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HYDROGEN STARK BROADENING CALCULATIONS WITH 

THE UNIFIED CLASSICAL PATH THEORY * 
C. R. Vidal, J. Cooper, and E. W. Smith 

The unified theory has been generalized for  the 
case of upper and lower state interaction by introducing 
a more compact tetradic notation. The general result  
is then applied to the Stark broadening of hydrogen. 
The thermal average of the time development operator 
for upper and lower state interaction is presented. Ex- 
cept for the time ordering it contains the effect of finite 
interaction time between the radiator and per turbers  to  
all  orders ,  thus avoiding a Lewis type cutoff. A simple 
technique for evaluating the Fourier  transform of the 
thermal average has been developed. 
lations based on the unified theory and on the one-elect- 
ron theory are compared with measurements in the high 
and low electron density regime. 
culations cover the entire line profile f rom the line center 
to the static wing and the simpler one-electron theory 
calculations provide the line intensities only in the line 
wings. 

The final calcu- 

The unified theory cal- 

Key words: Classical path; hydrogen lines; line 
wings; one-electron theory; Stark 
broadening; unified theory. 

* This research  was supported in par t  by the Advanced 
Research Projects  Agency of the Department of 
Defense, monitored by A r m y  Research Office- 
Durham under Contract No. DA-31-124- ARO-D- 139. 
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I. INTRODUCTION 

For  the first few Balmer lines of hydrogen, recent papers 

(Gerardoand Hill, 1966; Bacon and Edwards, 1968; Kepple and Griem, 

1968; Birkeland, Oss and Braun, 1969) have demonstrated fairly good 

agreement between measurements in high electron density plasmas 

( n  > 10 cm ) and improved calculations of the so called "modified 

impact theory". The experimental and theoretical half-widths differ 

less  than about 10%. However, measurements of the Lyman-a wings 

(Boldt and W. Cooper, 1964; Elton and Griem, 1964) and low electron 

density measurements (n  = 1013cm-3) of the higher Balmer and 

Paschen lines (Ferguson and Schliiter, 1963; Vidal, 1964; Vidal, 1965) 

have revealed parts of the hydrogen line profile, for which the modi- 

fied impact theory appears to break down. 

members better agreement has been obtained with quasi-static cal- 

culations (Vidal, 1965). The reason the current impact theories 

break down is that these theories correct  the completed collision 

assumption by means of the Lewis cutoff (Lewis, 1961) which is only 

correct  to second order. 

the range of validity for the impact theory beyond the plasma frequency. 

However, in the distant wings, where the electron broadening becomes 

quasistatic, the second order perturbation treatment with the Lewis 

cutoff breaks down because the time development operator must then 

be evaluated to all orders.  

have been made already (Griem, 1965; Shen and J. Cooper, 1969), but 

these theories still make the completed collision assumption by re-  

placing the time development operator by the corresponding S-matrix, 

and s o  it has to be emphasized that in conjunction with the Lewis cutoff 

these theories would only be correct  to second order. 

theory in i ts  present form is intrinsicly not able to describe the static 

wing and the transition region to the line center where dynamic effects 

16  -3 
e 

e 

For  the higher se r ies  

With this cutoff it was possible to extend 

Attempts to correct  the second order  theory 

The impact 
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cannot be neglected. To overcome this problem, several  semiemp- 

i r ical  procedures (Griem, 1962: Griem, 1967a; F. Edmonds, SchlGter 

and Wells, 1967) have been suggested to generate a smooth transition 

from the modified impact theory to the static wing. 

Recently the classical path methods in line broadening have 

been reinvestigated in two review papers ( E. Smith, Vidal and J. 

Cooper, 1969a, 1969b), which a r e  from now on referred to a s  papers 

I and 11. 

approximations which a r e  required to obtain the classical path theories 

of line broadening and to  find out where these theories a r e  susceptible 

to improvements. In a manner similar to the Mozer-Baranger treat-  

ment of electric microfield distribution functions (Baranger and Mozer, 

1959, 1960), it was shown that the general thermal average can be 

expanded in two ways, one of which leads to the familiar impact t i eory  

describing the line center (Baranger, 1958, 1962; Griem, Kolb and 

Shen, 1959, 1962). The other expansion represents a generalized 

version of the one electron theory (J. Cooper, 1966), which holds in 

the line wings. 

domain of overlap between the modified impact theory and the one 

electron theory. 

developed (E. Smith, J. Cooper and Vidal, 1969,  henceforth referred 

to a s  paper 111, which presents the f i rs t  line shape expression which is 

valid from the line center out to the static line wing including the 

problematic transition region. 

theory has the form 

The purpose of I and I1 w a s  to state clearly the different 

It is also shown that there is  generally a considerable 

Based on these results,  a "unified theory" was then 

The line shape obtained by the unified 
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where d, ~w and e(aw) a r e  operators. In paper I11 it was shown that 

the familiar impact theories, which hold in the line center, may be 

obtained by making a Markoff approximation in the unified theory, 

while the one electron theory describing the line wings is just a wing 

expansion of the unified theory. 

any line broadening calculation is to evaluate the matrix elements of 

C(A~), which i s  essentially the Fourier transform of the thermal average 

( see  Eq. (46) and (47) of paper 111). 

paper for the general case of upper and lower state interactions. 

Consequently the crucial problem for 

This wi l l  be done in detail in this 

In the following Sec. I1 we s t a r t  with a brief summary of the 

basic relations which a re  required f o r  the classical path approach 

pursued here. 

include lower state interaction (Sec. IV) after introducing a more 

compact tetradic notation (Sec. 111). F rom this general result  we turn 

to the specific problem of hydrogen by discussing briefly the no 

quenching assumption (Sec. V )  and deriving the thermal average 3(')(t) 

(see Eq. (47) of paper 111) for the general case of upper and lower state 

interaction (Sec. VI). We next investigate the multipole expansion of 

the classical  interaction potential in the time development operator 

(Sec. VII). 

by f i r s t  performing a spherical average (Sec. VIII) and then an average 

over the collision parameters:  some reference time t , impact para- 

meter p and velocity v (Sec. IX). 

program which we used in calculating the thermal average for dipole 

interactions including lower state interactions. The large time limit 

of the thermal average, which leads to the familiar impact theories in 

the line center, i s  investigated in detail in Appendix B for different 

cutoff procedures and compared with the results in the literature. 

We then generalize the results of the unified theory to 

The thermal average 3 ( l ) ( t )  is then evaluated in two steps 

0 

Appendix A gives the computer 

In 
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Sec. X, a method is developed f o r  performing the Fourier  transform- 

ation of the thermal average and it leads us to the crucial function for 

any classical path theory of Stark broadening. This function is finally 

applied in Sec. XI to the one electron theory, which forms the basis 

for the asymptotic wing expansion, and in Sec. XI1 to  the unified theory, 

which describes the whole line profile from the line center to the static 

wing. 

measured by Boldt and W. Cooper, 1964; Elton and Griem, 1964, and 

Vidal, 1964,  1965. The computer program for the unified theory cal- 

culations and the asymptatic wing expansion is given and explained in 

Appendix C. 

Numerical results a r e  given for the hydrogen line profiles a s  

11. BASIC RELATIONS 

In this section we wil l  briefly outline the basic relations which 

a r e  used in our classical path treatment of line broadening. 

As discussed in Sec. 2 of paper I, we a r e  considering a system 

containing a single radiator and a gas of electrons and ions. 

make the usual quasi-static approximation for the ions by regarding 

their electric field e.  a s  being constant during the times of interest = 

l / A w .  

where ion dynamics a r e  important is normally well inside the half 

width of the line except for a few cases such as the n-a lines of 

hydrogen (Criem, 1967b). 

by the microfield average (see Eq. ( 3 )  of paper 11) 

We w i l l  

1 

This approximation is usually very good because the region 

The complete line profile I (w)  i s  then given 

OD 

(11. 1 )  

where the normalized distribution function P ( E . )  is the low frequency 

component of the fluctuating electric microfields. Due to shielding effects 

P(t.) depends on the shielding parameter r /D where r 

mean particle distance and the Debye length (for electrons cd*respectively. 

1 

and D a r e  the 
0 0 1 
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With the static ion approximation we have reduced the problem 

to a calculation of the electron broadening of a radiator in a static 

electric field e,. 
averaged over all possible ion fields to give the complete line profile 

I ( w ) .  
radiator and the ion-radiator interaction will be taken to be the dipole 

interaction e-,. where -eZ denotes the Z-component of the radiators 

dipole moment. 

The resulting line profile I(w,e.) is then simply 
1 

The static ion field wi l l  be used to define the z-axis for the 

1 

L€ the unperturbed radiator is described by a Hamiltonian H a' 
we may then define a Hamiltonian for a radiator in the static field 

ei by 

H = H  t e Z C  (11. 2 )  
0 a i 

The complete Hamiltonian for the system is then given by 

H = H t V (2, g ,  $, t)  (11. 3 )  
0 e 

where V denotes the electron radiator interaction. In this equation, 

x and $ a r e  3N vectors 2 = (gl, x 
2' 

which denote the positions and velocities of the N electrons and R 

denotes some internal radiator coordinates. 

R is the position of the "orbital" electron relative to the nucleus. 

The interaction V 

e 
A 2 -8 -4 S k A  2 

- ,  xN), v = (vly vzy * - , vN), 
a 

F o r  one-electron atoms, 
J 

w i l l  be regarded as a sum of binary interactions, 
e 

(11.4) 

where V 1 
electron. 

the Fourier  transform of an autocorrelation function C(t) (Baranger, 1962) 

denotes the interaction between the radiator and a single 

A s  is well known the line shape I(w,  F: .) may be given by 
1 

(11. 5 )  
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In the classical path approximation, the correlation function fo r  electric 

dipole radiation is given by 

(11. 6) 

2 
where d and p denote the dipole moment and the density matr ix  fo r  

the radiator. 

represents the average over electron states (see Eq. (47) of paper I): 

a 
The thermal average denoted by the subscript av 

= p $ d $  P (g)W(v”) T t 2  (R,%, G, t )  d Ta($, x, v, t )  (11. 7) 
a ( T+(t) d T (t))  a a av 

where P(2) and W($) a r e  the position and velocity distribution functions 

for  the electron per turbers  (defined by Eqs.(37) to 

The time development operator for the system T (R, x, <, t )  is the 
a 

solution of the differential equation 

(40) in paper 11). 

and 

ih-T a ( t)  = [ Ho t Ve(t)] T ( t )  
a t  a a 

where 

t may be written in an interaction representation GZ 

A A = b  T (R, x, v, t) = exp (-itH /h) u (fz, S, 2, t )  
a 0. a 

(11. 8) 

ined by 

(11. 9 )  

(11. 10) 

7 



and 

N 

It should be noted that ^v ( t )  is identical with V ( t )  in paper I1 except 

that we have not yet made the no quenching assumption which removes 

the unperturbed par t  H in the Hamiltonian H in Eq. (11.11). Using a 0 

the time ordering operator 8, Ua(t) may be written in the form 

e e 

t { - %lVe(6, x, G, t ' )  dt' ' . (11. 12) (R, S, G ,  t )  = 6 exp I u 
a 

To evaluate the t race over atomic states in Eq. (11. 6), it is convenient 

to use the H 0 eigenstates 1 a) ,  I b) ,  * with the eigenvalues E EbJ ' 
Hence, using U ( t )  we have 

a 

(11.13) 

where 

w = (Ed-Ec)/h (11. 14) dc 

In paper I1 and 111, the correlation function C(t)  was evaluated 

for the case of no lower state interactions in order  to keep the math- 

ematics as simple as  possible because one of the U ( t )  operators in 
a 

Eq. (11.13) may then be replaced by a unit operator. In this paper we 

wi l l  give a more general evaluation of C(t) which includes lower state 

interactions. 

compact tetradic notation. Furthermore,  it should be noted already 

at this stage that we wil l  interchange the sequence of approximations 

F o r  this purpose we introduce in the next section a more 

8 



with respect to paper I1 by deriving the generalized unified theory 

before making the no quenching approximation. 

of the unified theory also useful for situations where the no quenching 

approximation cannot be made like, for  example, microwave lines. 

111. THE TETRADIC NOTATION 

This makes the results 

The purpose of the tetradic notation which w e  shall use is to 

write the product of the U (t) operators in Eq. (11.13) in t e rms  of a 

single operator. 

elements (a1 Ala') and ( B  I B1 @ ' }  where A and B may be any arbi t rary 

operator. 

A & B  according to 

a 
To do this we first consider the product of the matrix 

This product may be written in t e rms  of the direct  product 

where the product states lap) = la) 1 @ >  a r e  essentially the same as  the 

states of Barangers "doubled atom"(Baranger, 1962). This direct  

product, A BB, is a simple fo rm of tetradic operator. If one of the 

operators A o r  B happens 

denote this fact by means of superscripts 4 and r according to  

to be a unit operator I, we may conveniently 

That is, a superscript  

on the "left" subspace (in this case the l a ) ,  l a ' )  subspace) and a 

superscript  r denotes a "right" operator which operates on the "right" 

denotes a "left" operator which operates only 
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subspace. 

any "right" operator: 

It is thus clear that any "left" operator w i l l  commute with 

[A', Br3 = 0. (111. 4) 

With this notation, the thermal average in Eq. (11. 13) can now be 

written in the more compact form 
(111. 5) 

c) { dl U (t)l a)  ] a v =  [ (c l  U*(t)l a b) (dl U a (t)!  
a 

We have chosen to write (bl U t (t)l c)  as (c l  U 9 t ) l  b) simply for con- 
a .  ' a  

venience in the derivation given in later sections. 

of U ( t )  given in Eq. (11.12), we define operators "ve (R, x, v, t )  and 
- r  v e 

Noting the definition 

e 
-L A 3  

A *  (R,  x, v, t )  s o  that 

t (111. 6 )  

- 2  u'/ (R, x , ~ ,  t )  = 0 exp 
a 

V (R, g, $, t ' )  dt' 
= - r  A 
a U (R, x, v, t )  = 0 exp 

Since any "left 

have 

operator commutes with any "right" operator, we 

2. A >  3cl/( ( R J  x, v J  t, (111. 7) 

10 



where 

We have now succeeded in replacing the two U ( t )  operators by a more 

general tetradic operator v(t) which operates in both "left" and "right" 

subspaces. Eq. (111.5) thus becomes 

a 

(111. 9 )  

It is important to realize that the tetradic operator ?JI(t) is formally 

the same as the operator U (t); that is, it satisfies the same type of 

differential equation 
a 

(111. 10) ih LQ(R, A Z J  X, v, t )  = (C,Z, G, t)2Tf(R, A A a  x, v, t )  . a t  e 

This means that all of the line broadening formalism which has been 

developed for U (t) ,  will be directly applicabls to Q ( t ) .  

operators d' 
?.C 

a 

Hr 

To make the formal correspondence more complete we use the 
r A A A  vp' (2, 2, $, t )  and V (R, x, v, t )  to define the tetradics 

0' 0' e e 
and 3J (s, $, T?, t )  according to 

0 e 

Xo = HI - I? 
0 0 

(111.11) 

r A A a  j ,  4 a - 
e e ( R , x , v , t ) - V  ( R , x , v , t )  . (111.12) 
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Since any left operator commutes with any right operator we have 

v r  ( t )  = exp e e 

Hence 

which i s  formally the same as Eq. (11. 11). 

qr and ?!  w i l l  be given by a sum over binary interactions 1 or  1 

just  as  in Eq. (11. 4). 

It is also obvious that both 
-J 

e e 

(111. 15) 

t )  (III. 16)  V l ( R , x . , v . , t ) = V l ( R , x . , v . , t ) - V 1  (R ,x . , v . ,  L a 2  r b a  A & * A d >  

J J  J J  J J  

N 

The formal similarity between the operators H , V (t), V (t) ,  U (t), 

etc. and the tetradic operators X 1/ (t), 

simplify the treatment of the thermal average foe the general case of 

upper and lower state interactions. 

o e  e a 
(t), q ( t ) ,  etc. w i l l  greatly 

0' e e 
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IV. THE GENERALIZED UNIFIED THEORY 

Using the tetradic operators as  defined in the previous section 
w e  have for  the correlation function 

(IV. 1 )  

A >  where ( t )  denotes the thermal average o f v ( g ,  x, v, t): 

(IV. 2 )  2 2  -L 2 3  dx dv P($ )W($)q  (R, x, v, t )  , 

This tetradic operator 5 ( t )  is  formally identical to the operator F ( t )  

defined in Sec. (2. A)  of paper 111. 

to the F ( t )  defined by Eq. (19) of paper I1 if we would make the no 

quenching approximation at  this point. To preserve generality, however, 

the no quenching approximation w i l l  be deferred until a later section 

when we specify the 1 a ) ,  1 b),  . 
hydrogen. 

It would also be formally identical 

eigenstates to be H eigenstates for 
0 
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Following the formalism developed in Sec. 2 of paper 111, we 
- , L A  define an operator 5(R, x, v, t )  by 

so that 

(IV. 4) 

(cf. Eqs. (11) and (12)  of paper 111). F rom Eq. (111. 10) we see that 

which is formally the same as Eq. (13) in paper 111. 

a projection operator 63 which is identically the same as the operator 63 

defined by Eq. (14) of paper I11 (the fact that 63 now operates on tetradics 

does not change its definition). 

variables f(x, v) we have 

We next introduce 

That is, for any - function of electron 
> A  

(IV. 6) 

This relation holds whether f is a matrix, tetradic or any other type 

of operator. 

of paper I11 replacing H , V , V etc. byX , etc. A s  a result 

(cf. Eq. (27 )  in paper 111) we have 

With this operator we can follow the derivation in Sec. (2. B) 
N 

o e e  0 

14 



exp ( - i t% /h) s(t') dt' 
0 

where 

(IV. 7 )  

S ( R , x , v , t - t ' ) = O e x p  A > >  ( ~ , ~ , ? , t " ) d t "  

Returning to Eqs. (11. 5) and (IV. 1) we see that the quantity of interest 

is not z(t) but rather i ts  Fourier transform. 

-lu t 
(cdl%(t)l ba) dt 

e lut( cdl exp (-itW /h) z(t)l ba) dt 

(cdlJ(u,)l ba) g m e  lute dc 

0 

g m e  k t  (cd Iq t ) I  ba) dt 

where 

F rom Eq. (IV. 7) we see that 

Solving this equation by Fourier transforms gives 

(IV. 9 )  

(IV. 10)  

(IV. 11) 

(IV. 12)  

15 



where 

and AUJ is an operator defined by 
OP 

Aw OP = W-X 0 /h = w-(Hr-d')/h 0 0  . (IV. 14) 

With these results,  the line shape given in Eq. (11. 5) becomes 

(cf Eq. (I. 1 )) 

abcd 

(IV. 15) 

We next simplify X(Aw ) by means of the impact approximation 
O P  

(see Sec. ( 3 . 2 )  of paper 11). Basically this approximation assumes 

that the average collision i s  weak, that strong collisions do not overlap 

in time and that a weak collision overlapping a strong one is negligible 

in comparison (weak collisions a r e  those interactions for which a low 

order  perturbation expansion in 7.f provides a good approximation to e 
or S ; for strong collisions the full exponential must be retained). 

It should be emphasized again that we make a distinction between the 

impact approximation and the impact thmry. 

impact approximation as  well as other approximations like the com- 

pleted collision assumption which wi l l  not be made here. 

assume that the electron perturbers may be replaced by statistically 

independent quasi particles (e. g., shielded electrons). In Sec. ( 3 )  

and Appendix B of paper 111, it is shown that these approximations 

The latter contains the 

W e  also 
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(IV. 16)  

where 

and 

and n denotes the electron density. 

Equations (IV.  15) through (IV. 18) give the line profile of the 
e 

generalized unified theory. 

replace ~ ( A W  
OP 

the familiar result  (cf. Eq. (44) of Baranger, 1962). 

