO TO 150
140 FCTRL=FCTI(I)
150 RETURN
END

SUBROUTINE CGAUSSEL (CsNRDsNRR9NCC9NSF)

DIMENSION C{(NRDsNCC)»sL(128+2)

TYPE COMPLEX CsDETsPsD9sQsR

DATA (BITS = 1755 4000 0000 0000 B)

CALL ROLLCALL(48HCGAUSSEL 6/5/68 1-BANK BITS=2#%#%-18
NR=NRR $ NC=NCC
IF(NCoLTeNReOReNR(GT+128s0ReNR(LEL0) CALL QB8QERROR(0O9s9HBAD CALL)
INITIALIZE,

NSF=0

NRM=NR-1 $ NRP=NR+1 % D=(les0e) $ LSD=1

DO 1 KR=1sNR

L(KRs1)=KR

L(KRs2)=0

CALL Q9EXUN{EXUN)

IF(NReEQel) GO TO 42

ELIMINATION PHASE.

DO 41 KP=1,NRM

KPP=KP+1 $ PM=0. $ MPN=0Q

SEARCH COLUMN KP FROM DIAGONAL DOWNs FOR MAX PIVOT,.
DO 2 KR=KPsNR

LKR=L(KRs1)

PT=CABS(C(LKRsKP))

IFIPTeLEePM) GO TO 2

PM=PT $ MPN=KR $ LMP=LKR

CONTINUE

IF MAX PIVOT IS ZEROs MATRIX IS SINGULAR.
IF(MPN+EQ.0! GO TO 9

NSF=NSF+1

IF(MPN+EQeKP) GO TO 3

NEW ROW NUMBER KP HAS MAX PIVOT,

LSD=~L5SD

LIKPs2)=L(MPNs1l)=L(KPs1)

L(KPs1)=LMP

ROW OPERATIONS TO ZERO COLUMN KP BELOW DIAGONAL.,
MKP=L(KP,y1) ‘
P=C(MKPsKP) $ D=D*P

DO 41 KR=KPP,sNR

MKR=L (KR)

Q=C(MKRsKP)/P

IF(REAL(Q) eEQeQe e ANDeAIMAG(Q) sEQeQs) GO‘TO 41
SUBTRACT Q * PIVOT ROW FROM ROW KR,

DO 4 LC=KPPy¢NC

R=Q*C (MKPLC)

C(MKRsLC)=C(MKRsLC)-R
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41

42

IF(CABS(CIMKRILC) ) oLToeCABS(RI*BITS) C(MKRsLC}=(0as04)
CONTINUE

LOWER RIGHT HAND CORNER.

LNR=L(NRs1) $ P=C(LNRsNR)
IF(REAL(P) eEQeOe e ANDsAIMAG(P) eEQeO,) GO TO 9
NSF=NSF+1

D=D#P*LSD

IF(NR.EQeNC) GO TO 8

BACK SOLUTION PHASE.

DO 61 MC=NRPsNC

C(LNRyMC)=C(LNRsMC) /P

IF(NR.EQe1) GO TO 61

DO 6 LL=1sNRM

KR=NR—-LL $ MR=L(KRs1) $ KRP=KR+1}

DO 5 MS=KRPsNR

LMS=L (MSs1)

R=C(MRsMS ) *C(LMSsMC)

C(MRs»MC) =C(MRyMC) -R
IF(CABS(C(MRSIMC)) LT CABS(RI*BITS) C(MRsMC)I=(0490,)
C(MRsMC)=C(MRsMC) /C(MRsKR)

CONTINUE

SHUFFLE SOLUTION ROWS BACK TO NATURAL ORDERe
DO 71 LL=1sNRM

KR=NR-~-LL

MKR=L (KRs2)

IF(MKR.EQeO) GO TO 71

MKP=L (KRs1)

DO 7 LC=NRPsNC

Q=C(MKRsLC)

C(MKRsLC)=C(MKPsLC)