To obtain the impact theory we simply 

) by g(0) and as discussed in Sec. 4 of paper 111, we have 

g ( 0 )  = i . S t "  S: - 1)  dv (IV. 19) 

where S denotes an S-matrix for a binary (completed) collision and 

dv denotes the integral over collision variables, a s  defined in the 
1 

Appendix of paper 11. 
f 

(IV. 2 0 )  

In comparing Eq. (IV. 19)  with Barangers result it is important to note 

that Barangers operators S and S operate only on "initial" and "final" i f 
states respectively, whereas our operators S" and S1 operate on all 

r 
1 

17 



possible H eigenstates. This difference occurs because we have not 

made the no quenching assumption yet. 
0 

The other limit of the one electron theory is obtained by making 

a wing expansion of the unified theory; that is, the operator 

order  this gives 

i t A w  
. (IV.21) op -(I 5 1 (t) dt t - 

Aw op - fe  
The first term,  l / ~ w  

imaginary par t  required by Eq. (IV. 15). 

approximate radiation damping effects by using (AW 

gives a delta function when one takes the 
OP’ 

To get this delta function we 

t i e )  in place of 
OP 

(see Sec. ( 3 .  A) of Smith and Hooper, 1967); the imaginary par t  of 

When this delta function t e rm 
Am op 

1 /CAW op OP 
t is)  is just - ~ - T ~ ( A w  ) when €40. 

is averaged over ion fields according to Eq. (11.1) it will produce the 

line broadening due to the static ions alone (see Sec. 5 of paper 11). 

The influence of the electrons as w e l l  as electron-ion coupling is 

contained in the second t e rm of Eq. (IV.21). 

in the matrix elements of the Fourier transform of%(l)(t), which is 

also the quantity of interest in the unified theory (see Eq. (IV. 16)). 

pr imary difference between calculations made 5y the unified and one- 

electron theories is therefore the matrix inversion of [Aw 

which is required by the unified theory but not by the one electron 

theory. Since the matrix elements of the Fourier transform of 3(’)(t) 
play such a central role in any classical path theory (including the im- 

pact theory), the evaluation of these matrix elements for hydrogen will 

be discussed in detail in the following sections. 

Hence one is interested 

The 

-$,(Amop)] 
OP 
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V. THE NO-QUENCHING APPROXIMATION FOR HYDROGEN 

In the preceding section we have derived the thermal average 

z ( t )  and its Fourier transform.g(w) for  the general case of upper and 

lower state interaction. In order  to evaluate I ( w ,  e . )  in Eq. (IV. 15) 

we have to consider the complete t race over all H 
1 

0 
eigenstates 

!a), !b), * - -  . However, in looking at the Eqs. (IV. 9), (IV. 1 8 )  and 

(111.14) one realizes that due to the exponential factors only a few of all  

the possible matrix elements will contribute significantly to the final 

line profile at  a particular frequency w. 

matrix elements for which the argument of the exponential factor is 

so large that it gives r i se  to rapid oscillations within the range of the 

time integral. Hence, if one t reats  well isolated lines, only those 

matrix elements of U (t)  between either "initial" o r  "final" states 
1 

have to be considered. 

approximation a s  

That is, we can neglect those 

We may therefore state the no-quenching 

+t)  = u p )  U p )  f 

where U 
1 

subspace, but only on llinitial' '  o r  "final" states ( see also Sec. 2. 2 

and 7 .2  of paper 11). 

now no longer operates on the complete "left" or "right" 

Further  approximations cannot easily be generalized and depend on 

the particular problem investigated. 

to the problem of hydrogen. 

states that we need to consider only those matrix elements of U,(t) 

We now apply our general results 

In this case the no-quenching assumption 

1 

and o? (g, x' A t )  which a r e  diagonal in the principal quantum number 
1 1' vl' 

n. A s  shown already in paper I1 this is a good approximation as  long 

as the lines investigated a r e  well separated. F o r  calculating the line 

wings it is furthermore required that there is no appreciable overlap 
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with wings of adjacent lines in the region of interest. 

true also in any reliable measurement of line wings. 

The same is 

To show this we can proceed a s  in  Secs. 2 . 2  and 7.2 of paper 

I1 with the difference that now we a r e  dealing with the operator 

H = H + e a  rather than just H Since H does not commute with 

Z we introduce a projection operator P 

which picks out the par t  of an operator which is diagonal in n. 

this operator we split H 

0 a i a' a 
(see Sec. 2 . 2  of paper 11) n 

Using 

into a par t  which is diagonal in n 
0 

H = H  t e p a i  n (V. 2) on a 

and a par t  which is not diagonal in n 

= e(1-P ) ZP,.. Hoff n 1 

H now commutes with P Z because both operators a r e  diagonal in 
a n 

parabolic toordinates. 

pletely by the principal quantum number n, the magnetic quantum 

number m and the quantum number q which is defined to be 

W e  therefore specify their eigenstates com- 

n and n 1 2 
relation 

a r e  the usual parabolic quantum numbers which obey the 

n =  n t n2 t Iml t 1 . 
1 
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Knowing the solution of the eigenvalue problem 

H Inqm) = E Inqm) 
on nqm 

with 

= E  t e Z  E, 
nq i 

E 
nqm n 

we see from a second order perturbation approach (cf. Chap. 16 of 

Merzbacher, 1961) that the energy correction 

can always be neglected as  long as  the ion fields do not become too 

large. 

separated. 

This i s  again equivalent to stating that the lines have to be well 

As a i-esult one is left with the eigenvalues E , E . * - * *  
a b '  

of the Hamiltonian H whose eigenstates 1 a ) ,  I b) ,  1 d) a r e  the 

parabolic states 1 nqm). 

function C(t)  in Eq. (IV. 1 )  for hydrogen in the form: 

on 
This allows us to rewrite the autocorrelation 

A 

C(t,C,.) =x (nq m 12d!n'q'm' ) (n 'q 'm' ld\nqb%) 
1 a a '  a a  b b  

(V. 9 )  

where quantum numbers which refer to the lower state Are distinguished 

from the upper state quantum numbers by a prime. 
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The matrix elements of P Z a r e  given by (see Bethe and 
n 

Salpeter, 1957) 

(V. 1 0 )  
3 

(nqm! Zlnqm) = z nq - - - 2 nqao 

2 2 
with a = h /(me ) being the Bohr radius. AS a further definition the 

0 

ion field e.  will be normalized to the Holtsmark field strength t? 0 
1 

F”, = B-e  (V. 11) 
i 0 

where 

This yields 

2 
3 2  

e ’  0 = (+)- e 
3 e n  . (V. 12) 

(V. 13) 

with 

2 
3 
- 2 

h - (nqb-n’q’),n b e . 
(V. 14) 

AUI. is now the frequency shift of a particular Stark component char- 

acterized by the quantum numbers n, qb, n’ and q’ b due to the Holtsmark 

field strength eo. Introducing the frequency shift Aw = w - w  nn I where 

the frequency of the unperturbed line u) 
nn ‘ 

1 

is given by 

(V. 15) 
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the line profile I(aw, p )  can be written in the form 

J 

I(Aw, p )  = 2 (nq m 1 d! n‘q’m’) (n’q’m’ 1bl nq m ) 
7-r a a ’  a a  b b . .  b b  

(V. 16) 

where 

(n’q‘m’. nq m I.9’(w) ln’qim;; nq m ) = b b’ b b .  a a  (V. 17)  

Performing the ion field average according to Eq. (11.1) w i l l  then give 

us  the desired line profile once we know the thermal averageT(t) .  
4 1 )  VI. THE THERMAL AVERAGE 3 ( t )  FOR HYDROGEN 

In Sec. -1V. w e  saw that the crucial problem in any classical 

path theory of line broadening is the evaluation of the matrix elements 

of 5‘1 ’(t). With the no-quenching approximation for hydrogen a typical 

matrix element in parabolic states is given by 

(VI. 1) 

To simplify the evaluation we transform to the natural collision vari- 

ables p ,  v and t which denote the impact parameter) electron velocity 

and some reference time of the collision ( see  the appendix of paper 11). 

The orientation of the collision axes with respect to the radius vector 

R of the orbital electron is specified by the three Euler angles 

0 

A 
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represented by 0. Furthermore we assume a spherically symmetric 

distribution of perturbing electrons; this i s  a good approximation a s  

long a s  the impact parameters  a r e  not too small. The velocity dis- 

tribution function W(v) is related to the Maxwell distribution function 

f(v) by 

2 f (v)  = 4rrv W(v). 

With the preceding definitions Eq. (VI. 1) can be rewritten a s  

(VI. 2)  

(VI. 3)  

Next we have to know the matrix elements of the time development 

operator ql(t) defined by Eq. (IV. 18). This requires the matrix 

elements of the interaction potential F (t). In order  to save some 

writing we consider for the moment only U (t) and V (t) which after 

making the no-quenching assumption may be the f’initial’t o r  “final” 

par t  of the corresponding tetradic operators ( see  Eq. (V. 1)). 

typical matrix element of V ( t )  is given by 

N 
1 

1 1 

A 
N 

1 

With the no-quenching assumption the unperturbed energy eigenvalues 

E have cancelled. At this stage we now make another simplification 

by dropping the exponential in the latter equation; this has been done 
n 
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in all  previous Stark broadening calculations but i t  is rarely stated 

explicitly. 

the times of interest l / a w  a r e  small  and Aw is  much larger  than the 

average ion field splitting. In the line center, however, the argument 

of the exponential can easi ly  be on the order of unity or  larger  in 

which case V ( t )  effectively vanishes due to rapid oscillations of the 

exponentials. 

shows that this effectively introduces another cut off which may easily 

be smaller than the usual Debye or Lewis cutoffs. 

cutoff has been included in recent calculations( Kepple and Griem, 1968). 

However, 

final line profile is in most cases negligible. 

This w i l l  be a good approximation in  the line wings where 

N 

1 
This effect was f i r s t  noted by Van Regemorter, 1964 , who 

This additional 

as discussed in Sec. XI1 it turns out that i ts  influence on the 

Neglecting the ion field exponentials in Eq. (VI. 4). the time 

development operator U i s  now given by 1 
t 

U1 = 8 exp 1 - LjI? h o n l  V ( t ' )  dt '  1 (VI. 5) 

where the time ordering is still required because P V ( t )  need not 

commute with P V (t'). 

is negligible for weak collisions (to second order)  as well as  quasi- 

static collisions (i. e. , in the distant line wings). Time ordering i s  not 

negligible f o r  strong collisions; however, when the thermal average is 

performed, the e r r o r s  due to neglecting time ordering a r e  expected to 

be small. 

n l  
In paper I1 it  was shown that this time ordering n l  

The reason f o r  this is that the time development operator 

t 
U1 = exp 1-  P n L  V (t ' )  d t ' l  (VI. 6 )  

still retains its unitarity (cf. Sec. 8 of paper 11). 
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VII. THE MULTIPOLE EXPANSION O F  THE CLASSICAL 

INTERACTION POTENTIAL 

Before evaluating the thermal average?“ ’(t) we briefly consider 

the classical interaction potential V (t) due to a single electron. If the 
1 

per turber  does not “penetrate“ the radiator, V1( t )  is given by the well 

known multipole expansion 

7 
where I . .  R1 is the distance of the orbital electron from the nucleus, r(t) 

is the instantaneous distance of the perturbing electron, the P a r e  

Legendre polynomials and 0 ( t )  is the instantaneous angle between R 

and r(t). 

k A  

2s 

In most cases  it is sufficient to consider only the dipole ( k = l )  

term. However, to account for some asymmetries of a line, it may be 

necessary to keep some of the higher multipole t e rms  as well. 

case, one can show that this multipole expansion is terminated after 

some finite number of t e rms  due to symmetries of the radiator. 

In any 

> 5 
To show this we specify the angular positions of R and r(t) by 

e l ’  cP1 and022 cp2 respectively and we apply the spherical harmonic 

addition theorem (Eq. (4.6.7) of Edmonds, 1960) 

t k  

where 

cos 0 = cos 8 1 cos 0 2 f sin 8 1 sin 8 2 cos (cpl-cpz). (VII. 3) 

2 6  



We may simplify the mathematics without loosing generality by choosing 

a coordinate system in which cp = 0. Using the relation 2 

k 
Ck -P (e2,cp2 = 0 )  = (-1)P cp (e2,Fp2 = 0 )  (VII. 4) 

one then obtains 

which gives for the interaction potential 

(VII. 6) 

The dipole case ( k = l )  gives the well known result 

I (VII. 7) 
, 

The y-component vanished because cp - 0. 2- 
down the higher order multipole terms. 

of C a r e  given by 

Similarily one can write 

The necessary matrix elements 
k 
P 

' k t  t Q t  t f . 'm'IC k I tm}  = (-l)md-('f ) ( ) (VII.8) 
P m ' p m  0 0 0  
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From the last  3j-symbol we see that these matrix elements exist only 

if I , ,  k, & '  satisfy the triangle condition and their sum is an even integer. 

Therefore it turns out that, within the no-quenching assumption where 

one needs the matrix elements of P V ( t ) ,  only a finite number of n l  
multipole te rms  exist. 

to obey the condition 

The summation index k in equation (VII. 6 )  has 

1 s k <  2 (n-1) . (VII. 9) 

A s  an example we see that a calculation of the upper state interaction 

of Lymana  requires only the dipole and quadrupole terms. 

condition also illustrates the well known fact that there is  no ground 

state interaction for  the Lyman ser ies .  

This 

VIII. THE SPHERICAL AVERAGE OF THE TIME 

DEVELOPMENT OPERATOR cut, ( t )  
1 
4 1  1 In our evaluation of the thermal average 3 (t),defined in 

Eq. (VI. 3))we first  perform the spherical average represented by the 

integral over the Euler angles (I, because it greatly simplifies the 

remaining integrals over t This is  due to the spherical 

symmetry of the time development operator U ( t )  defined in Eq. (VI. 6). 

It should be noted that this symmetry was achieved by dropping the ion 

field exponentials in Eq. (VI. 4), thus replacing V (t) by V (t). We 

wi l l  perform this average by means of a rotation technique used by 

J. Cooper, 1967, and Barangeli, 1958, for S-matrices. Although we 

a r e  working with the more general time development operators 

U ( t )  o r  (t),  the rotation technique is the same. 

p and v. 
0' 

1 

N 

1 1 

1 1 
In te rms  of the collision variables p ,  v, t and 0, the dipole 

0 

interaction between the radiator and a perturber is given by 

Vd(t)  = e 2 a  R [- p t - v ( t t t  ) / [ p 2 t v  ,2 (ttt 02]; ) (VIII. 1 ) 
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(see the appendix of paper 11). The three Euler angles denoted by 

0 describe the orientation of the collision f rame relative to  the atomic 

frame. It i s  therefore convenient to perform a rotation of the atomic 

ax is  through the angles R in such a way that R points in the same dir-  

ection as: and the x axis of the rotated atomic frame points in the 

same direction as  v. In this rotated f rame,  the interaction potential 

> 

a 

takes the form 

(VIII. 2 )  

This rotation transforms the time development operator U into a new 
1 

operator U where U and U a r e  related to one another by 
1 c’ 1 IC 

(VIII. 3 )  

where 8 (Q) is a rotation operator (see Chap. 4 of Edmonds, 1960). 

time development operator in the rotated frame, Ulc, is given by 

The 

To make the form of U 

t ’  and we obtain 

more explicit, we perform the integral over 
IC 

u1 c = exp {- -$ -$ [PnZA(t, to, p ,  v)-P n XB(t, to, p ,  v) 
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and 

Substituting Eq. (VIII. 3) into Eq. (VI. 3 )  we see that the integral over 

n in Eq. (VI. 3 )  involves only the matrix elements of four rotation 

operators. 

taking matrix elements of 8 (0) , we make use of the unitary t rans-  

formation from parabolic to spherical states discussed by Hughes, 1967. 

Since i t  is convenient to use spherical states Id ,m)  when 

d,m' (VIII. 8) 

n-1 n-1 
2 

mm' (np,m'l nqm) = 6 
m-q m+q 

2 2 - m  

using 3j-symbols and the definitions in the Eqs. (V.  4) and (V.  5). (An 

e r r o r  in the phase factor has been pointed out by H. Pfennig, private 

communication). Noting that &(Q) is  diagonal in the angular momentum J, ,  

the n integral in Eq. (VI. 3) may now be written 

n'qAmL; nqbmbI N,(t)l n 'q 'mi ;  a nqama) dR = 
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where the summat ionxdeno tes  sums over da,Ga, I G b  , I , ; ,  m , m i ,  m 

C d 
The 0 dependence of the integrand in Eq. (VIII. 9 )  is contained and m’ 

entirely in the four  rotation operators 9 (0). 
(4. 6.1 )of Edmonds,1960, we obtain the identity 

d’ 

Using Eqs. (4. 3 . 2 )  and 

m’-m’ t m -m t M-M’ 
( 2 L t  1 )  

d b  c a  
81-r‘ (-1) 

L, M, M‘ 
(VIII. 10) 

Hence Eq. (VIII. 9 )  becomes 

h n ’ q i m i ;  nqbmb( u l ( t ) l  n’q’m’; a a  nq a a  m ) d0 = 

m’-m‘ t m -rn +M-M’ 
(2L t 1 )  

c a  d b  
8rr2 (-1) 

L, M, M‘ 
(VIII. 11 ) 

L 4 ;  ca ‘L ‘b 

( -m’m c c  M’)(-m‘m a a  ~ ) ( - m ~ m d ~ ‘ ) ( ~ ! ; ~ b  $) 
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This result  is spherically symmetric; that is, any further rotations of 

the atomic coordinate system leave this expression unchanged. 

may verify this rotational invariance by rotating U through some 

One 

IC 
-1  arbi t rary angle 0’ s o  that U = 8 (0‘) U i C  &(O’). Taking matrix 

IC 
elements of the new rotation operators and making use of the ortho- 

gonality properties of the 3j-symbols one sees that the right hand side 

of Eq. (VIII. 11) did not change. Since we a re  f ree  to perform further 

into an operator given by 1 

- 
U1 = exp 

0 

rotations on U without altering Eq. (VIII. l l ) ,  it is convenient to  

rotate the X-Y plane through an angle G =arc tg  (B/A)  where A and B 

a re  given by Eqs. (VIII. 6) and (VIII. 7). This rotation transforms U 

IC 

IC 

(VIII. 12) 

(VIII. 13) 

The operator has the important property that it is diagonal 
1 

in 

parabolic states (because it contains only P Z) .  

matrix element of U 

Hence a typical n 
is given by 1 

We also realize that one and the same rotation through the angle G= arctg 

(B/A) diagonalizes simultaneously both time development operators 
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acting on initial and final states respectively. 

matrix element of the corresponding tetradic operator 

A s  a result a typical 

1 

- 
( t )  is given by 

(VIII. 15) 

Substituting this identity into Eq. (VIII. 11) the spherical average of the 

time development operator ( t  ) finally becomes 

(VIII. 1 6) 

where the unitary transformations a r e  given by Eq. (VIII. 8). 

result greatly simplifies if  there is no lower state interaction (e. g., 

Lyman lines), in which case one obtains 

This 

(VIII. 17)  
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This simplified relation may also be used for  the higher se r ies  mem- 

bers  of the Balmer,Paschen etc. se r ies  where lower state interactions 

contribute only a negligible amount of broadening to the final line 

profile. 

IX. EVALUATION OF THE THERMAL AVERAGE 

$’ )( t) FOR HYDROGEN 

Having performed the spherical average over the Euler angles 

0 we can rewrite Eq. (VI. 3 )  in the form 

(IX. 1 ) 

where 

and 
A 

( t ,  to, p ,  v) = exp (nqc-n‘qfi) - m g (t, to, p ,  V) 

Thus, the problem is now reduced to evaluating F(t) ,  which will be 

done in this section. 

Eqs. (VIII. 13) and (IX.2) and the $-functionof Anderson an2 Talman, 

It is interesting to note the similarity between 

1955, which is the crucial function in their: classical adiabatic theory. 
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We f i r s t  realize that due to the symmetry of the line profile we 

only have to evaluate the rea l  par t  of 6 (t, t , p ,  v); that is, for every 
0 

positive value of (nq -n’q‘) there wil l  be the corresponding negative 

value. 
C C 

Hence we a r e  left with 

( I X .  4) 

kz performing the integrals over p and t 

shielding by setting the interaction potential V and hence also equal 

to zero whenever the distance of the perturbing electron i s  larger  than 

the Debye length D. 