CIMKP,LC) =Q

CONTINUE

NORMAL AND SINGULAR RETURNS. GOOD SOLUTION COULD HAVE D=0.
Cl{1s1)=D $ GO TO 91

C(l’l)z(O.’OO)

CALL S9FAULT(EXUN) $ RETURN

END

SUBROUTINE BSJYOl (Xs AJOs YOs AJl, Y1)

CALCULATION OF THE BESSEL FUNCTIONS JOs YOs J1ls AND Y1 FOR AN
ARGUMENT X

DIMENSION A(T7)s B(T7)s C(T)s D(T)s E(T)Ys FUT)y G(T)s H(T)

DATA ({A(I)s I = 1s7) = 0,00021» —0.0039444, 0,0444479)

1 ~063163866s 12656208y —242499997, 1l.0)

DATA ((B(I)s» I = 1»7) = —=0,000248465 0.004279165 -0.04261214»
1 0625300117 ~0474350384s 06605593669 0e36746691)

DATA ((C(I)s I = 1s7) = 0,00014476y -0,00072805s 0,00137237,
1 -0400009512y ~0400552745s =0400000077s 0.79788456)

DATA ((D(I)s I = 1s7) = 0,00013558y -0,00029333s —0,00054125»
1 06002625735 —04000039545 —~0,04166397» —~0,78539816)

DATA ((E(I)s I = 1+47) = 0,00001109, -0.00031761y 0400443319,
1 ~00039542899 0421093573y -04562499859 045)

DATA ((F(I)s I = 1s7) = 0,0027873s —-0.0400976s 0,3123951»
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10

20

50

60

1

1
1

~1.3164827»
DATA ((G(I1)»
000017105
DATA ((H(I)»

~000637879,

AX = ABSF(X)
IF (AXeGTe0e0)

I

1

AJO = 1.0

YO = -1.E4030
AJl = 040

Y1 = —1.E+030
RETURN

IF (AXeGTe3e0)
XX = (AX/3.,0)
AJO = A(1)

YO = B(1)

AJl = E(1)

Y1 = F(1)

DO 20 M = 2,7

21682709y 042212091y —-0.6366198)

= 1s7) =

—0,00020033, 0,00113653y -0,00249511}

06016596679 04000001565 0e79788456)

= 1le7) =

-0,00029166,5 0400079824 0,00074348

0600005659 0412499612y —-2435619449)

GO TO 10

GO TO 50

*%x 2

AJO = AJO * XX + A(M)
YO = YO #*¥ XX + B(M)
AJl = AJ1l * XX + E(M)
Y1 = Y1 % XX + F(M)

AJl = AJ1 * X
ALF =

YO =

Y1 =

RETURN

X3 = 3.0/AX
FO = C(1)

THO = D(1)

F1 = G6(1)

TH1 = H(1)

DO 60 M = 257

FO = FO * X3 + C(M)
THO = THO * X3 + D(M)
F1 = F1 * X3 + G(M)

TH1 #* X3 + H(M)

COSF (THO)
SINF (THO)
COSF(TH1)
SINF(TH1)

TH1 =

THO = THO + AX
TH1 = TH1 + AX
XS = 1e¢/SQRT(AX)
AJO= XS * FO #*
YO = XS * FO *
AJl= XS * Fl1 *
Y1 = XS * F1 *
RETURN

END

FUNCTION COSINT(X)

06366197724 * LOGF(Qe5 * AX!
YO + ALF * AJO
Y1/X + ALF * AJ]

CALCULATION OF THE COSINE INTEGRAL
TYPE DOUBLE YZ2»PRODsSUMPT sDK
IF(XeLEa«Qo!

X2 = X * X

GO TO 50
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10
20

30

40
45

50
100

IF(XeGTe20e!) GO TO 30

Y2 = DBLE(X2)

PROD = -Y2 * Qe5

SUM = PROD * 0e5

DO 10 K = 250

DK = 2 * K

PROD = —-PROD * Y2/(DK®*(DK — 1))
SUM = SUM + PROD/DK

PT = ABS(PROD * 1,D+10!
IF(ABS{SUM) «GT.PT) GO TO 20
CONTINUE

SS = SNGL(SUM)

COSINT = SS + 045772156649 + LOGF(X)
RETURN

FA le

FB8 le

PO 1.