In principle we can let the impact parameter go to zero because the 

functions 9 and F(t) do not diverge for small impact parameters as  they 

do in some second order  theories, However., for numerical purposes 

this would result  in very large computer times due to the growing 

fluctuations in the integral. 

small  enough so  that when we a r e  interested in large frequency per -  

turbations A w  where perturbers a t  small  impact parameters a r e  quasi- 

static, the r e s t  of the integral f rom 0 to p may then be replaced by 

the static limit. 

well known Holtsmark A X -  5’2-wing (see  also Sec. X). 

to the validity conditions of the classical  path theories (see Paper  I) the 

minimum impact parameter p 

in Eq. (IX. 2)  we account for 
0 

@ 

min. We also introduce a strong collision cutoff P 

F o r  this reason we wil l  choose p to be min 

min 
In the dipole approximation this gives r i se  to the 

According 

w i l l  be of the order of min 

2 
p 0 = X  t n a 

0 
(IX. 5)  

w h e r e x  i s  the De Broglie wavelength. 
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We now concentrate our attention on the integral 

/- 

J 

For  convenience we consider the collision sphere as  shown in Fig. 1. 

The perturbing electron moves along the classical straight line 

trajectory L and we a r e  interested in the interaction from some time 

t to some time t t t. Due to the Debye cutoff the t - integral extends 

from -T to t T where 
0 0 0 

T =  ' & - p  2 2  
V 

and the interaction potential 

sphere of radius D. 

the strong collision cutoff p 

vanishes if  the electron is outside the 

The corresponding time integration limit T due to 

is given by 
min 

V 
T =  (IX. 8) 

Based on this model of the collision sphere we split the integral G 

into two par ts  

where the step function U is defined to be 

1 if  a r b  

0 if a<b 

U(a>b) = (IX. 10) 
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In order  to evaluate G (t, p ,  v) we have to  distinguish the following 
a 

four cases depending on whether the initial and final times of inter- 

action are inside o r  outside the sphere. 

Case I: - T <  t ; t t t <  T 
2 0 0  

- 
0 0  $ 

(IX. 11 a)  

This is the same general expression as given in Eq. (VIII. 13). 

Case III: t < - T; t t t <  T 
0 O r  

Case IV: t < - T; T <  t t t 
0 0 

(IX. 11 d) 
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After defining 

the integral G i s  given by 
a 

T-t T - T  

Ga (t ,  p ,  v) = U(2T>t) mldto t 5 Zdto + e 3  dt 

‘[T T-t 1 T - t  O ’  

t U(b2T)  {r 2 0  dt ./‘tit 3 0  $i4Tdto] 

- T  -T-t  T- t 

(IX. 13) 

where we have separated the cases 

longer or shorter  than the time 2T required to cross  the collision 

sphere. 

where the time of interaction is 

In a similar manner we evaluate G distinguishing between the b 
following cases: 

Case I: - T <  t ; t t t c -7  
0 0  

or  ~ < t  ; t  t t < T  
0 0  

Case 11: T < t < T; T < t t t 
0 0 

(IX. 14a) 

(IX. 14b) 
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Case 111: t < - T; - T <  t t t < - T 
0 0 

Collisions which enter the strong collision sphere a r e  neglected because 

of the strong oscillations. This yields 

Gb(t, p ,  V) = U(T-T>t) 

(IX. 15) 

t U ( b T - r ) ( 1 6 2 d t o  p i i t o f  

T - T-t 

where again interaction times longer or  shorter than ( T-T) have been 

separated. In the expressions for G and G we realize after a change 

of variables that the corresponding integrals over @ 

identical. 

a b 
and Q 3  a r e  2 

From the Eqs. (IX. l l a )  and (IX. 12)  it i s  also clear that 

$4 - Performing the t 
i s  a symmetric function in z = t t - 6 

0 2 .  
integral one finally obtains 

F Ga(t, p 

t 

0 
dt f 

* m,) 
and 

(IX. 1 6a) 

(IX. 16b) 
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We now introduce the following dimensionless variables 

e and x o =  y with D =  iT2 , 
D *nee 

X =  

'=  to/T 

V u =  - with v 
V av 

av 

and the following abbreviations 

(IX. 17) 

7 4 2  - x2 

p = T =  - 
(IX. 18) 

W i t h  these definitions the preceding relations can be rewritten a s  



and 

GJs, Y, x, u) = cos c* gk(s, y, x, u) (Ix. 20) 

where 

c = C1'C2 (IX. 21a) 

and 

3 
C 1 = - 2 (nqc-n'q') C (IX. 21b) 

T '  
hG 

A - Jr0.03043 
10 

- 2kT 
c2 = 

m- D- v 
av 

Similarly we have for the integrals over t 
0 

and 

(IX. 22a) 

(IX. 22b) 

which leads to  the thermal average 

W .  

d x x  1-x 2.G ( s ,x ,u)  ( IX.23)  
a s ,  n , T) = 2nn D[ 3 d u p u  

e e 
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with 

G(s, X, U) = U(*x0) - G ( s ,  X, U) + U (X >x)’ Gb(s,  X, u). (IX. 24) a 0 

These integrals have been evaluated numerically using the program 

(FORTRAN IV) discussed in Appendix A. 

thermal average F as  a function of the normalized time 

parameters (nq -n’qb), ne and T. 

the Debye length and the lower cutoff in units of the strong collision 

cutoff p 

This program calculates the 

s for the 

The upper cutoff is given in units of 
C 

of Eq. (IX. 5). 
0 
Before we discuss the methods for obtaining the Fourier transform - 

of F(t) and the actual intensity profile, it is useful to derive the small  

and large time limit of?(t). 

integrals over 6 

the static wing. 

and yields the thermal average as  required by the impact theory. 

1 

The small time limit is determined by the 

and gives the asymptote of the thermal average for  1 
The large time limit depends only on the Q integrals 4 

In the small time limit H reduces to the form 

c m 2  r 
H +t, dtdO 

where 

(IX. 25) 

(IX. 2 6 )  

This expression depends only on the instantaneous distance r as  

expected in the static limit and the thermal average is therefore 

obtained immediately by the integral over r 

(IX. 27) 
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-+ 0 we can In the small time limit where F(nqc-n’q’ )  3 - h .  - t 
c m  2 

r then perform the integral with the result  C 

Fo r  the limit of large times of interaction we have to solve the 

integ r a1 

For  simplicity we set  p equal to zero ( for  p # 0 see Appendix B). 

After a change of variables and a partial  integration the integral can 

be rewritten as  

0 0 

2 
dz  a t )  t- = - 2rrn e tD v av 4 u2e-u .$--- l + z  2 

0 

(IX. 30) 

The z -integral is  known as  Raabe’s integral (see p. 144 of Bateman, 1 9 5 3 )  

and can be expressed in te rms  of exponential integrals. Furthermore, 

from Eq. (IX. 2 1 )  we realize that for  most practical situations C e l .  

Keeping only the leading t e rm in C we have 

(IX. 31) 
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where 

case n [.m-3] T e [ 
A 8.4. I O  I 6  12200 

B 3. 6-10 l 7  20400 

C 1.3- 10 l 3  1850 

e 

(IX. 32) 

experiment 

2;. Boldt and W. S. Cooper, 1964 (cascade a r c )  

R. C. Elton and H. R. Griem, 1964(Tshock tube) 

C. R. Vidal, 1964,1965 (RF-discharge) 

The large time limit of the thermal average in Eq. (IX. 31) is required 

for the calculation of the line center and all modern impact theories give 

the same result  except for the additive constant B whose value de- 

pends on the particular cutoff procedure applied. Appendix B gives 

a summary of the different constants obtained in the l i terature which 

vary considerably. 

final line profile depends on the value of the constant C. 

will be small  i f  - In (4C ) is considerably larger  than the uncertainty 

in the additive constant B. Furthermore,  the large time limit of the 

thermal average affects primarily the center of the line profile and 

its contribution vanishes when moving into the line wings. 

To what extent this uncertainty shows up in the 

The influence 
2 
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These parameters correspond to experiments which, as  stated already 

in the introduction, have revealed the largest  discrepancies between 

experiment and the modified impact theory. We  wi l l  concentrate our 

attention on the high density case A and the low density case C, since 

case B is regarded as  being less  accurate because of lacking absolute 

intensity calibrations. - -  
Figures 2 and 3 show the normalized thermal average F/ F as 

0 
N a function of the dimensionless variable s = w . t fo r  the cases A and C. 

Figure 3 shows the results for  three different Stark components 

specified by the quantum numbers n k =  nqc-n ' qc ' F 

time limit according to Eq. (IX. 28) whose Fourier transform leads to 

the static wing. 

P 

- 
is the small 

The dashed lines a re  obtained with a lower cutoff 
2 = %  t n a . It can be seen that for  case C the dashed curves - 

Pmin - Po 0 

get closer to the static limit 

the thermal average 

than for  case A. In order to obtain 
0 

for the limit p + 0 the numerical calculations min 
were finally performed with typically p 3 0. 01 p so  that and 

min 0 c alc - 
F differed less  than about 0. 1% over at least  one order of magnitude 
0 

in s. F a r  smaller values of s ,  where a n d F  s tar t  to differ 
c alc 0 - 

again, F is then replaced by . In this manner we obtain the solid 

curves in Eqs. 2 and 3 which are  used in the following. 
calc 0 

It should be noted that these curves a re  calculated on the basis 

of the dipole approximation. 
2 

p 2 n a 

values 

It is clear that for  impact parameters 

Since the higher multipole te rms  have to be considered. 

of interest a r e  approximately given by s < u) /Aw, one expects 
0 

" s 
D 

higher multipole terms to be less  important the closer 

to for p = n a . This is  consistent with the experimental fact 

gets 
calc 2 

0 min 0 

that in case A an asymmetry of the line has been observed which cannot 

be explained within the dipole approximation, while in case C no 

asymmetry has been observed. 
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IL 

F o r  large s Figs .  2 and 3 show the transition to F as given 

in Eq. (IX. 31), which forms the basis for the familiar impact theories. 
63 

X. THE FOURIER TRANSFORM OF THE THERMAL AVERAGE 
c 

Having calculated the thermal average F(t) we now focus our 

attention on the evaluation of its Fourier transform 

as required by Eq. (V. 17) (see also Eq. (IV. 16))where the dimension- 

le s s variable 

is the frequency separation from a particular Stark component 

(cf. Eq. (V. 14)) for an ion field strength R in units of the plasma 

frequency; . 
P 

The thermal average F ( s )  does not immediately allow a straight- 

forward Fourier transformation because for large s F( s )  is proportio- 

nal to s according to Eq. (IX. 31), hence i(Aw This diver- 

gence is due to the fact that we neglected the finite lifetimes of the un- 

perturbed states involved which naturally terminate the maximum time 

of interaction s. 

factor exp ( - 6 s )  which can be obtained by replacing the delta function 

in the power spectrum of Eq. (3) in paper I by a narrow Lorentzian 

line with a natural width e (E. Smith and Hooper, 1967). In the final 

line profile, however, natural line broadening is always negligible with 

respect to Stark broadening which allows us to set  e to zero without 

) diverges. R 

This may be taken care  of by introducing a convergence 
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affecting the shapz of the profile. Fo r  this reason we will evaluate 

F(s) is known numerically and there a re  many ways to perform the 

Fourier transform. 

notice that according to Eqs. (E. 28)  and (E. 31), F(s) has the following 

asymptotes 

In order to find the most convenient method we 

3/2 - 
for s40: F ( s )  = p l s  

0 

(X. 4) - 
S-W: F ( 6 )  = p2s , 

W 
and for 

where 

and 

2 3 3/2 p1 = - - n  D (2nC) 3 e  

The transition f r o m F  to 

changes only by 1/2 over the entire range. 

may be approximated by a function G( s )  whose Fourier transform can 

be given analytically and whose parameters may be determined by a 

least  square f i t .  

is very smooth because the power in s 
0 W 

It has been found that F(s) 

The function G( s )  can be given in te rms  of the ser ies  

where the number of terms in the ser ies  depends on the required 
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accuracy. As a f i rs t  approximation Eq. (X. 4) suggests 

2 
a s  

with 

a1 = P2 

and 
2 

bl = 3(P2/P1) 

G1( s) has the small and large s behavior of F( s) .  It then turns out 

that 

5/2 - 
f o r  s+O F ( s ) - G l ( s )  = p3s 

- 
and for  s-rm F(s) - G l ( s ) =  p4 , (X. 9 )  

where p and p now have to be determined numerically. Consequently 

we take G2(s) to be 
3 4 

It then becomes apparent that G (s) is given by k 
3k- 1 

a- s 
k 

Gk(S) = ( s  2 t2bks)  2k-3/2 

(X. 10) 

(X. 11) 
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such that one obtains 

00 
2-k and for S+W: G ( s )  = x p 2 k .  s 

(X. 12) 

(X. 13) 

k= 1 

In this manner the Fourier transform of any G (s)  can be expressed 

in te rms  of modified Bessel functions K and K For  all situations 
k 

0 1' 
calculated it was found that G ( s )  and G ( s )  were sufficient to keep 1 2 
the deviation F(s)-G(s) smaller than 1% for all values of s. 

situations a fit better than 270 was obtained with G (s)  alone. 

further advantage it should be noted that this method tends to suppress 

"noise" introduced by the numerical evaluation of F( s). 

In some 

As a 1 

In the following we evaluate the Fourier transform i(k, 1 of R 

Their sum will then give us the desired Fourier  transform i (aw ). In 

particular we a r e  interested in i ( k s 1 , A u )  ) and i(k = 2, h m  ). We have 
R 

R R 

(X. 15) 

49 



Introducing 

z1 = bl AwR (X.  16) 

one finally obtains 

2 = al Obl (cos  Z - i sin Z ) 1 1 
(X. 17) 

Y andY Bessel where H(')and 0 H ( l ) a r e  1 Hankel functions and J 0' J1' 0 1 
functions. 

report a r e  consistent with the definitions as given, for example, by 

the NBS Handbook of Mathematical Functions (Abramowitz, 1969). 

For  large arguments Z 

expans ion 

These functions like all the other functions used in this 

it is also useful to have the asymptotic 1 

-9 L 1(1 t 5 3-  5. 7 a - b  
i+---(l-i)- - 3 1 1  

z1 
i l ( A c u R )  = - - 

(X. 18) 
(l+i)+ - - ? . . . . . .  

9.25*49*11 
-i) t. 9- 25- 7 - -(l 3 3  2.8 Z1 85 z; 
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Using  Eq. (X. 5 )  f o r  p, the latter re la t ion  g ives  us exac t ly  the H o l t s m a r k  
-512 I 

A x  wing f o r  all Stark components  

(X. 19) 

In a similar w a y  one d e r i v e s  

-6 S iAw Rs 

s t 2 b  s 
(X. 20) = - -  a 2 lim - 1 - d3 70- d2 d s  . 

de3 db 2 
3 €30 T 

W i t h  

(X. 21)  = b Aw '2 2 R 

one f inal ly  obtains  

a b  
i2(bWR)= 6 2 2  e f H(1) (Z2) ( i16Zi -36Z  0 2 - i l 5 )  

t H(:)(Zz) (16Z2 2 t i28Z2-3)  

a b  (X. 22)  
-- (cos z -i sin z ) - 6  2 2 

1 2 2 
) t J 1 ( Z 2 )  (16Z2-3)  - Y 0 (Z,) (16Z2-15)  - 28Z2Yl(Z2) 

2 (16Z2-15) t 2 8 2  J ( Z  ) - 3 6 2  Y ( Z  
2 1  2 2 0 2  
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The asymptotic expansion for large Z 2 is given by 
" 
I 

35.63 
2 

2 -  R 128Z2 

a b  35 (1t-i) - - (1-i) t - 15 2 2 
i (Aw ) = =  - 

(X. 23) 

If one requires an even better f i t  of G ( s )  to F ( s )  the general transform 

i(k, hwR) a s  defined in Eq. ( X  . 14 ) is given by 

(X. 24) 

4k"hk- 2 ) ! 1 k t l  dktl - ak '2% -(-'I k+l 2k-2 
d s d  (4 k-4)! Tr 

- 

Finally we want to show that this technique always gives the static wing 

according to Eq. (X. 19 )  for large Aw. 

perform the Fourier  transform of the small  time limit of G ( s )  as given 

in Eq. (X. 13). 

F o r  this purpose one has to 

- (1-i) - t - .  . 5- 7.9 p7 - 
8 3 

R 
Clu, 
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One recognizes that the f i r s t  two terms are  identical wi th  the first 

terms in the Eqs. (X. 18) and (X. 23) .  Hence, we always obtain the 

static wing for large ~w R' 
Another important property of i ( A m  ) is that for small Aw R R its 

leading terms in the expansion a re  

b l b l  -a2) 
-I- ..... -i 1 1 a 

'IT 2 i ( A w R )  = - - - 
T A W  

MJ R (X.  26) 

In this manner it smoothly goes over to the Lorentz profile of the un- 

modified impact the o ry , 

Before discussing the numerical results of i ( A W  ) we f i rs t  l ist  R 
the constants a 

of Sec. IX. a and b a re  determined from Eq. (X. 8),  where p is 
1 1 1 

given by Eq. (X. 5) and p 

computed F( s). 
'2 comp. 

may differ slightly from p 

much smaller than unity because p 

which is true for any value of C and goes over to Eq. (X.  5 )  for small  

C. a and b a r e  determined numerically by a least  squares fit. 

The maximum deviations f rom F ( s )  obtained with G ( s )  alone and with 

G ( s )  t G ( s )  a re  listed too. 

and b k k for the cases A, B and C as  specified at the end 

is taken from the large time limit of the 2 

as  calculated by the program of Appendix A 

as  defined in Eq. (X. 5), if C is not very 2 
is based on Eq. (A. 18), 2 comp. 

2 2 

1 

1 2 
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In presenting the numerical results of i ( A w  

par t  which turns out to  be the most important part ,  

two different normalizations. In Figs. 4 and 5, i(&u ) is normalized 

with respect to the large frequency limit i ( A w  

range of the static theory. 

of the Weiskopf frequency 

) we concentrate on the real R 
W e  have chosen 

R 
) to show the useful m R  

The short vertical lines mark  the position 

(X. 27) 

f o r  a particular component (nq -n‘q’ ) which according to classical  

arguments determines roughly the range of validity for the static 

theory ( see  p. 321 of Unsiild, 1955 and paper 11). It should be pointed 

out that AUJ 

both cases  A and C AUJ 

well. 

static asymptote, A ~ J J  

of magnitude. 

line profile calculations 

C C 

is usually defined in t e rms  of an average Stark splitting. In 

describes the range of the static theory very 

If one allows for a deviation of about 10% at the most f rom the 

C 

C 

may be lowered effectively by more than an order  
C 

A more  detailed discussion is given later with the final 

The other normalization with respect to the small  frequency 

O R  limit i (AUJ ) is shown in Figs. 6 and 7 for cases A and C again. These 

plots demonstrate the useful range of the unmodified impact theory, 

which is based on i (AUJ 

plasma frequency, a s  can be seen in Figs. 6 and 7. In order to extend 

the range of validity, the modified impact theory makes an impact para- 

meter  cutoff at v/Aw ( the Lewis cutoff) whenever this is smaller than 

the Debye length D; this cutoff accounts for the finite time of interaction 

to second order. 

ponding function i ( ~ w  ) has been included in Figs. 6 and 7. Since 

the usual derivation of i 

one expects the best agreement between the Lewis result and our result, 

which considers the finite time of interaction to all orders ,  for the 

) and is expected to break down around the O R  

More details a r e  given in Appendix B. 

Lewis R 

The cor res -  

(AUJ ) is based on the limit of very small C, Lewis R 
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situation with the smallest C. That this is in fact true can be seen 

from the low density case with nq -n'qL = 3.  

again in Fig. 8, in order to demonstrate the importance of G ( s )  for 

those cases where the deviation of G ( s )  f rom F(s) is large (Table I 

gives a maximum deviation of 13'70). 