X2 1e/X2

DO 40 K = 110

AK 2 * K

PO -PO * AK * X2

FA FA + PO

PO PO * (AK + 1)

FB FB + PO

PA ABS(PO * 1.E+10)
IF(PA.LE.FB) GO TO 45

CONTINUE

FX = FA/X

GX = FB * X2

COSINT = FX * SIN(X) - GX * COS(X)
RETURN

WRITE (619100) X

FORMAT (* X LESS OR EQUAL TO ZEROs X = *E1749)
RETURN

END

L]

[ I T L I -

]

FUNCTION FOUTR (DOM)

FOURIERTRANSFORM OF THERMAL AVERAGE FOR MODIFIED IMPACTTHEORY
COMPLEX FOUTR

COMMON/FDAT/P1lsP24B1sA2sB2sPPFF

ARG = ABSF(DOM)

cC = P2

IF (ARGeGTe1e22474) CC = P2 = 24*LOGF(ARG/1422474)*PPFF

FOUTR = 043183099 * CMPLX(0es—CC)

RETURN

END
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Figure 1. Schematic picture of the collision sphere showing the
Debye sphere, a strong collision sphere and a straight line classical
path trajectory.
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Figure 2, The thermal average F of the time devetopment operator
normalized with respect to the static, small interaction time asymp-
tote F_ as a function of the normalized time s =9 *t. The two curves
are obtained with two different lower futoff paran?efters in the p-

integral, ® min = 0 and P min = X+n a .
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Figure 3. The thermal average F of the time development operator
normalized with respect to the static, small interaction time asymp-
tote FO as a function of the normalized time s =’(‘ﬁpt. The two sets of

curves are obtained with two different lower cutoff parameters in the
p-integral, p . =0andp_ . =X +t+n"a_. The three different curves
min min o

in every set correspond to different Stark components characterized by
the quantum number n = ng-n’q’.
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Figure 4. The Fourier transform of the thermal average i, normalized
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normalized frequency Aw = (Aw- /\w B)/w
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Figure 5. The Fourier transform of the thermal average i, normalized
with respect to the static, large frequency limit i as a function of the
normalized frequency Aw, = (Aw-Aw.* 8)/&% . The “three different curves
correspond to different ~ Stark componet?ts characterized by the quan-
tum number n = ng-n’q’.
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THE NATIONAL ECONOMIC GOAL

Sustained maximum growth in a free
market economy, without inflation,
under conditions of full employment
and equal opportunity

1

MISSION AND
THE DEPARTMENT OF COMMERCE
The historic mission of the Department FUNCTIONS

is “to foster, promote and develop the
foreign and domestic commerce’’ of the OF THE

United States. This has evolved, as a DEPARTMENT OF

result of legislative and administrative

additions, to encompass broadly the re- COMMERCE

sponsibility to foster, serve and promote
the nation’s economic development and

technological advancement. The Depart- “to foster, serve and

ment seeks to fulfill this mission through promote the nation’s

these activities: economic development
and technological
advancement”

|
1

Participating with Promoting progressive Assisting states, Strengthening Assuring effective Acquiring, analyzing
other government business policies and communities and the linternational use and growth of the and disseminating
agencies in the growth, individuals toward ecoaomic position nation’s scientific information concern-
creation of national economic progress.  of the United | and technical ing the nation and
policy, through the @ Business and States. | resources. the economy to help
President’s Cabinet Defense Services @ Economic | achieve increased
and its subdivisions.  Administration Development ® Byreau of | o Environmental social and economic
Administration international Science Services  benefit.
® Cabinet Committee o Office of Field Commerce Administration
on Economic Policy  Services ® Regional Planning ‘ o Burgau of
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© United States
Travel Service o Office of State

Technical Services

o Maritime
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program outline for budget purposes. It is a general statement
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of economic development.
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