This component is plotted 
C 

2 

1 

Figures 6 and 7 also cQntain the static limit i ( ~ w  ) (dashed 

lines) and the Weiskopf frequency ~w . 
Lewis results get to the static limit. 

values of C the deviation of i (hw 

larger.  In his line wing calculations (Griem, 1962, 1967a)Griem adjusts 

in such a manner that the Lewis result his "strong collision term" E 

is identical with the static limit a t  the Weiskopf frequency. In the Figs. 

w R  
It gives an idea how close the 

One notices that with increasing 

) f rom the static limit becomes 

C 

Lewis R 

BP ' 

6 and 7 this means that the straight line representing i (MR) is Lewis 
as defined in shifted to the right until it cuts Aw . 

Eq. (X. 27) for every individual component instead of the average value 

hwc = kT/(hn ) used by Griem. 
appreciably above the curve i(c\w 

definitely overestimates the electron broadening as  already observed 

experimentally (Vidal, 1965; see also Pfennig, Trefftz and Vidal, 1966). 

A better method would have been to adjust E 

forms a tangent of the static limit. 

adjustment of E 

impact theory and also defeats the purpose of the Lewis cutoff, namely 

to correct  the completed collision assumption to second order. 

We use here  Aw 
C C 

2 Since the Lewis line would then lie 

R 
) one realizes that this procedure 

such that i ( A W  R) eP Lewis 
However, it is c lear  that any 

effectively changes the range of the unmodified 
BP 

Finally it ought to be emphasized again that except for the time 

) as pre-  ordering the Fourier transform of the thermal average i(&JJ 

sented here  takes into account the finite time of interaction to - all  orders. 

Hence, for small  A W  

large bwR it gives the static limit without requiring a Lewis cutoff. 

R 

it goes over to the impact theory limit and for R 
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XI. THE ONE-ELECTRON LIMIT FOR HYDROGEN AND THE 
ASYMPTOTIC WING EXPANSION 

Having obtained the Fourier transform of the thermal average 

i ( A W  

evaluating I(cu,e . )  according to Eq. (IV. 15) and averaging i t  over all 

ion fields according to Eq. (11. 1). As explained in Sec. IV. this problem 

is greatly simplified in the one electron limit where no matrix 

version is required and the intensity I ( A w )  is given by 

) we a r e  now prepared to calculate the actual line intensity by 
R 

1 

in- 

I(Aw = Ii(Aw t P(R) I (Aw, R ) dS . (XI. 1 )  1 
I.(Aw) is the static ion contribution originating from the f i rs t  t e rm 

l /bwop in Eq. (IV. 21) and I(Aw, 8 )  is  given by 
1 

dl n’qa’m‘) (n’q’m’ 1 dl nq m ) 
a b b  b b  

(XI. 2) 

using the definitions of Eqs. ( V .  14) and (X. 2) .  

is assumed to be constant over the relevant initial states. 

(IX. 1 )  the las t  expression can be rewritten a s  

The density matrix p a 
With Eq. 
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where the dipole matrix elements have been transformed from parabolic 

to spherical states and the summation over intermediate states Iny m ) 

and 1 n’q’m‘) has been performed. 

theorem (see Eq. (5.4.1) of Edmonds, 1960) to the dipole matr ix  

elements and replace the reduced matr ix  elements by the corresponding 

radial matr ix  elements (see Bethe and Salp.eter 1957). 

a a  
We next apply the Wigner Eckart 

a a  

(XI. 4) 

Inserting this relation into Eq. (XI. 3) and using the orthogonality 

properties of the 3j-symbols we have 
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If we finally replace the unitary transformation by the corresponding 

3j-symbols according to Eq. (VIII. 8)  the result is 

(XI. 6)  
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The preceding relations hold for the general case of upper and 

lower  state interactions. 

lower state interaction (e. g . ,  Lyman lines). Then one obtains 

They simplify considerably if  there is no 

with 

Equation (XI. 7) may be further simplified by evaluating the 3j-symbols 

and m with the result. and summing over mb C 
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These simplified relations may also be used fo r  the higher series 

members of the other series,  whose transitions do not end on the 

ground state if lower state interactions contribute only a negligible 

amount of broadening to the final line profile. 

The foregoing relations for the one electron limit essentially 

represent the asymptotic expression fo r  the intensity in the line wings. 

If one is interested in frequency perturbations &JJ which a r e  significantly 

larger  than the average ion field splitting Eq. (XI. 1 )  can be simplified 

by replacing the ion field average of the electron contribution by the 

electron contribution for the average ion field fl av 

with 

m 

(XI. 10) 

(XI. 11) 

If ~ ( u  is very much larger  than the average ion field splitting, then 

according to Eq. (X. 2 )  f i w R -  A w f i p  and I(hw, R a v )  may be replaced by 

I(&lJ, R= 0). 

(XI. 1 2 )  

In the limit p 

i ( a w  ) depends no longer on the quantum numbers q and q’ which 

specify the Stark components shifted by the quasistatic ion fields. 

allows us to sum in Eq. (XI. 7)  over q 

case of no lower state interaction 

0 the Eqs. (XI. 5) to (XI. 90 simplify drastically because 

R b b 
This 

and m 
b b 

which gives us for the 
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(XI. 13) 

2 (n-1) 

- - I ( n l  1 2 r 1 10) \ C (n2+(-l )q+n (n2-2q2)) i U ( A t u ,  R=o, n, q)  
2(n -1) n 

q= - ( n- 1 ) 

F o r  the general case of upper and lower state interaction we can sum in 

Eq* 

we finally sum over the intermediate spherical states to obtain 

6 ,  Over qbY mb, m’ b and M and after applying Eq. (XI. 4) 

m, m ’  
How far into the line center the simplified relations (XI. 10)  and (XI. 12 )  

may be used, depends on the required accuracy. Numerical results, 

which compare the asymptotic wing expansions with the more rigorous 

unified theory calculations describing the entire line profile, a r e  given 

at the end of the next section. 

XII. THE UNIFIED THEORY FOR HYDROGEN 

In those cases, where the entire line profile including the line 

center is required, the line intensities have to be calculated on the basis 

of the unified theory. It has to be pointed out that in principal even in 

calculating the distant line wings the unified theory has to be used when- 

ever AUJ 

This will happen in the final integration over ion fields whenever B is 

close to 

in Eqs. (X. 1) o r  (V. 1 7 )  is no longer large compared to unity. R 

(XII. 1 ) 
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However, it w a s  shown in the last section, that for  l a rge  gw 

one may use one of the asymptotic expansions in Eq. (XI. 10)  and (XI. 12) .  

In the unified theory we have to evaluate the following expression 

I (Au , ,  8 )  = Im x( nqamal dl n’q’m’) (n’q‘m’ 1 dl nq m ) 
TT a a  b b  b b  

(XII. 2) 
r 1 - 1  

The matrix elements of aw 
parabolic states and a r e  given by 

(n’qAmL; nqamaI c\(u 

as defined in Eq. (IV. 14) a r e  diagonal in 
OP 

I n’qimi ;  nqama)= A U J - A U J ~ ( ~ ,  q a 9 n’, 4;) A 
OP 

(XII. 3 )  

where is defined in Eq. (V.  14). The matrix elements of S.(c\w ) a r e  

given by 
i O P  

(n’q’m‘; nq m I x ( A ~ ~ ~ )  1 nq’ml; nq m ) = 
a a a  b b  b b  
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Eqs. (IV. 16), (IX. 1 )  and (X. 1). This relation simplifies sig- 

nificantly in case of no lower state interaction in which case we need the 

matrix elements 

(XII. 5) 

Due to the delta function the matrix of the operator b: is then block 

diagonal in m, which reduces the size of the matrices to  be inverted 

to n x n o r  (n-1) x (n-1) depending on the quantum numbers n and m. 

Furthermore,  Eq. (XII. 2 )  simplifies in case of no lower state interaction. 

After transforming the dipole matrix elements from parabolic to spherical 

states,  applying the Wigner-Eckart theorem (see Eq. (XI. 4)) and using 

Eq. (VIII. 8)  one obtains 

( 9  n- 1 
2 

m+qb 

2 

1 \ 

- m  

Im 
Tr 

(XII. 6)  

In order to keep the mathematics simpler we concentrate in the 

following on the case of no lower state interaction, because it covers the 

experimental situations of case A and B and is also a good approximation 

to the higher Balmer lines of case C (see the list of references at the 
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end of Sec. IX). Including lower state interactions means at this stage 

only a more extensive summation over 3j-symbols because the crucial 

function i(bw 

already been evaluated f o r  the general case of upper and lower state 

int e r a c tions . 

R ) ,  the Fourier transform of the thermal average, has R’ 

Using the unitary transformation of Eq. (VIII. 8), Eq. (XII. 5)  

may be rewritten as  

‘atqb ntm-1- 7 

n- 1 
2 
- 

2 
L 

/ n-1 

mc -qc 
mc\  2 

n- 1 
2 

2 

2 

-m 
C 

n- 1 
I ,  - 

2 a 

mtqb 
-1T: 2 

, 

(XII. 7)  

where we have used the fact  that i (Aw 

and that i ( ~ w  8 ,  n, qb, qc = 0 )  = 0. 

6 ,  n, qb, 9,) = i u ( A W R y  !3, n, qb7 -qC) u R’ 
We also realize that 

u R’ 

A computer program (FORTRAN IV), which evaluates I (Aw,  e )  according 

to Eqs. (XII. 6 )  and (XII. 7) and also performs the final ion field average 

according to Eq. (11. 1) is presented in Appendix C. The ion microfield 
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distribution function employed is the one given by Hooper, 1968a, 196813, 

which differs less  than about 1% from the values determined independ- 

ently by Pfennig and Trefftz, 1966. 

Fo r  the experimental parameters of case C, Figs. 9 and 1 0  

show numerical results of I(Aw, f! = 1 0 )  for n = 6 and n = 10. The fat 

vertical lines indicate the relative intensities and the positions of the 

Stark components for the static field (ion field) 6 = 1 0  and it demon- 

s t ra tes  the electron broadening. 

Figures 11 to 13 show the final line profiles I(Aw) after per-  

forming the ion field average for the experimental cases A, B and C 

(see end of Sec. IX). 

accuracies of about 27'0 it is in all 3 cases  sufficient to consider only 

G l ( t )  meaning that i(AWR, 13, n, qb, 9,) may be replaced by 

il(nt.uR, B, n, qb, q ) a s  given in Eq. (X. 17). 

Table I, G ( t )  may differ from F(t) for  some components of case C 

by up to 1370, it turns out that after summing over all Stark components 

and averaging over ion fields this difference F(t) - G l ( t )  is apparently 

smeared out over the entire line profile and affects the final line 

profile by not more than about 270. 

practical calculat ions, because it no longer requires an extensive 

evaluation of the thermal average anymore, but for most practical 

situations it is sufficient to calculate the line intensities directly on 

A s  a first result  it turns out that for numerical 

Although according to 
C 

1 

This is very convenient for 

the basis of G ( t )  whose specifying constants a 

immediately by the Eqs. ( X .  8)  and (X.  5). 

and b a r e  given 1 1 1 

This is even more true in view of the fact that the final line 

profile is partially affected by an uncertainty in  the constant B a s  

defined in Eq. (IX. 31) or  (B. 19). A s  summarized in Table I1 of 

66 



Appendix B 

a problem, which has not yet been solved satisfactorily. 

i ts  actual value depends on the cutoff procedure applied, 

The upper 

cutoff parameter a = /D (see Appendix B) and therefore also the 

limits on the ( t ' )  dt '  can in principal be decided within 

the frame work of the classical path theory ( see  also Chappell, J. 

Cooper and E. Smith, 1969). The lower cutoff parameter,  however, 

which essentially replaces the dynamic strong collisions not amenable 

in a classical path theory, can only be determined conclusively f rom a 

quantum mechanical theory which is also able to handle strong collisions 

and which does not yet exist. The constant B adopted here  is based on 
3 2  
2 = x t  - n ao, which specifies approxi- a lower cutoff parameter p m in 

mately the region of validity for the classical  path theories ( see  paper 

I). 
used in the l i terature (see summary of Appendix El) a r e  also included 

in Figs. 11 and 12 for the cases A and B. 

is the one adopted in the recent calculations of Kepple and Griem, 

1968, while the smallest value of B is obtained fo r  p 

and choosing an upper cutoff of p = 0.606D as proposed by Chappell, max 
J. Cooper and E. Smith, 1969. F o r  case C this variation of the con- 

stant B does not show up in Fig. 1 3  and amounts to an intensity change 

of at  the most about 470. These variations indicate the reliability of 

the classical  path theories and demonstrate that fo r  some cases the 

e r r o r  estimates given in the literature are too optimistic. The effect 

on the final line profile due to the uncertainty of the constant B will 

be small if either according to Eq. (IX. 31) 

Numerical results based on other values for the constant B as 

The largest  value B = 1.27 

3 2  = ;K t -n a 
min 2 0 

-2 I n  (2C) >> 1 (XII. 9 )  
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o r  if (like for  the higher se r ies  members) the number of Stark com- 

ponents is large which tends to smear  out the influence of the constant 

B. 

normalized independent of the value of the specifying constants of a 

particular line. Hence, any variation of the constant B does not affect 

the normalization of the line profile. 

It should be pointed out again that the unified theory is intrinsicly 

In comparing the numerical results for case C, with the 

experiment it has to be kept in mind that we a r e  comparing the higher 

Balmer lines with calculations for the higher Lyman lines, because 

our final line profile calculations have not yet taken into account lower 

state interactions. This means that in a plot of the intensity versus the 

wavenumbers AT, which is essentially an energy scale, the line profiles 

cannot be expected to coincide because of the difference in the Stark 

effect. 

by Vidal, 1965. 

ing normalization in order to be able to compare the measured profiles 

of the Balmer lines with the calculated profiles of the Lyman lines. 

This means that in a plot of log I versus log r\o we can compare the 

line shape of the corresponding lines directly. The agreement is 

remarkable. 

was shown to be negligible and where lower state interactions no 

longer affect the line shape noticeably, the agreement is better than 

2% over the entire measured line profile, which for n = 8 extends over 

3 orders  of magnitude in intensity. 

also the surprisingly large range of the AUJ 

to 1/10 of the maximum intensity. 

purely static theory considering also shielding effects. F o r  the lower 

lines the calculated profiles have to be folded into a Doppler profile in 

order  to achieve similarly good agreement. 

This gives r i s e  to different static wings as  explained in detail 

Hence, we have to rescale the Lyman profiles preserv-  

For  the higher lines, n 5 8, where Doppler broadening 

In particular, the calculations show 

- wing, which extends 
- 512 

This fact is not explainable by a 

For  the lower line we 
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also expect in the line center some influence due to lower state inter- 

actions on the line shape, which i s  partially removed again by Doppler 

broadening. 

A more detailed study of the Aw -5/2-wings reveals some other 

interesting facts. In Fig. 13, the dashed lines indicate the asymptotic 

aw 5/2-wings; except for  n = 5 and n = 6, what appears to be a ~ ( u  

-wing in the measurements and calculations is not the asymptotic 

-wing in the region of interest. Holtsmark c\w 

calculations to even larger  frequencies Aw,  all the wings wi l l  ,eventually 

coincide with their asymptotic limit. 

Table I1 gives a list of the electron densities, which w e r e  evaluated 

-wing was under the erroneous assumption that the measured ~w 

the asymptotic Holtsmark wing; i t  was stated that for H to H 
4 14 

electron densities coincide within f 470. 
the values, which have been plotted again in Fig. 14 reveals a syste- 

matic trend. F o r  large and very small  principal quantum numbers the 

electron density values r i s e  above the average value, while the min- 

imum value w a s  obtained for  n = 7 .  From Fig. 1 3 ,  i t  now becomes 

apparent that the electron densities based on the asymptotic 

Holtsmark wing wil l  go up for increasing n. For  smaller n the 

quantum number dependence of the electron density is  masked by 

Doppler broadening which raises  the wings again and explains the 

increasing values of electron density for small  n. 

result  can be seen f rom Fig. 13.  

the line intensities a r e  much smaller than predicted by a quasistatic 

theory. This was observed f i r s t  by Schliiter and Avila, 1966 and the 

effective electron densities for a quasistatic theory as a function of c\x 
show the qualitative behavior measured by them after unfolding the 

- - 5/2 

If one extends the - 5/2 

In the paper of Vidal, 1965, 

- 5/2 

the 

A more careful analysis of 

Another important 

For  small principal quantum numbers 
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Doppler broadening. This observation together with the measurements 

of Boldt and Cooper, 1964, suggested the semiemperical procedure 

proposed by Edmonds, Schliter and Wells, 1967. A detailed quantitative 

comparison requires for the first se r ies  members a consideration of 

lower state interactions, which is in process. 

Fo r  the parameters of case C, Kepple and Griem, 1968,have 

already calculated the lines H 

extended to H 12 
the same computer program. 

comparing the line shape f o r  the higher se r ies  members,  for which 

lower state interaction becomes negligible, with our results in Fig. 13 

one realizes a significant difference . In particular, their calculations 

do not reveal the 

smaller than about 1/10 of the maximum intensity at  tu = 0 which is 

discussed above. 

cutoff, which has been introduced by Kepple and Griem, 1968, to account 

for the usually neglected exponential in Eq. (VI. 4) cannot be responsible 

for it. This has been tested in our calculations. One can understand 

this by realizing that for  the higher se r ies  members the effect of 

dynamic broadening due to the electrons as  described roughly by the 

constants p in Eq. (X. 5) turns out to be much smaller than the half- 

width of the total line, which is essentially determined by quasistatic 

broadening. 

and H7 . These calculations have been 6 
by Bengtson, Kepple and Tannich, 1969, using identically 

The results a r e  plotted in Fig .  15 and 

decay in the near line wing for intensities - 5/2 

It should be pointed out that the ion field dependent 

2 

AS another interesting result, Fig. 1 6  shows a plot of a calculated 

Lyman-p profile f o r  two different values of the constant B(B = 1.27 and 

B for  p 

ments concerning H 

center, where the profile shows the two humps and the near line wing, 

but it does not change the intensity around the halfwidth significantly, 

3 2  
2 0 

= 3 + - n a ), which allows also some qualitative state- 
min 

We realize that changing B affects the very line 
8' 
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which may be understood as an effect of the normalization. 

agreement with experimental observations of Wende, 1967, which show 

that the calculations of Griem, Kolb and Shen, 1962 overestimate the 

near line wing. 

theoretical halfwidths in high density plasmas ( see  Gerard0 and Hill, 

1966) because the line intensity around the half width is rather insensitive 

to the exact value of B. 

Finally in Fig.  17 to 19, we compare the unified theory cal- 

culations (solid curves) with calculations based on the one-electron 

theory in order  to see how far into the line center the asymptotic 

wing expansions as  given in Eq. (XI. 1 0 )  o r  (XI. 1 2 )  may be used. In 

all Figures the short  vertical line indicates the position of the outer- 

most, unperturbed Stark component for an average ion field @ 

which is given by bw = 

Eq. (V. 14). 

calculations for @ = 0 according to Eq. (XI. 12), while the dash-dotted 

lines give the results for R=(? according to Eq. (XI. 10). First of 

all we realize that, as expected, the one-electron result for R = 6 
av 

diverges when ~w approaches p Awi(n, q = n-1). av 
cases we see that for frequencies 

This is in 

It also explains the good agreement of experimental and 

av' 
Awi (n, q = n-1) where Aw.  is defined in 

'av 1 

The dashed lines correspond to the one-electron theory 

av 

However, in  all three 

AWz 5 (3 av Auri(n, q =  n-1) (XII. 10) 

the one-electron theory calculations according to Eq. (XI. 10) coincide 

with the unified theory calculations to within 1% and better. 

released accuracy requirements one may also apply the simpler one- 

electron theory calculations based on Eq. (XI. 12) with @ = 0. 

particular we see that for small  principal quantum numbers the useful 

range is very much larger  than for the one-electron theory calculations 

F o r  slightly 

In 
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because, for B = 0, the one-electron theory diverges only 

We also realize that for the line intensity range of practical 
’ av with = 

at AUI = 0. 

interest both asymptotic wing expressions with 6 = 0 and fl = 

become less useful with increasing principal quantum number. 
’ av 
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APPENDIX A 

PROGRAM FOR CALCULATING THE THERMAL AVERAGE F(t) 
This section gives a complete listing of the program which was 

In used to calculate the thermal average F ( t )  as  discussed in Sec. IX. 

order to understand the program the following explanations may be of 

help. 

1. Calculation of ;P (s ,  y, x, u)  

Function PHI( K A Y )  calculates $ 
k 

and + as  defined by 1' 52y 4 
the Eqs. (IX. 17)-(IX. 21). 

accuracy for computing Qi 

applied whenever one of the different g 

The following expansions have been used abbreviating 

In order to assure  sufficient numerical 

( s ,  y, x, u), ser ies  expansions have been 

k 

k 
( s ,  y, x, u) becomes very small. 

and 

a =  p /  , p--T p + v  to = x/r 

w = v t /  0 d T  p + v t  = d Z y / r  

y = vt/,'p2 + v 22' t = us/. 
0 

a <  0.01 and y 7 0 

y j  4 
a 

(1 6+80y+4Oy t 7  

12811 t y  )4 
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3 4 5 6 
(96t448yt1024yzt1520y t880y t252y t33y ) 6 6 a t .... t 

1024(1 t y )  

a < 0.01 and y < - 2 

2 2 3(i6-5y) a4 

1024 ( 1 - y )  
Y a t Y  4 

128( 1 -y ) 2 
e(1-y)  g l  xu 

y < 0.01 

4 
t ( 3 1 - 3 5 0 ~  t447W ) 128 t ...... 2 

y 7 100 

2 
(x/y) < 0.0002 and y 7 0 

(A. 4) 
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(x/yl2< 0. 0002 and y < 0 

2 2 2 
t (11tlOy-5y ) .  - (1 -Y) 2 

128 g2- - - ( I -  xu 8 (:) 

- 3  I l -yl  < 3.10 

2. 

Function GN(AX, AXS) calculates G ( s ,  x, u)  as defined by the 

Calculation of G ( s ,  x, u) 

Eqs. (IX. 2 2 )  and (IX. 24). 

i t  in  the following way. 

This integral has been solved by rewriting 

I 

G ( s ,  x, u)  = G ( s , x , u )  t G ( s ,x ,  u) t G4(s,x, u) ( A .  9 )  1 2 

The new integrals G (s, x, u) are only functions of + (s,  y, x, u) and 

turn out to be 
k k 

1 - R  1 -R  

R 
2 

-- 
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P if x < x  
0 

R 
2 0 

-- i i x > x  

+1 

G1 = G ,  dy with K =  

K 

1 

I mZdy t U(R> 2 )  

-1 

G2 0 

GZdy t U(R+P 
0 

1-R 

(A. 1 Ob) 

(A. l l a )  
~. 

-1 if  x > x  1 
0 G2 =/ mZdy with B = MAX (1-R, K) and K= 

P i f x c x  B 0 

(A. l l b )  

and 

G4 = U ( x  > x ) * 
0 

The f i r s t  integral is split up at  most into three parts 

-X t x  1 -R 

(A. 12) 

(A. 13) 

i f  every upper limit is larger  than the lower limit using a different 

convenient change of variables in every part. The integration is per-  

formed in all  cases by means of Weddle's rule (subroutine WEDDLE). 

The number of points besides the initial point is firstly taken to be 6 

and is doubled in every iteration by calculating only the values in between 

the old values until the integral changes less than a preset  relative 

value called DG. 
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3. Function GUS (AU)  calculates the x-integral and is defined by 

2 
4 2 -u 

GUS(AU) = u * e  H(s ,u )  (A. 14) 

(A. 15)  

0 

The integral is  performed in two parts 
2 

X - R  "bo) 

H(s, u) = d x G ( s ,  p u )  dz + 2 1  e - 2 z d x ( s ,  e-Z,  u) dz Io 0 0 (A. 16)  

by means of Weddle's rule again using a technique as  described before 

fo r  G(s, x, u). 

of iterations, is called ACC and is given in  the main program. The 

old test  parameter DG has been made a function of ACC, x and u in 

order to  calculate those values of G(s, x, u) with the highest accuracy 

which give the largest  contribution in the final velocity integral. 

very small values of u* s the integral has been approximated by 

The new test  parameter,  which determines the number 

For  

Ha(s,u) = - C2. s2 [k - ;] (A. 17) 

This limit does not lead to the static wing, as  

does because of the lower cutoff x . As explained in Sec. IX. this cut- 

off is necessary in order to avoid rapid fluctuations in the integrals 

which require more integration steps and longer computer time. 

practical calculations x 

one order of magnitude in t the calculated F(t) 'comes as close as  

required to the asymptotic limit F(t) 

~o in Eq. (IX. 2 8 )  

0 

For  

is chosen small enough so  that over at least  
0 

t 40. 
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For us  > 2 the following relation is applied 

1 m .. 

sin (be z )  
dz ( s , x , u )  d x =  - C- SI 

2 
l t z  

0 

(A. 18) 

2 2 
3 0 

t - (1 -b  Kl(b) t b K (b) ) 

where 

For  simplicity x 

affecting the final result noticably. Fo r  very large s Eq. (A. 1.8) 

leads to Eq. (IX. 31). However, Eq. (A. 18) does not require C to be 

small as  Eq. ( IX. 31) does. 

function SNZ and the modified Bessel functions K 

subroutine BESMOD. 

has been set  to zero for  this relation without 
0 

The Raabe integral is  calculated by the 

and K by the 
0 1 

T) as  defined in Eq. nky ney 4. The final thermal average F(s, 

(IX. 23) is calculated in the main program FSTEST. 

for the velocity integral have been obtained by Gauss’s quadrature 

formula (function GLQUAD). The values FS in the program a re  given 

The best results 

by 

(A .  19) 

The main program reads in the temperature T, the electron density 

ne 7 k’ 
the lower and upper cutoff of the x-integral by 

the quantum number n two cutoff parameters,  which specify 

= STRONG * p o  

= CUT * D 

P min 

max 

(A. 20) 
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where p is given by Eq. (IX. 5). Finally the main program reads in 

the initial value of s for computing the thermal average and the number 
0 

of values which proceed according to s - 10 . The program also 

gives the asymptotic thermal average leading to the static wing which 

is called GS and calculates the relative thermal average in units of 

this asymptotic value. Furthermore,  the function KLOCK provides 

a means to test the computer time for every individual value of FS. 

The results a r e  shown and discussed in Sec. IX. 

ktl - 'k' 
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PROGRAM F S T E S T  
C C A L C U L A T I O N  OF THE THERMAL AVERAGE FS 
C I N T E G R A L  F S  OVER U I S  TESTED FOR D I F F E R E N T  L I N  GAUSS QUADRATURE 

C O M M O N / P D S / S / P D C O N / C l , C Z , C O N , H C O N / P D R A D / ~ R A ~ / P D A C C / A C C , D G , N ~ N  
COMMON/PDSTR/STXONG 
EXTERNAL GUS 

5 0 0  R E A D ( 6 0 9 1 0 0 )  TEMP,DENSTY,QNUM,Q,CUT,STRONG, S S ,  K 
IF(DENSTY.EQ.0 . )  C A L L  E X I T  
W R I T E ( 6 1 9 1 0 4 )  TFMP, DENSTY, QNUM, Q ,  CUT, STRONG 
T = TEMP* l .E -4  
RELDEN = D E N S T Y * l . E - I S  
C 1  = 1.5 * Q * QNUM 
C 2  = 0 . 0 3 0 4 3  * S Q R T ( R E L D E N ) / ( T  * C U T )  
WRITE ( 6 1 , 1 0 5 )  C 1 9 C 2  
NK = QNUM * Q + 0.01 
CON = C 1  * C2 

C T 3  = CUT ** 3 

NUM = 0 

BCON = 1 . 4 1 4 2 1 3 5 6 2  * CON 

BRAD = ~ o ~ ~ E - ~ * S Q R T ( R E L D E N / T ) * Q N U M * * ~ * S T R O N G / C U T  

A C C  = 3.E-4 
7 DO 1 I = 1,K 

NUM = NUM + 1 
ss = ss * 10.0 
S = SS / CUT 
FSOLD = 0.0 
GS = - 1 . 6 7 1 0 8 5 5 1 6  * (CON*CUT*SS)  ** 1.5 
GSAS = - ( C O N * S S ) * * 2 *  ( 1 . 1 2 8 3 7 9 1 6 7 1 / ( C 2 * S T R O N G )  - 1.) * CUT 
P R I N T  2 O O , S S ,  G S ,  GSAS 
DO 20 L = 395 
L L L  = K L O C K ( 0 )  

FFGG = F S / G S  
F S  = GLQUAD ( G U S , O * 0 , 5 e O , L )  * CT3  

DACC = A U S ( ( F S 0 L D  - F S ) / F S )  
LLL = K L O C K ( 0 )  - LLL 
P R I N T  3009  FSI FFGG,  DACC, LLL 
I F ( D A C C . L T . A C C )  GO TO 5 0  

2 0  FSOLD = F S  

1 C O N T I N U E  
50 PUNCH 4001Ss, F S ,  DACC, NK, CUT, STRONG, DENSTY, TEMP, NUM 

GO T O  500 
100 FORMAT(  2E10 .29  4 F 1 0 . 1 ,  E 1 0 0 2 9  1 5 )  
104 FORMAT ( 1 H l 9 *  TEMPERATURE = * E 1 4 0 5 9  10x9 * D E N S I T Y  = * E 1 4 . 5 / /  

1 * QUANTUMNUMBERS N = * F 6 0 l , l O X 9 *  ( N 1  - N 2 )  = * F 6 . 1 / /  
2 * DEBYE CUTOFF FACTOR = *F8.3 ,10X,*  STRONG C O L L I S I O N  FACTOR = * 
3 F8.3) 

1 0 5  FORMAT ( / / *  C 1  = * E 1 4 0 6  9 1 O X  * C 2  = * E 1 4 . 6 )  
200 FORMAT ( / / / *  S = * E 1 5 0 7 , 9 X , *  GS = *E17.9,9X,*  GSAS = 9 E 1 7 . 9 1 )  
3 0 0  FORMAT ( *  F S  = *E17.9,*  F S / G S  = "E17.9," DACC = " E 1 7 0 9 9  

1 * LLL = * 1 8 / )  
400 FORMAT ( E 1 0 0 3 9  E 1 5 0 7 9  E10.2,  1 5 ,  F7 .1 ,  F7.3,  2 E l l . 3 ,  1 4 )  

END 
C 
C 
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C 
F U N C T I O N  G U S ( A U )  
C O M M O N / P D S / S / P D C O N / C l ~ C 2 , C O N , B C O N / P D U / U / P D X M / X M l ~ X M 2  
C O M M O N / P D R A D / B R A D / P D A C C / A C C ~ D G ~ N G N / P t 3 S T F ? / S T R O N G  
D I M E N S I O N  F ( 1 9 2 ) r  H ( 1 9 2 )  

U = AU 

XM1 = CZ*STRONG/U 
I F ( X M 1 . G E . l . )  X M 1  = 1. - 1.E-9 
XM2 = X M 1  + BRAD 
I F ( X M 2 . G E . l . l  XM2 1 0  - 1.E-9 
CONS = CON * S 
u 2 = u * u  
F U  = 2 . 2 5 6 7 5 8 3 3 4 2  * U 2  * E X P F ( - U 2 )  
u s = u * s  
IF((US/STRONG).GT.2.E-h) GO T O  5 
GUS = -CONS * CONS * ( l . / X M I  - 1.) * FU 

GUS = 0.0 

IF(S.EQ.0.O) RETURN 

RETURN 
5 NGN = 0 

GD = 0.0 
I F ( U S o L T . 2 . )  GO TO 8 
NGN = 1 

XMM = XM2 * XM2 

C A L L  BESMOD ( P A 9  F I O , F I l , F K O * F K l )  
GD = -CONS * S N Z ( P A 1  + 2 . * ( l o + P A * ( P A * F K O  - F K 1 ) ) / 3 .  

8 GUOLD = 0.0 
G l O L D  = 0.0 
G 2 0 L D  = 0.0 
N = 3  
DO 100 K = 1 9 6  
GUS = GO 
DG = ACC/FU 
N = 2 * N  
NN = 2 

AN = N 
ANN = NN 

OACC = A B S ( D G l / G U O L D )  

GO T O  20 

DQ1 = X M l  * X M 1  

DQ = DQO * ANN 

DO 3 0  J = 1 9 N 9 N N  

PA = 2 .  * CON/IJ 

SXM = S O R T ( 1 .  - X M M )  

I F ( K . E Q . 1 )  NN = 1 

I F ( K . E Q . 1 )  GO T O  10 

IF (DACC.LT .ACC)  GO TO 4@ 

10 F O  = G N ( O . 0 9 1 . 0 )  

2 0  DQO = D C l / A N  

Q = DQO - DQ 

Q = Q + D Q  
x = S Q R T ( Q )  
XS = S Q R T ( 1 .  - Q )  

30 F ( J )  = C N ( X 9 X . S )  * XS 
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C A L L  WEDDLE (DQO,N,F,GUSl,FO) 
40 GUS = GUS + G U S l  

I F ( K . G E . 6 )  GO TO 5 0  
D G 1  = G U S l  - G l O L D  
G l O L D  = GUS1 
IF(DG1.EQ.O.) GO TO 50  
DO 4 5  J = 1,N 
L = N + 1 - J  

45 F ( 2  * L )  = F ( L )  
5 0  I F ( X M l e G E . 0 . 9 9 9 9 9 9 9 9 9 )  GO TO 90 

I F ( K . E Q . 1 )  GO T O  60 

IF (DACC.LT.ACC)  GO TCI 8 0  
DACC = A B S ( D G 2 / G U O L D )  

GO TO 6 5  
60 XO = S Q R T ( 1 .  - D Q 1 )  

HO = GN(XM1,XO)  * XO D Q 1  
D Y 1  = - L O G F ( X M 1 )  

DY = DYO * ANN 
Y = - D Y 1  + DYO - DY 
N l = N - 1  
DO 70  J = l r N 1 , N N  
Y = Y + D Y  
X = E X P F ( Y 1  
x 2 = x * x  
XS = S Q R T ( 1 .  - X 2 )  
D C  = A C C / X S  

6 5  DYO = D Y l / A N  

70 H ( J )  = G N ( X I X S )  * XS * X2 
H ( N )  = 0.0 
CA' -L  WEDDLE (DYOIN,H,OUT,HO) 
G U S 2  = 2.0 * OUT 

80 GUS = GUS + GUS2 
I F ( K . G E . 6 )  GO T O  9C 
DG2 = GUS2 - G 2 0 L D  
G 2 0 L D  = GUS2 

DO 8 5  J = 1 g N  
IF(DG2.EQ.O.) GO TO 90 

L = N + 1 - J  
85  H ( 2  * L )  = H ( L )  
90 DACC = A R S ( ( G U S  - G U O L D ) / G U S )  

IF(DACC.LT.ACC1 GO TO 120  
100 GUOLD = GUS 
120 GUS = GUS * FU 

RETURN 
END 

C 
C 
C 

F U N C T I O N  G N ( A X 9 A X S )  
COMMON/PDS/S /PDU/U/P@CON/C l ,C2 ,CONIRCON/PDX~/X ,XS,X2~PX2 
C O M M O N / P D A C C / A C C , @ G I N G N / P D X M ~ , X M X M ~  
D I M E N S I O N  F ( 7 6 8 1 ,  G ( 7 6 8 1 ,  H ( 7 6 8 ) g  D ( 7 6 8 )  
GN = 0.0 
X = AX 
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5 

7 
8 

10 

13 

1 5  
1 8  
2 0  

X S  = A X S  
X 2 = X * X  
D X ?  = 1. - X 2  
GNOLD = 0.0 
G l O L D  = 0.0 
G 2 O L D  = 0.0 
G 3 0 L D  = 0.0 
G 4 0 L D  = O m 0  
R = U * S / X S  
R 1  = 1. - R 
R 2  = 0.5 * R 
P 1  = -1. 
P2 = -1. 
N = 3  
DO 100 K = 1 9 8  

N = 2 * N  
N N  = 2 

A N  = N 
ANN = NN 

IF(X.GE.XM1) GO TO 5 

QA = P 1  
I F ( R 1 . L E . P l )  GO TO 50 

GN = 0.0 

I F ( K m E Q . 1 )  N N  = 1 

QA = -R2 

I F ( K . E Q . 1 )  P 1  = S Q R T ( X M l * X M l  - X 2 ) / X S  

QB = -X 
I F ( R l . L T . - X )  QB = R 1  
IF (QA.GEmQB) GO T O  2 0  
I F ( K m E Q . 1 )  GO T O  7 
DGG = A B S ( D G l / G N O L D )  
IF(DGG.LT.DG)  GO TO 1 3  
GO TO 8 
D Q 1  = ( Q B  + R 2 )  ** ' ( 1 0 / 3 ~ )  
DQO = D Q l I A N  
DQ = DQO ANN 
Q = DQO - DQ 
DO 10 J = 1 9 N 9 N N  
Q = Q + D O  
Q 2 = O + Q  
Y = OR - 0 * Q 2  
F (  J )  = PHI(1yY) * Q 2  
C A L L  WEDDLE ( D Q O I N ~ F ~ O U T , O . O )  
G 1  = 3.0 * OUT 
GN = G 1  
I F ( K . G E . 8 )  GO T O  1 8  
D G 1  = G 1  - G l O L D  

IF(DG1.EQ.O.) GO TO 18 
DO 1 5  J = 1 t N  
L = N + 1 - J  
F ( 2  * L )  = F ( L )  

Q B  = X 

G l O L D  = G 1  

QA = - X  
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2 3  

2 5  

30  

3 1  

3 2  
3 3  
3 5  

36 

3 7  

40 

42 

4 5  
5 0  

5 5  

I F ( R 1 o L E a X )  QB = R 1  
IF(QA.GE.QB) GO TO 3 5  

DGG = A B S ( D G 2 / C N O L D )  

GO T O  2 5  
F O  = P H I ( 1 r Q A )  
D Y 2  = Qf3 - QA 

I F ( K m E Q . 1 )  GO T O  2 3  

IF (DGG.LT .DG)  GO TO 3 1  

DYO = D Y 2 / A N  
DY = DYO * ANN 

DO 30 J = 1 r N I N N  
Y = Y + D Y  
G ( J )  = P H I ( 1 r Y )  
CAI -L  WEDDLE ( D Y O 9 N r C r G 2 9 F O )  
GN = CN + G 2  

DG2 = G2 - G 2 O L D  
G 2 0 L D  = G 2  
I F ( D G 2 o E Q m O . )  GO T O  33 
DO 32 J = 1 r N  
L = N + l - J  
G ( 2  * L )  = G ( L )  
QA = X 
I F ( Q A . G E . R l )  GO TO 5 0  

DGG = A B S ( D G 3 / G N O L D )  
I F ( D G C m L T m D G )  GO T O  4 2  
GO TO 3 7  
HO = P H I ( l r R 1 )  * R 1  * R 1  
QO = l . / R 1  
DQ3 = 1m/QA - QO 

Y = Q A  + DYO - DY 

I F ( K . C E . 8 )  GO TO 33 

I F ( K . F Q . 1 )  GO TO 36  

DQO = D Q 3 / A N  
DQ = DQO * ANN 
Q = QO + DQO - DQ 
DO 40 J = 1 r N 9 N N  
Q = Q + D Q  
Y = l . / Q  
H ( J )  = P H I ( 1 9 Y )  * Y * Y 
C A L L  WEDDLE ( D Q O r N 9 H r G 3 r H O )  
GN = GN + G3 
I F ( K m G E m 8 )  GO TO 5 0  
DG3 = G 3  - G 3 O L D  
G 3 O L D  = G3 

DO 45 J = 1 r N  

H ( 2  * L )  = H ( L )  

Q A  = R 1  

IF(DG3.EQ.O.) GO TO 50  

L = N + 1 - J  

I F ( R . L T m 1 . E - 6 )  GO TO 80  

I F ( X o G E o X M 2 )  GO T O  5 5  
I F ( K m E Q . 1 1  P2 = S Q R T ( X M 2 9 X M 2  Y Z ) / X S  
I F ( R l m L T m P 2 )  Q A  = P2 
I F ( K . E Q . 1 )  GO TO 5 7  
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DGG = A B S ( D G 4 / G N O L D )  

GO TO 5 8  
IF(DGG.LT*DG) GO TO 6 3  

5 7  DA = P H I ( 2 , Q A )  

5 8  DYO = D Y 4 / A N  
D Y 4  = 1. - Q A  

DY = DYO * ANN 
Y = QA + DYO - DY 
DO 60  J = l,N,NN 
Y = Y + D Y  

C A L L  WEDDLE (DYO,N,D,G4,DA) 
60 D ( J )  = P H I ( 2 , Y )  

63  GN = CN + G 4  
I F ( K . G E . 8 )  GO T O  70 
D G 4  = G 4  - rJ40LD 

I F ( D G G . E Q e 0 . I  GO TO 70 

L = N + l - J  

G 4 0 L D  = G 4  

DO 65  J = 1,N 

65  D ( 2  * L )  = D ( L )  
7 0  IF (RZ.LE.1 . )  GO TO 80 

IF(K.EQ.1)  G 5  = ( R 2 - 1 . ) * P H 1 ( 4 , Y )  
GN = GN + G5 

30 DGG = A B S ( ( G N  - G N O L D ) / G N )  
IF(DGG.LT.DG)  GO T O  1 2 0  

100 GNOLD = GN 

P E T U R N  
END 

120 IF(NGN.EQ.1)  GN = GN - G 5  

C 
C 
C 

F U N C T I O N  P H I ( K , A Y )  
C O M M O N / P D S / S / P D U / U / P D C O N / C l ~ C 2 , C O N , ~ ~ O N / P ~ X ~ / X ~ X ~ ~ X 2 ~ ~ ~ 2  
Y = AY 
P H I  = 0.0 
F A C  = 0.0 
I F ( K . G T . 2 )  GO TO 30 
R I  = l . / S Q R T ( X 2  + Y * Y * D X 2 )  
I F ( K . G T . 1 )  GO T O  10 
C = X * R I  
W = X S  * Y * R I  
G = U * S * R I  
IF (CmGT.O.01)  GO TO 3 
IF(Y.LT.0. )  G = -G 
AG = l . / A B S ( I *  + C) 
IF(AG.GT.2.) GO TO 70 
G I  = ( C  * A G )  ** 2 

F A C  = CON * S * R I  * R I  * AG 
IF(G.LT.-1. )  GO TO 1 

ARG = F A C  * (1. + G I  * G * 0.125 * (4.  + GI) 
IF (C.LT.1 .E-3)  GO T O  40 
AG = (  ~(0~0546875*G+0~3125)*G+O~625)*G+O~l25)*G*GI*GI 
GO T O  3 5  
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1 F A C  = 2.0 * C O N / ( X * U )  
ARC = F A C  * (1. GI * 0.125 * C * GI 
IF(C.LT.1.E-3)  GO TO 40 
AG = - (0 .125+0 .0390625 . *G)  * GI * G I  * G**3 
GO T O  3 5  

3 IF(G.GT.O.01) GO TO 5 
, F A C  = CON * R I  * R I  * 5 

w 2 = w * w  
ARC = F A C  * ( ( ( 1 0 3 7 5 * W 2  - O * 3 7 5 ) * G  - W ) * G  + 1.) 
IF(G.LT.?.E-4) GO T O  40 
AG = ( 3 . 4 9 2 1 8 7 5 * W 2 - 2 . 7 3 4 3 7 5 ) * W 2 + 0 m 2 4 2 1 8 7 5  
AG = (AG*G - ( 2 0 1 2 5 * W 2  - 1 * 1 2 5 ) * W )  * G ** 3 
GO T O  3 5  

5 IF (G.LT .100 . )  GO TO 8 
F A C  = BCON * S Q R T ( 1 .  - W ) / ( X * U )  
G I  = 1 e / G  
ARG = F A C  * ( ( ( 0 . 6 2 5 * W - 0 . 1 2 ~ ) * G I - ~ ~ 5 ) ~ ~ I * ( l ~ + W ) + l ~ )  
IF (G I .LT .3 .E -4 )  GO TO 4 0  
A G = ( ( 1 . 5 2 3 4 3 7 5 * W - 0 . 4 ~ ~ 9 3 7 5 ) * W - ~ o 6 4 8 4 3 7 5 ) * W + ~ . O 8 5 9 3 7 5  
AG = ( A G * G I + (  (0.25-0.9375*W)*W+O.l875))*(~0+~)*~1**3 
GO TO 3 5  

GO T O  2n 
10 AG = A B S ( Y )  

8 A = (1. + G * W ) / S Q R T ( l .  + G * ( 2 * * W  + C ) )  

B Y  = A H S ( 1 .  - Y )  
I F ( A G . L T e 1 . E - 1 0 )  GO TO 1 5  
G I  = ( X / Y )  ** 2 
IF (GI .GT.2 .E -4 )  GO T O  1 5  
IF(Y.LT.0. )  GO TO 1 3  
F A C  = CON * B Y  / ( A G  * U )  
ARG = F A C  * ( 1 . - 0 . 1 2 5 * ( 1 . + Y ) * ( 3 . - Y ) * ~ I ~  
IF (GI .LT .1 .E -6 )  GO TO 40 
AG = ((0.0546875*Y-0.328125~*Y+O02421875)*(GI*(l~+Y)) * *2  
GO T O  3 5  

13  F A C  = 2.0 * C O N / ( X * U )  
ARG = F A C  * (1 . -0 .125*CI+BY**2 )  
IF (G I .LT .1 .E -6 )  GO TO 40 
AG = ((2.-Y)*0.0390625*Y+CoO859375)*(GI*B'f)**2 
GO T O  3 5  

15 IF(BY.GT.3.E-3)  GO TO 1 8  
I F ( B Y . L T e 1 . E - 1 1 )  RETURN 
F A C  = CON * X S  * B Y  / U 
ARG = F A C  * ( l . + ( ( l . - 1 . 3 7 5 * X 2 ) * B Y  + l . ) * D X Z * R Y )  
I F ( B Y e L T . 2 . E - 4 )  GO TO 40  
AG = (1. - 2 * 1 2 5 * X Z ) * B Y * ( B Y * D X 2 )  ** 2 
GO T O  35  

1 8  A = ( X 2  + Y * D X 2 )  * R I  
2 0  IF(A.GE.1.)  RETURN 

ARG = BCON * S Q R T ( 1 .  - A ) / ( X * U )  
GO TO 40 

3 0  IF(X.FQ.0.)  RETlJRN 
ARC = CON * 2.0 * XS / ( X  * U )  
GO TO 40 

3 5  ARG = ARC + F A C  * AG 
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40 I F ( A R G . L T . 0 . )  GO T O  60 
I F ( A R G . G T .  0 . 0 5 )  GO TO 50  
P H I  = - ( 0 . 5  - ARG*PRG/24 . ) *ARG*ARG 
RETURN 

RETURN 
5 0  P H I  = C O S ( A R G )  - 1.0 

60 W R I T E  ( 6 1 , l u O )  ARG,  FAC, K ,  X ,  U, Y,  S 
100 FORMAT ( *  ERROR N E G A T I V E  VALUE OF P R G  I N  P H I ,  A R G  = * E 1 7 0 9 9  

1 * FAC = * E 1 7 . 9 / *  K = 9 1 1 9 9  X = "E17.9,"  I J  = "E17.9 ,  
2 * Y = *E17.9,*  S = * E 1 7 0 9 1  

RETURN 
70 WR!TE ( 6 1 9 2 0 0 )  G 

2 0 0  F O R M A T  ( *  P H I  NOT ACCURATE ENOUGH 9 6 = * E 1 7 0 9 1  
CALL F X I T  
END 

C 
C 
C 

C F I S  THE F U N C T I O N  T O  BE I N T E G R A T E D  R Y  WEDDLES RULE 
C FO I S  THE VALUE OF THE F U N C T I O N  T O  BE I N T E G R A T E C  A T  SOME S T A R T I N G  
C P O I N T  WHICH I S  NOT I N C L U D E D  I N  THE I N P U T  A R R A Y  F 

S U B R O U T I N E  WEDDLE ( D X ,  N, F, A ,  FO)  

D I M E N S I O N  F ( N )  
1 A = 0.0 
2 K = N - 1  
3 DO 1 5  I = 1 9 6  

5 DO 6 J = 1, K ,  6 
6 SUM = SUM + F ( J )  
7 GO T O  ( 8 9  lu, 1 2 ,  10, 8 9  1 4 1 9  I 
8 A = A + 5.0 * SUM 
9 GO T O  1 5  

10 A = A + SUM 
11 GO TO 1 5  
1 2  A = A + 6.0 * SUM 
1 3  GO TO 1 5  

1 5  C O N T I N U E  

17 RETURN 
END 

4 SUM = 0.0 

1 4  A = A + 2.0 * SUM 

16 A = 0.3 * DX * ( A  + F O  + F ( N ) )  

C 
c 
c 

C S N Z ( X )  C A L C U L A T F S  RAABES I N T E G R A L  OVFR S I N ( X * Z ) / ( l . + Z * Z )  DZ 
FUNC T I ON SNZ ( X 1 

D I M E N S I O N  A A ( 6 1 ,  B B ( 4 1 ,  C C ( 4 )  
D A T A ( ( A A ( I ) , I =  1 9 6 )  = - 0 . 5 7 7 2 1 5 6 6 3  O . 9 9 9 9 9 1 9 3 ,  - 0 . 7 4 9 9 1 0 5 5 ,  

1 0 . 0 5 5 1 9 9 6 8 ,  - 0 e 0 0 9 7 6 0 0 4 ,  0 . ( ) 0 1 ? 7 8 5 7 )  
D A T A ( ( B B ( I ) , I =  1 9 4 )  = 8 0 5 7 3 3 2 8 7 4 0 1 ,  1 8 . 0 5 9 0 1 6 9 7 3 0 ,  8 0 6 3 4 7 6 0 8 9 2 5 9  

1 0 . 2 6 7 7 7 3 7 3 4 3 )  
L A T A ( ( C C ( I ) , I =  1 9 4 )  = 9 . 5 7 3 3 2 2 3 4 5 4 ,  2 5 0 6 3 2 9 5 6 1 4 8 6 9  

1 2 1 . 0 9 9 6 5 3 0 8 2 7 ,  3 . 9 5 8 4 9 6 9 2 2 8 )  
SNZ = 0 .  
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10 
2 0  

25 

30 

40 

4 5  
5 0  

100 

110 
1 5 0  

C 
C 
C 

C 
C 

IF(X.EQ.0.) RETURN 

IF(A.GT.40.) GO T O  1 0 0  
A = ABS(X)  

A 2 = A * A  
EMA = EXPF(-A)  
IF(A.GT.0.2) GO TO 1(! 
EEA = ~ ~ ~ ~ A 2 ~ 7 2 ~ + 1 o ~ * A 2 / 4 2 ~ + 1 ~ ~ * A 2 + 0 . 0 5 + 1 . ) 9 A 2 / 6 ~ + 1 ~ ~ * A  
GO TO 2 0  
EEA = 0.5 * ( E X P F ( A )  - EMA) 
IF(A.GT.1.) GO T O  3 0  
SUM = A A ( 1 )  
Z = A  
DO 2 5  J = 296  
SUM = SUM + A A ( J )  * Z 
Z = Z * A  

SNZ = EFA * E I T  
GO TO 40 
SUM = ( ( ( A + B B ( l ) ) * A + B B ( 2 ) ) * A + ~ B ( 4 )  
SUMM = (((A+CC(l))*A+CC(2))*A+CC(3))*A+CC(41 
E I T  = SUM/(SUMM * A )  

PROD = A 
SUY = A 
DO 4 5  J = l r 2 0 0  
A J  = 2  * J +  1 
PROD = PROD * A Z / ( A J + ( A J - l . ) )  
SUM = SUM + PROD/AJ 
PT = PROD * l.E+10 
IF(SUM.GTePT) GO T O  50  

E I T  = SUM - LOGF(A)  

SNZ = 0.5 * E I T  * (1. - EXPF(-Z.*A)) 

CONTINUE 
PT = SNZ + SUM * EMA 

RETURN 

A2 = PROD * PROD 
SUM = PROD 
DO 110 J = 1,100 
A J = 2 * J  
PROD = PROD * A2 * AJ * ( A J  - 1.) 
SUM = SUM + PROD 
IF(AJ.GE.A) GO T O  1 5 0  
PT = ABS(PR0D * l .E+ lO)  
IF(ABS(SUM).GT.PT) GO TO 1 5 0  
CONT I NUE 
SNZ = SUM 
RETURN 
END 

SNZ = SIGNF(PT,X) 

PROD = 1 . / X  

SUBROUTINE B E S M O D ( X ~ F I O ~ F I l ~ F K O ~ F K 1 ~  
BESMOD CALCULATES THE MODIFIED BESSELFUNCTIONS IO, 11, KO AND K 1  
BY MEANS OF POLYNOMIAL APPROXIMATIONS AS G I V E N  I N  THE 
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C NBS HANDBOOK OF MATHEMATICAL FUNCTIONS, PAGE 378  
DIMENSION A ( 7 ) , 8 ( 9 ) , C ( 7 ) , D ( 9 ) , E ( 7 ) , F o , G ( 7 ) , H ( 7 )  
D A T A  ( ( A ( I ) * I  = 1 9 7 )  = 0.0045813, 0.0360768, 0.2659732, 

1 102067492 ,  3 0 0 8 9 9 4 2 4 ,  305156229 ,  1.0) 
DATA ( ( B ( I ) , I  = 1 3 9 )  = 0.00392377, -C.01647633, +0.02635537, 

1 -0.02057706, 0 .00916281r  -0.00157565, 0.00225319, 0.01328592, 
2 0 0 3 9 8 9 4 2 2 8  1 

1 0.15084934, 0.51498869, 0.878905949 0 . 5 )  
D A T A  ( ( C ( I I , I  = 1 9 7 )  = 0.00032411, 0.00301532, 0.026587339 

D A T A  ( ( D ( I ) , I  = 1 9 9 )  = -0.00420059, 0.01787654, - 0 0 0 2 8 9 5 3 1 2 ,  
1 0.02282967, -0.01031555, 0.00163801s -0.00362018~-0.03988024~ 
2 0 .39894228)  

D A T A  ( ( E ( I ) , I  = 1 9 7 )  = 7.4E:-69 1.075E-49 0.00262698, 0 0 0 3 4 8 8 5 9 ,  

D A T A  ( ( F ( I ) , I  = 1 9 7 )  = 0.00053208, - 0 0 0 0 2 5 1 5 4 0 r  0 0 0 0 5 8 7 8 7 2 9  
1 0.23069756, 0.4227842, -0 .57721566)  

1 -0.01062446, 0.02189568, -0.07832358, 1 .25331414)  
D A T A  ( ( G ( I ) * I  = 1 9 7 1  = -4m686E-59 -0.00110404, -0 .01919402r  

1 -0.18156897, - 0 0 6 7 2 7 8 5 7 9 ,  0 0 1 5 4 4 3 1 4 4 ,  1.0) 
D A T A  ( ( H ( I ) , I  = 1 9 7 )  = -0.000682459 0.00325614, - 0 0 0 0 7 8 0 3 5 3 ,  

xs = 0.0 
XE = 0.0 
IF(X.LT.2.) GO TO 10  

1 0.01504268, -0.0365562, 0.23498619, 1 .25331414)  

XS = S Q R T ( X )  
XE = EXPF(X)  

Y = X/3.75 
Y 2 = Y * Y  
F I O  = (((((Y2*A(1)+A(2))*Y2+A(3))*Y2+A(4))*Y2+A(5))*Y2+A(6))*Y2+lo 
F I 1  = ( ( ( ( ( Y 2 * C ( 1 ) + C ( 2 ) ) * Y 2 + c o ) ” y 2 + c ( 4 ) ) * Y 2 + C ( ~ ) ) * Y 2 + C ( 5 ) ) * Y 2 + C ( 6 ) ) * Y 2 + O ~ 5  

1 0  IF(X.GT.3.75) GO TO 20 

F I 1  = FT1 * X 
GO T O  40 

20 Y = 3.75/X 
F I O  = B ( 1 )  
F I 1  = D ( 1 )  
DO 30 K = 299 
F I O  = F I O  * Y + B ( K )  

3 0  F I 1  = F I 1  * Y + D ( K )  
XEX = XE/XS 
F I O  = F I O  * X E X  
F I 1  = F I 1  * X E X  

Y = x /2 .  
Y 2 = Y * Y  
FKO = E ( 1 )  
FK1 = G ( 1 )  
DO 5 0  K = 297 
FKO = FKO * Y2 + E ( K )  

5 0  FK1 = FK1  * Y2 + G ( K )  
X E X  = LOGF(Y1 

FK1 = FK1/X + XEX * F I 1  
RETURN 

40 IF(X.GT.2.) GO TO 6 0  

FKO = FKO - XEX * F I O  

6 0  Y = 2 * 0 / X  
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FKO = F ( 1 )  
FK1 = H ( 1 )  
DO 7 0  K = 297 
F K O  = F K O  * Y + F ( K )  

7 0  FK1 = FK1 * Y + H ( K )  
X E X  = l o / ( X S  * X E )  
FKO = F K O  * X E X .  
FK1 = FK1 * X E X  
RETURN 
END 

C 
C 
C 

C GAUSSIAN-LEGENDRE QUADRATURE OF F FROM A TO R WITH 4969109209 
C 40 OR 80 NODES FOR L = 19 2 9  3 9  49 5 9  6 

FUNCTION GLQUAD(F,A,B,L) 

COMMON/GLODAT/X1(2)9Wl(Z) 9 X 2 ( 3 ) 9 W 2 ( 3 )  9 X 3 ( 5 )  9 W 3 ( 5 )  9 X 4 ( 1 0 ) 9 W 4 ( 1 O ) 9  

DATA ( ( X l ( I 1 9  I = 1 9 2 )  = 086113631169 0 3 3 9 9 8 1 C 4 3 6 )  
DATA ( ( W 1 ( 1 ) 9  I = 1 9 2 )  = 0 3 4 7 8 5 4 8 4 5 1 ,  065214515491 
DATA ( ( X 2 ( 1 ) ,  I = 1 9 3 )  = 093246951429 066120938659 0 2 3 8 6 1 9 1 8 6 1 )  
DATA ( ( W 2 ( 1 ) 1  I = 1 9 3 )  = 017132449249 0 3 6 0 7 6 1 5 7 3 0 ,  046791393461 

1 X 5 ( 2 O ) , W 5 ( 2 0 ) 9 X 6 ( 4 0 ) , W 6 ( 4 0 )  

DATA ( ( X 3 ( 1 ) 9  I = 1 9 5 )  = 

DATA ( ( W 3 ( 1 ) 9  I = 1 9 5 )  = 

DATA ( ( X 4 ( 1 ) 9  I = 1 9 1 0 )  = 

1 097390652859 0 8 6 5 0 6 3 3 6 6 7 ,  0 6 7 9 4 0 9 5 6 8 3 ,  0 4 3 3 3 9 5 3 9 4 1 ,  0 1 4 8 8 7 4 3 3 9 0 )  

1 0 0 6 6 6 7 1 3 4 4 3 ,  01494513491,  0 2 1 9 0 8 6 3 6 2 5 ,  026926671939 029552422471 

1 0 9 9 3 1 2 8 5 9 9 2 ,  0 9 6 3 9 7 1 9 2 7 3 ,  0 9 1 2 2 3 4 4 2 8 3 ,  0 8 3 9 1 1 6 9 7 1 8 ,  074633190657 
2 063605368079 051086700209 0 3 7 3 7 0 6 0 8 8 7 ,  0 2 2 7 7 8 5 8 5 1 1 ,  0 0 7 6 5 2 6 5 2 1 1 )  

DATA ( ( W 4 ( 1 ) 9  I = 1 9 1 0 )  = 
1 001761400719 004060142989 0 0 6 2 6 7 2 9 4 8 3 ,  0 0 8 3 2 7 6 7 4 1 6 ,  0 1 9 1 9 3 0 1 1 9 8 ,  
2 011819453209 013168863849 014209610939 0 1 4 9 1 7 2 9 8 6 5 ,  015275338711 

DATA ( ( X 5 ( 1 ) 9  I = 1 9 2 0 )  = 
1 099823770979 0 9 9 0 7 2 6 2 3 8 7 ,  0 9 7 7 2 5 9 9 5 0 0 ,  095791681929 09328128083,  
2 090209880709 086595950329 08246122308,  0 7 7 8 3 0 5 6 5 1 4 ,  07273182552,  
3 0 6 7 1 9 5 6 6 8 4 6 ,  061255388979 0 5 4 9 4 6 7 1 2 5 1 ,  04830758017,  0 4 1 3 7 7 9 2 0 4 4 ,  
4 034199409089 0 2 6 8 1 5 2 1 8 5 0 ,  019269758071 0 1 1 6 0 8 4 0 7 0 7 ,  003877241751 

DATA ( ( W 5 ( I ) r  I = 1 9 2 0 )  = 
1 000452127719 00104982845,  001642105849 0 0 2 2 2 4 5 8 4 9 2 ,  00279370070,  
2 003346019539 0 0 3 8 7 8 2 1 6 8 0 ,  004387090829 00486958076,  00532278470,  
3 005743976919 006130624259 00648040135,  00679120458,  00706116474,  
4 007288658249 00747231691,  007611036199 0 0 7 7 0 3 9 8 1 8 2 ,  0 0 7 7 5 0 5 9 4 8 0 )  

DATA ( ( X 6 ( 1 ) 9  I = 1 9 4 0 )  = 
1 099955382279 0 9 9 7 6 4 9 8 6 4 4 ,  0 9 9 4 2 2 7 5 4 1 0 ,  0 9 8 9 2 9 1 3 0 2 5 ,  09828485727,  
2 097490914069 096548508909 0 9 5 4 5 9 0 7 6 6 3 ,  094224276139 092845987739 
3 09132631026,  089667557949 0 8 7 8 7 2 2 5 6 7 7 ,  0 8 5 9 4 3 1 4 0 6 7 ,  0 8 3 8 8 3 1 4 7 3 6 ,  
4 0 8 1 6 9 5 4 1 3 8 7 ,  0 7 9 3 8 3 2 7 1 7 5 ,  0 7 6 9 5 0 2 4 2 0 1 ,  07440002976,  071736518549 
5 0 6 8 9 6 3 7 6 4 4 3 ,  066085989909 0 6 3 1 0 7 5 7 7 3 0 ,  060033062289 0 5 6 8 6 7 1 2 6 8 1 ,  
6 053614592099 050280411199 0 4 6 8 6 9 6 6 1 5 2 ,  043387537089 039839340599 
7 0 3 6 2 3 0 4 7 5 3 5 ,  032566437079 028852805499 025095235849 021299450299 
8 0 1 7 4 7 1 2 2 9 1 8 ,  013616402289 0 0 9 7 4 0 8 3 9 8 4 ,  005850443729 0 0 1 9 5 1 1 3 8 3 3 )  

D A T A  ( ( W 6 ( 1 ) 9  I = 1,401 = 
1 000114495009 0002663 ’1336,  o00418031319 000569092259 00071929048,  
2 e00868394539 o01016176609 ~ 0 1 1 6 2 4 1 1 4 1 9  00130687616,  00144935080,  
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3 001589618369 001727465219 00186268142, 001995061099 002124402619 
4 oO225050902, 00237318829, 002492253589 00260752358r o0271882275, 
5 o G 2 8 2 5 9 8 1 6 1 ~  0 0 2 9 2 8 8 3 6 9 6 9  0 0 3 0 2 7 2 3 2 1 8 9  * 0 3 1 2 1 0 1 7 4 2 9  e 0 3 2 1 0 0 4 9 8 7 9  
6 ,03294193949 00337332150, 003447312059 00351605290, 00357943940, 
7 003637374999 003689771469 oO3736549@2, ,0377763644, oO3812971139 
8 o038424993U~ oO3866175989 02388396511, 003895839609 o03901781371 

T O  = ( A  + B ) / 2 0  
T 1  = ( R  - A l l 2 0  
Y = 0 .  
GO T O  (1,293949596) L 

1 DO 10 K = 1 9 2  
10 Y=Y+W1(K)*(F(TO-T1*Xl(K))+F(TO+Tl*X1(K))) 

GO TO 100 
2 DO 20 K = 1 9 3  

20 Y = Y + W 2 ( K ) * ( F ( T O - - T l * X 2 ( K ) ) + F ( T O + T l * X 2 ( K ) ) )  
GO TO 100 

3 DO 30 K = 1 9 5  

3 0  Y=Y+W3(K)*(F(TO-T1*X3(K))+F(TO+Tl*X3(K))) 
GO TO 100 

4 DO 40 K = 1 9 1 0  
40 Y = Y + W 4 ( K ) + ( F ( T O - T 1 * X 4 ( K ) l + F ( T O + T l * X 4 ( K ) ~ )  

GO TO 100 
5 DO S O  K = 1 9 2 0  

5 0  Y = Y + W 5 ( K ) * ( F ( T O - T 1 * X 5 ( K ) ) + F ( T O + T l * X 5 ( K ) )  1 
GO TO 100 

6 DO 60 K = 1940 
60 Y = Y + W 6 ( K ) " ( F ( T O - T l * X 6 ( K ) ) + F ( T ~ + T l * X 6 ( K ) ) )  
100 GLQUAD=Y*Tl 

R E T U R N  
END 
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APPENDIX B 

THE LARGE, TIME LIMIT OF THE THERMAL AVERAGE F ( t )  

In Eq. (IX. 31) the large time limit of the thermal average has 

been given, which is of the form 

(B. 1 )  
2 = At (B-dn (4C )). F(t)t 4 w 

This form has been obtained by most modern impact theories. The 

additive constant B varies depending on what type of cutoff has been 

used. 

different cutoff procedures which have been used and compare them 

with the numbers given in the literature. 

In the following w e  derive the different constants B for the 

The various methods to evaluate F ,the large time limit of 
W 

F(t, \' ne, T), differ essentially in three respects,  namely by the 

upper and lower limits of the p-integral and by the limits of the t '- 

integral in Eq. (VIII. 4). 

(Baranger, 1962), the limits of the latter integral a r e  usually extended 

from -W to t 03. This approach, however, is  not quite consistent with 

the cutoff at the Debye length, which would rather require the integral 

to go from -T to t T as  done in this report  ( T  is defined by Eq. (IX. 7)). 

We therefore have to investigate the following integrals: 

Based on the completed collision assumption 

( t ' )  dt '  (case a )  
0 
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and 

t +W 

b. ) f o r /  P V  C ( t ’ )  dt’ - . P V  C (t’) dt’ 

-b F W = 2nn e ( a . D ) v  av t { du- f lue  - ’ l l d x x  FOS (3 -11 (B.3)  

(case b) 

0 

0 

where 

X 
min 

The factor a = 

papers (e. g., Griem e t  al. 1962) been varied to 1.1. o r  to 0. 606 

1969. 

/D is usually taken to be one and has in some 
P max 

as  proposed by W. -R. Chappell, J. Cooper and E. Smith, 

A s  a lower cutoff we consider in particular the three cases  of 

= 0, = X and p = 3(nq-n1q’)3; 2CD/u by setting min P min m in 

b 2 c  -. - - X - 
min a U 

In the following we will set  a=l.  

on the upper cutoff parameter a,  we only have to replace in all the 

following relations C by C/a. 

In order  to recover the dependence 

First of all, one realizes that with x 5 1 the lower limit on the 

u-integral is given by 
min 

u = b - 2 C .  
0 

(B. 6 )  

Hence, we have to evaluate the following two integrals 

I =  a / m  du u e -uyl dx x [.os (” xu d T ) - l l  (B. 7) 

U U 
0 o/u 
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and 

The second integral can be simplified after a change of variables and 

a partial integration to 

2 03 

Ib=s\ ue-U [cos (%) - ll du 

U 

(B. 9 )  

0 

After expanding the cosine and another change of variables we have 
2 

-u z 
0 

2 m  k 
I = " c  b 

4 

U 

(B. 10) 
e 

dz 
z k=l 

which can be expressed in te rms  of exponential integrals 

2k 
2 

2 c o  k 
(-1 1 U 2 

E (U )t - C2 p , -  - 2 1 0  4 (2k)! (F) Ek(Uo) 
k=2 

With the lower cutoff parameters  stated above (b  I 1) and typical 

densities and temperatures of interest one usually has u < 0.1 ( see  

Eq. (IX.21)). Since for k 2 2 E (u ) = l /(k-1) t O(u ) one obtains 

to lowest order in u 

0 2 2 
k o  0 2 

0 

m 2k-2 
(B. 12) b C2 

2 
k= 2 

2 m k- 1 
- - L [ - E l ( U : ) t Z Y f  2 

(Zk)! t (m 1 - 9 ) ]  (2k-2)(2k-2)!}[ 1 k= 2 
3 0 
L. 

- c2 [ -E1(u0)-2 2 (&) cos (F) t +(y,"-l] 
- 2  
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which yields 

(B. 13)  
0 

2 1 3 ( y - 1 )  t &n (4C ) t 2K (3 t 0 ( u  

where K is defined as 

Ci ( z )  t - -  1 -cos z sin z 
2 z 

K ( z )  = 
Z 

(B. 1 4 )  

and Ci  is the cosine integral. 

and Cooper, 1969. 

Eq. (B. 1 3 )  was obtained already by Shen 

Their constant A is identical with our constant 2C. 

a The other integral I of Eq. (B. 7 )  one can obtain by evaluating 

AI;/-,, 2 1  d x x  F o s  ( K d z ) - c o s  (E)] 
ux ux 

U 0 uo/u (B. 15)  

so  that 

(B.  1 6 )  
a b  I = I  + A I .  

L€ we again expand the cosine functions, AI can be given by 

Q) k- 1 
(2C) 2k k! (-1)’ 

j! (k-j)! 

(B. 1 7 )  k= 1 j= o U 
0 

2 
0 2  -y1 bo) 2 1  -U  - -[. 2 

- 2  
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m CI 

/:V$tt) dt‘ 

- T  

= o  0 . 2 7  
P min 

0 . 2 3  4 0 . 2 7  =.x P min 

- 1 . 6 6  P m i n  = 3nkX 

2 
2 0 4u C& C‘ - -  

k= 3 

4-00 

1 PVc(t‘) dt‘ 

1 . 2 7  

1 . 2 3  4 1 . 2 7  

- 0 . 6 6  

which gives us to lowest order in u 
0 

C2 A I =  - 2 [l t ob:)] (B. 1 8 )  

This means that for the same lower cutoff case a. ) and b. ) as  defined 

in the Eqs. (B. 2 )  and (B.  3 )  differ only by a constant 1 in their additive 

constants B. A s  a result we have 

where the constant B for the different cutoff parameters is compiled in 

the following Table 2. 

Table 2. The constant B for different cutoff parameters. 
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In order  to compare our results with the numbers given in  the l i t -  

erature  we rewrite Eq. (B. 19)  a s  

(B. 20) 

where y as  introduced by Griem, Kolb and Shen (Griem e t  a l . ,  1959) 

is  given by 
min 

2 
2 

2 
2 

n 4rrn - - -  - e (et{) = ( ' ) 4C . (B.21) 
Ymin 3 m  3 (nq- n 'q ') 

Consequently, B and B a r e  related by the following relation 
0 

(B. 22) 

Comparing Eqs. (B. 19 )  and (B.20)  one notices that for a particular 

line the value of the square bracket a s  derived here  depends on the 

quantum number n 

paper of Shen and Cooper, 1969,  who consider our  case (b) with infinite 

limits on the t'-integral. Otherwise the constants given in the l i terature 

a r e  independent of n 

based on an average Stark splitting. 

corresponds approximately to the average Stark splitting and also 

gives the results for the Stark shifted component of Lyman-a, we have 

for that particular state. This i s  also true for the k 

because the lower cutoff parameter is usually 
2 k 

If we set  nq-n'q' = n /2, which 

B 0 = B- 0.64 . (B. 23)  

n 2 /2 the B values cohe'sponding to the 
nk= 0 

This yields directly for 

B values in Table 2 .  
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The following constants B have been given in the literature: 
0 

Griem, Kolb, Shen, 1959; (Eq. 29) : B = O  
0 

Griem, Kolb, Shen, 1962; (Eq. 2) : 
7 

B = 1.0 
0 

(neglecting quadrupole te rm)  : B = 0. 58 
0 

Griem, 1965 

Kepple, Griem, 1968 

Shen, Cooper, 1969; B = 0.58 

Recently the time development operator (S-matrix) has been evaluated 

for  Lyman-a. including time ordering by solving the differential equations 

for  the S-matrix elements (Bacon, 1969). Again the square bracket 

depends on (nq-n'q') and the average value B = 1.1 considering only 

the dipole term. It should, however, be s t ressed that one should not 

overinterpret these numbers because within the classical path approxi- 

mation there is always some uncertainty about the "correct" constant 

B because of the ambiguous lower cutoff. 

that the classical path approximation breaks down roughly for p ? . ~  

(for details see Paper I). Fo r  most cases this has  no significant effect 

for the Stark broadening of hydrogen because the dynamic broadening is 

primarily due to weak collisions. 

discussion at the end of Chap. XII. 

the broadening of ionized lines where strong collisions a re  very im- 

portant and where the uncertainty of the classical path approximation 

accounts for par t  of the still existing discrepancies between theory 

and experiment, which a r e  large compared with the Stark broadening 

of hydrogen. 

0 

0 

This is due to the fact 

More details a r e  given with the 

The situation is quite different for 

So far we have considered , which is the basis of the un- 
03 

modified impact theory. 

the plasma frequency the modified impact theory introduces the Lewis 

cutoff by considering only those collisions for which the duration of a 

collision, which is typically p/v, is smaller than the time of interest 

being typically l / a w .  

introduces an upper cutoff 

In order to extend the range of validity beyond 

For  this reason the modified impact theory 
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(B. 24)  

o r  

/D = MIN (1, l / A ( f l R )  max 

It should be noted at this stage that in the following relations we not 

only have to replace C by C/a but also Aw 

the dependence on the upper cutoff parameter a. 

ually applied case (b)  (Eq. (B. 3)) we have to evaluate the following 

integral for Aw > 1 

by a &uR, in order  to obtain R 
Considering the us- 

R 

- \ w  du u3e-u{ 2 /AwR dx x [ C O S ( ~  -11 

IL - 
u A(u U O R  o/u 

(B. 2 5 )  

where the lower limit on the u-integral is determined by the condition 

u /u 5 l / / \ w R .  

one obtains similar to Eq. (B. 9)  

After a change of variables and a partial integration 
0 

IL b - - 2 n u  2 [ u e-U2 [ c o s c c r R )  -11 du (B. 2 6 )  

R u o h w R  

Expanding the cosine again and performing another change of variables 

the result is 

2 . .  2k O3 - U  Aw 2 z  O R  

I L = 4 Em! ( - ) J (  e k 
dz . (B. 27) ( -1  Ik U b 

k= 1 Z 

This gives us then 
2 2k 

U 

I L - -  b - - c2 2 E 1 (u:~(ui) t -E 2 z! (T) E k o  ( . I ~ ~ : U ~ )  R 
k= 2 

(B. 28) 
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Evaluating the exponential integrals E k for small  arguments only we 

inally have 

'-4ch gives us for r\cu > 1 the log-dependence of the @ ab -matrix elements R 
in the modified impact theory. 

Lewis cutoff, which avoids the discontinuity at hw R = 1, is to take as  

an upper cutoff 

A more appropriate way for applying the 

= MIN (D, v / r \ W )  
P max 

or / D  = MIN (1, u/hWR) 
P max (B. 30)  

which for case b leads to the following integral. 

u/Aw R 

d x x  [.os(=) xu -11 

(B. 3 1 )  
1 

dx x [cos (,) xu -J 
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These integrals a r e  identical.to 

(B. 3 2 )  
m -1 du 

k o s  (z) -11 . 
R 1 

and after a partial integration we have 

W 

L 2 

O R  

2 
co 

3 -u - d u u  e [cos (T) -13 (B.33)  
A ( U  R 

ALu R 

can be evaluated in a similar 
b 

Acu 

IL 
Expanding the cosine functions, 

manner as  above with the result 
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F o r  A(U ? 1 with 2 G < 1  and b?  1 the latter result  may be simplified 

to give 
R 

(B. 35) 

b b  which for  ~w -+ 0 reduces down to I = I and which has no discontinuity R L 
at & u R  = 1. 

to 

Furthermore,  we see that for ~w + w Eq. (B. 34) goes over R 

(B. 3 6 )  

which does not lead to the static limit. 

Similar results can be obtained for case a, which a r e  not 

included because they a r e  no longer required. The derivation for case 

b has been included, in order to obtain consistent relations which allow 

a comparison with the calculations don. in this paper. The results for 

case b as given here  differ slightly f rom the results in the l i terature 

which also vary from paper to paper depending on the average matrix 

elements used and on what lower cutoff and average velocity has been 

applied. 
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APPENDIX C 

PROGRAM F O R  CALCULATING THE FINAL LINE P R O F I L E  I (c \w)  

In the following a complete listing of the program is given which 

was used to calculate the final line profile I(Aw) on the basis of the unified 

theory for  the case of no lower state interactions. 

1. The Fourier transform of the thermal average 

The complex function FOUTR calculates essentially the Fourier  

transform of the thermal average as defined by 

It uses the Eqs. (X. 17) and (X.22) for calculating i (RW 

respectively. The required Bessel functions J 

evaluated by the subroutine BSJYO1. 

) and i ( A W  ) 

Y and Y1 a r e  
1 R  2 R  

0 J1’ 0 

For  large and small arguments 

these relations a r e  replaced by their asymptotic expansions (X. 18), R 
(X. 23) and (X. 26). The specifying constants p 1’ PZ’ bl’ a2 and b, 

(Pl,  P2 ,  B1, A2, B2) a re  set  in the function AIIM and a r e  calculated 

once for all the Stark components in the main progtam STBRHY. The 

function FOUTR can be replaced by another short function FOUTR listed 

at  the end of the program, which then makes the program calculate 

line profiles according to the modified impact theory. 
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2. Calculation of I(hw,  8 )  
The function AIIM calculates I(&I, p )  a s  defined by Eq. (XII. 6).  

It establishes first of all  the matrix of the 

Eq. (XII. 7 )  and calculates the a r r ay  

g-operator according to 

for the 

once in 

a r rays  

m values 0 and *l. The required 3j-symbols a re  

the main program and their values a r e  stored in 

according to the following definitions 
1 

SAR (NLA, 

n-1 n-1 
2 

2 

calculated 

three different 

SSJJ (MCT,  NBN, NAN) = 

ntm-  1 - 
(-1) 

‘atqb 
2 

n- 1 
2 
- 

m+qa 

2 

104 



where MCT = m and NAN and NBN a r e  numbering indices specifying 

the q and qb. The matrix AMATR is then inverteid by the subroutine 
a 

CGAUSSEL, which is able to solve systems of linear, complex equations 

by Gaussian elimination. 

symbols according to Eq. (XII. 6 )  yields finally I(acu, 13). 

3. 

Multiplying the inverted matrix by the 3j- 

The final line profile I (Aw)  

The main program STBRHY calculates the final line profile by 

performing the ion field average according to Eq. (11.1). 

all reads in the ion microfield distribution function for  0 < 

steps of 0. 1,  which has been calculated in a separate program for the 

particular shielding parameter r /D. It then reads in the density n , 

the temperature T, the upper principal quantum number n, the wave- 

length 1, the average value of the static ion fields e the initial 

value A W ,  the logarithmic stepwidth, the total number of points, a 

parameter which specifies the number of ion field ‘integration points 

and finally 6 numbers, which specify the G -function and hence i (Aw ) 2 2 -  R 
for all Stark components and which may in practically all cases be set  

t o  zero. 

described in Appendix A. 

It f i r s t  of 

5 30 in 

0 e 

av’ 

I 

These 6 numbers a re  obtained from the thermal average 

1’ P2’ bl’ a2 and b 2 The program then calculates the constants p 
for all Stark components and stores them in the a r ray  I FPAR. p1 is 

calculated according to Eq. (X.  5). p 

Eq. (B. 19) where the constant B is given by 

is determined on the basis of 2 

1 
b B = 0.27-  2K(-) . 
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The K-function is 
cutoff p = %  + 

min 

defined in Eq. (B. 1,4) 
c n2a by setting 

2 0 

and is calculated for a lower 

The necessary cosine integral is calculated by the function COSINT. 

As a next step the main program evaluates all the required 

3j-symbols by means of the function S3J, which in turn uses the function 

FCTRL to calculate all the necessary factorials. 

stored in a r rays  according to the definitions in  (C.4) , (C. 5) and (C. 6). 

The numbers a r e  

In performing the ion field average the microfield distribution 

function is calculated by the function W F L D ,  which uses a 5 point 

interpolation on the values read in initially for 8 < 3 0  and otherwise 

uses the asymptotic expansion given by Hooper, 1968b. 

of a w  and 8 ,  which determine the shape of the ion field integrand, the 

ion field integral is subdivided in intervals, which a r e  integrated 

separately by means of Weddle's rule (subroutine WEDDLE) using a 

convenient change of variables in every interval. 

program calculates the asymptotic wing expansion according to 

Eq. (XI.  1 2 )  and the unified theory fo r  6 = 0 and B = R 

not the ion field integral. 

respect to the asymptotic ~w 5/2 - w ing e 

A s  a function 

Furthermore,  the 

performing 
av 

Al l  three values a r e  normalized with - 
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PROGRAM STBRHY 
C 
C 
C 

1 0 0  
12 0 
1 5 0  

170 
1 8 0  

1 9 0  
5 7 7  
200 

230 

C 
C 

PROGRAM FOR CALCULATING THE STARKBROADtNING OF HYDROGEN ON THE 
BASIS OF THE U N I F I E D  THEORY FOR NO LOWER STATE INTERACTION 
DIMENSION FF(lOOO), P F A C ( 6 1 ,  S S J ( 2 0 1 ,  STRONG(20) 
COMPLEX FOUTR 
C O M M O N / F D A T / P ~ , P ~ , B ~ ~ A ~ ~ B ~ P P P F F  
COMMON/PSTR/NNN,NMl,BET,FPAR(6,20) 
COMMON/PSJD/SSJJ(2r20*20)* S J Q L ( 2 r 2 O r 2 0 ) ~  SAR(20,20)  
COMMON/PFW/FIELD(301) 

READ 100, ( F I E L D ( I ) ,  I = 2,301)  
FORMAT (6E12.4)  
READ 15O,DEN,TEMP,NNN,ALAM,BAVIGIN,DGGi~TOT,NFAC,(pFAC( I) r I & 6 )  
FORMAT (2E10.2, 15, 4F10.2, 2 1 5 / 6 F 1 0 0 5 )  
IF (EOF,60) 5779 1 7 0  
PRINT 180,  DEN, TEMP, NNN, ALAM 
FORMAT (1H1,* DENSITY = *E1204*  TEMPERATURE = *E12.49 

FIELD(I) = 0.0 

1 * QUANTUMNUMBER =*12* WAVELENGTH =*F802*  ANGSTROM*// 
2 1 3 X ~ * P 1 * 1 8 X ~ * P 2 * 1 8 X ~ * B l * l ~ X ~ * A 2 * 1 8 X ~ * ~ 2 * 1 7 X ~ * S T R ~ ~ G * / ~  

I F  (NNN.LE.20) GO TO 200 
PRINT 190  
FORMAT ( +  PROGRAM NOT EXECUTED BECAUSE N IS LARGER THAN 20*) 
C A L L  EXIT  
SDEN = SQRT(DEN) 
FAC = 2 0 6 4 0 9 3 6  * TEMP * SQRT(TEMP/DEN) 
NM1 NNN - 1 
NEVODD = MOD(NNNg2) 

AN2 = AN * AN 
AN = NNN 

ANlM = 0.5 * (AN - 1.) 
CFAC = 405645E-7  * AN * SDENITEMP 
DEBROG = 2.1027E-b/SQRT(TEMP) 
RMIN = DEBROG + AN*AN*7.9376E-9 
DO 230 K = 1, NNN 
A K I K - 1  
S S J ( K ) = ( A N ~ + ( ( - ~ . ) * * M O D ( N M ~ + K , ~ ) ) * ( A N ~ - ~ ~ * A K * A K ) ) / ( ~ O * A N * ( A N ~ - ~ ~ ) )  
BET = 5o6558E-5 * AN * DEN** ( l o /6 . )  

ARRAY FOR G-FUNCTION CONSTANTS 

DO 270 K = 19NM1 
QC = K 
C = CFAC * QC 

ASY = 000 

P 1  = -1.671086 * FAC * C * SQRT(C) 
BS = 3 0  * AN * QC * DEBROGIRMIN 
STRONG(K1 ~ . ~ ~ ~ - ~ . * ( ( ( ~ O - C O S F ( ~ S ) ) / B S ~ S I N F ( B S ) ) / B S - C O S I N T ( B S ) )  
PPFF = -1.128379 * FAC * C * C 
P2 = PPFF * (STRONG(K) - 2.*LOGF(Z.*C)) 
FPAR(1,K) = P 1  
F P A R ( 2 r K I  = P2 
FPAR(3,K) 0.5 * ( P 2 / P 1 ) * * 2  

FPAR(4,K) P2 * ( I P F A C ( 3 ) " F I N  + P F A C ( 2 J )  * F I N  + P F A C ( 1 ) )  
F I N  = LOGF(AN*QC) 
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270  

240  

2 8 0  

C 
C 

325 
4 5 0  

3 5 0  
375  
6 5 0  

C 
C 

68 0 
7 2 0  
7 8 0  

C 
C 

FPAR(5,K) = ( P F A C ( 6 ) * F I N  + P F A C ( 5 ) ) * F I N  + P F A C ( 4 )  

ASY = ASY + 2. * FPAR(1,K) * S S J ( K + l )  
PRINT 2 4 0 * ( ( F P A R ( K 9 I ) , K  = l t S ) , S T R O N G ( I ) ,  1 = 1,NMl) 
FORMAT (6E20.4)  
PRINT 280, F A C s  CFAC, BET, ASY, DEBROG, NFAC 

FPAR(6,K) = PPFF - 

FORMAT(/* FAC =*E12.4** CFAC '*E12.4,* BET =*E12.4,* ASY =*E12.4* 
1 * DEBROG =*E12.4,* INTEGRATIONFACTOR = * I 2 / /  
2 5 X * D O M * 8 X * D L A ~ * 8 X * I T O T * 6 X * I ~ O l T S * ~ X * A S Y * l O X * W I N G * 7 X * W H O L T S * 7 X ~  
3 *WSTAT*7X*WW00*8X*WWBB*8X*iiWNG*/) 

ADLFAC = 4 ~ 2 3 5 3 8 E - 1 5  SDEN * ALAM * A L A M  

3JSYMBOL-*ARRAYS SSJJ(MCT,NBN,NAN) AND SJQL(MCT,NBN,NLA) 
DO 6 5 0  MCT = 1 9 2  
AMA = MCT - 1 
NLIM = NNN + 1 - MCT 
NQB -NLIM - 1 
DO 4 5 0  NBN = 1,NLIM 
NQB = NQB + 2 
QB = NQ8 

FMB2 = ( A M A  + QB) * 0.5 
DO 3 2 5  NLA = 1,NNN 
A L A  = NLA - 1 
SJQL(MCT*NBN*NLA) S 3 J ( A N 1 M , A N l M * A L A , F M B l * F M B 2 , - A M A )  
CONT I NU€ 
DO 375 NBN = 1,NLIM 
DO 350 NAN = 1,NLIM 

SSJJ(MCT,NBN,NAN) = AABB 
CONTINUE 
CONT I NUE 

FMBl  = ( A M A  - QB) * 0.5 

AABB (-l.)*+MOD(NAN+NBN,2) * SJQL(MCT,NBN,Z) * SJQL(MCT,NAN,2) 

3JSYMBOL-ARRAY SAR~NLAPNQC)  
DO 7 8 0  NQC = l -h lM1  
QC = NQC 
DO 7 2 0  NLA t l r N N N  
A L A  = NLA - 1 
FBB 0. 
DO 6 8 0  NMC 1pNLA 
IF(NEVODD.NE.MOD(NMC+NQC,2)) GO TO 680 
AMC = NMC - 1 
FCF = 2. 
IF(NMC.EQ.1) FCF = 1. 
FMCl = 0.5  * (AMC - Q C )  
FMC2 = 0.5 * (AMC + Q C )  
F 6 8  = FBB + FCF * ( S ~ J ( A N ~ M , A N ~ M , A L A , F M C ~ P F M C ~ , - A M C ) ) * * Z  
CONTINUE 
SAR(NLA,NQC) = FBB * (2.*ALA + 1.) 
CONTINUE 

CALCULATION OF THE IONFIELD INTEGRAL 
NN6 = 6 * NFAC 
ANN6 = NN6 
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815 

82 0 

83 0 

840 

90 7 
908 

N12 = 12 * N F A C  
AN12 = N12 
N30 = 30 * NFAC 
A N 3 0  = N30 
G = G I N  - DGG 
DO 950 MM = 1 9 N T O T  
G = G + DGG 

D L A M  = ADLFAC * DOM 
DOM = 10. ** G 

WING52 = -0.2992067103 * A S Y / ( S Q R T ( D O M )  k DOM * DOM) 
F H O L T S  = 0 .  
AWING = 0 .  
DO 8 1 5  NQC = 1 9 N M 1  
P 1  = F P A R ( 1 9 N Q C )  
P 2  = F P A R ( 2 9 N Q C )  
81 = F P A R ( 3 9 N Q C )  
A 2  = F P A R ( 4 t N Q C )  
82 = F P A R ( 5 9 N Q C )  
P P F F  = F P A R ( 6 9 N Q C )  

QC = NQC 
B E T F A C  = B E T  * QC 
B C R I T  = D O M I B E T F A C  1 

F H O L T S  = F H O L T S  + SSJ(NQC + 1 )  * W F L D ( 6 C R I T )  / B E T F A C  

AWING = AWING + S S J ( N Q C + l ) * A I M A G ( F O U T R ( D O M ) ) + 2 . / ( D O M + D O M )  

A I R E S  = 0 .  
I F ( O O M * G T . ( - 3 e + P Z ) )  GO TO 840 
B C R I T  = (DOM - P Z ) / ( ( A N  - l . ) * B E T )  
D B  = B C R I T / A N N 6  

DO 820 J = 19NN6 
B = B + D B  
F F ( J )  = A I I M ( D O M 9 B )  * W F L D ( B )  
C A L L  WEDDLE ( D B 9 N N 6 9 F F 9 A I I I 9 0 . )  
A I R E S  = A I 1 1  
DY = l . / ( B C R I T * A N 3 0 )  
Y = 0. 
DO 830 J = 19N30 
Y = Y + D Y  

B = 0. 

B = 1 * / Y  

C A L L  WEDDLE ( O Y ~ N 3 O ~ F F ~ A I I I ~ O . I  
F F ( J )  = B * 8 * AIIM(DOM,B) * WFLD(B) 

A I R E S  = A I R E S  + A I 1 1  
GO TO 980 
BCRCR = DOM/BET 
E P S P S  = - P Z / B E T  
DO 957 NQ = 1 9 N M 1  
ANQ = NQ 
BCR = B C R C R I A N Q  
E P S  = EPSPS/ANQ 
IF(NQ.EQ.1) GO TO 907 
S L 1  = 1. / (GAM - B C R )  
GO TO 908 
S L 1  = 0. 
S L 2  = 1./EPS 
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SL3 = l./(BCR + EPS)  
SL4 l./(BCR - EPS) 
GAM = 0.5 * (BCR - EPS + (BCRCR + EPSPS)/(ANQ + 10)) 
IF(NQoEQoNM1) GAM 0.5 * (BCR - EPS) 
SL5 = 1m/(BCR - GAM) 
CRIT = SL2 - SL5 
Y = SL1 
IF(NQ.EQ.1) GO TO 913 
8 = BCR + lo/Y 
FA = AIIM(DOMr8) * WFLD(B)/(Y * Y) 
GO TO 914 

913 F A  0 0. 
914 DY (SL2 - SLl)/ANN6 

DO 917 J = lrNN6 
Y = Y + D Y  
Y1 = l./Y 
B = BCR + Y1 

917 FF(J) = Y1 * Y1 * AIIM(D0MrB) * WFLD(B) 
CALL WEDDLE (DYrNN6rFFrAIIIrFA) 
AIRES = AIRES + AI11 
Y = SL3 
8 = l./Y 
FA = B * B * AIIM(DOMIB) * WFLD(B) 
DY = (SL4 - SL3)/ANN6 
DO 927 J = 1rNN6 
Y = Y + D Y  
8 = l./Y 

CALL WEDOLE ( D Y ~ N N ~ ~ F F ~ A I I I I F A )  
AIRES = AIRES + A I 1 1  
IF(CRIToLE.0.) GO TO 977 
Y = SL5 
B BCR - l./Y 
FA = AIIM(DOM9B) * WFLD(B)/(Y * Y) 
DY = CRIT/AN12 
DO 937 J = lrN12 
Y = Y + D Y  
Y1 = l./Y 
B = BCR - Y1 
CALL WEDDLE ( D Y ~ N ~ ~ ~ F F I A I I I ~ F A )  

IF(GAM.LTm 5.) GO TO 968 
Y = 1./GAM 
FA = GAM * GAM * AIIM(D0MrCAM) * WFLD(GAM) 
DY (002 - Y)/AN12 
DO 967 J = 1rN12 
Y = Y + D Y  

927 FF(J) = 6 * B * AIIM(0OMrB) * WFLDIB) 

937 FF(J) = yi * yi * AIIM(DOM,B) * WFLD(B) 
957 AIRES = AIRES + A I 1 1  

B = l./Y 

CALL WEDDLE (DYrN12,FFrAIIIrFA) 
AIRES = AIRES + A I 1 1  
SL4 = 0.2 
GO TO 977 

967 FFIJ) = B * B * AIIM(D0M.B) * WFLD(B) 



968 
977 

94 7 

980 

95 0 

978 

C 

C 
C 

220 

500 
600 

700 

SL4 = 1./GAM 
6 = 0. 
OB = l./(SL4 * AN301 
DO 947 J = 19N30 
B = B + D B  
F F ( J )  = A I IM(DOM9B)  * WFLD(B) 
C A L L  WEDDLE (DB,N30,FF,AIII,O.) 
AIRES = AIRES + A I 1 1  
WING = AIRES/WING52 
WISTAT = AIRES/FHOLTS 
WINHOL = FHOLTS/WING52 

WWBB = (A I IM(DOM9BAV)  + FHOLTS)/WING52 
WWNG = (AWING + FHOLTS)/WING52 
PRINT 978~D~M~DLAM~AIRES~FHOLTS,WING52,WING52~~WING~WINHOL~WIS~AT~ 

FORMAT ( l l E 1 2 . 4 )  
GO TO 1 2 0  
END 

FUNCTION AI IM(DOM9B)  

CALCULATION OF I(DOM,B) 
COMPLEX D F T R ( Z U ) , A M A T R ( ~ O , ~ ~ ) T F O U T R , A R ~ F  
C O M M O N / F D A T ~ P l ~ P 2 ~ 9 1 , A 2 , B 2 , P P F F  
C O M M O N / P S T R / N N N , N M l , B E T , F P A R O  
C O M M O N / P S J D / S ~ J J ( 2 , 2 O r 2 0 ) ,  S J Q L ( 2 9 2 0 9 2 Q ) p  S A R ( 2 0 9 2 0 )  

DO 800 MCT = 1 9 2  
AMCT = MCT 
NL IM = NNN + 1 - MCT 
NL22 = 2 * N L I M  
NQB = -NLIM - 1 
00 750 NBN = lrNLIM 
NQB = NQB + 2 
QB = NQB 

WWOO = (A I IM(DOM9 0.)  + FHOCTS)/WING52 

2 WWOO, WWBB, WWNG 

A I I M  0 .  

DOMRB = DOM - BET * QB * B 
DO 2 2 0  NQC = l r N M l  
P 1  = FPAR(1,NQC) 
P2 = FPAR(2,NQC) 
6 1  = FPAR(39NQC) 
A 2  = FPAR(4,NQC) 
82 = FPAR(5,NQC) 
PPFF = FPAR(6rNQC) 

DO 700 NAN = 1,NLIM 
AREF = (0.,0*) 
DO 600 NQC = l r N M l  
FAA = 0.0 
DO 500 NLA = 1,NNN 
F A A  = FAA + SJOl(MCT,NAN,NLA) * SJQL(MCTwNBN,NLA) * SAR(NLAvNQC1 
AREF = AREF + F A A  * DFTR(NQC) 
AMATR(NBN9NAN + N L I M )  = (0 . ,0 . )  

DFTR(NQC)  = FOUTR(DOMRB) 

AMATR(NBN9NAN) = 6.2831853072 * (( - l . ) **MOD(NAN+NBN,Z~)  * AREF 
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7 5 0  
C 

7 9 3  
795  
8 0 0  

3 0 0  

400 

5 0 0  

6 0 0  

AMATR(NBN,NBN+NLIM) = ( 1 . 9 0 0 )  

AMATR(NBN9NBN) = AMATR(NBN,NBN) + DOMRB 
M A T R I X  INVERSION 
C A L L  CGAUSSEL(AMATR,20rNLIM,NL22,NRANK) 
DO 7 9 5  NBN = 1,NLIM 
DO 7 9 3  NAN = 1,NLIM 
A I I M  = A I I M  + AMCT*SSJJ(MCT,NBN,NAN)*AIMAG(AMATR(NBN,NAN+NLIM)) 

CONT I NUE 

RETURN 
END 

CONTINUE 

A I I M  = - A I I M  * 0.3183099 

THE FOLLOWING FUNCTION FOUTH MAY BE REPLACED BY THE FUNCTION FOUTR 
A T  THE END OF THE L I S T I N G  TO OBTAIN THE MODIFIED IMPACTTHEORY 
FUNCTION FOUTR (DOMI 

FOURIERTRANSFORM OF THERMAL AVERAGE FOR U N I F I E D  THEORY 
COMPLEX FOUTR 

ARG = ABSF(D0M) 
2 = 81  * ARG 

C O M M O N / F D A T / P ~ P P ~ , B ~ , A ~ , B ~ , P P F F  

I F  (Z.LE.O.001) GO TO 6 0 0  
I F  (Z.LE.40.) GO TO 3 0 0  
F A C l  = -0.2992067103 * P l / ( S Q R T ( A R G )  * ARG * ARG) 
CC =: F A C l  * ((1. - 1 0 3 1 2 5 / 2 ) * 0 . 6 2 5 / 2  + 1.) 
SS = F A C l  * ((-1.- 1 * 3 1 2 5 / 2 ) * 0 . 6 2 5 / 2  + 1.) 
GO TO 500 
C A L L  BSJYO1 ( 2 ,  AJO, YO, A J I ,  Y 1 )  
F A C l  = Y1/(2.*Z)  + A J 1  - YO 
FAC2 = AJO + Y 1  - AJ1 / (2 . *2 )  
CINE = COSF(Z)  
S INE = S I N F ( Z )  
CC = P2 * 81 * €31 * ( C I N E  * F A C l  + S I N E  * FACZ) 
SS = P2 * 61  * B 1  * ( C I N E  * FAC2 - S I N E  * FAC1) 

2 = 8 2  * ARC 

C A L L  BSJYOl  (ZP AJO, YO, AJ1 ,  Y 1 )  

I F  (A2.EQ.O.) GO TO 500 

I F  (Z.GT.10.) GO TO 400 

F A C l  I. ((AJ1-Y0)*16.*Z-36.*AJO-28.*Yl~*Z+l5~*YO~3~*AJl 
FAC2 = ((AJO+Y1)*16m*Z-36.*YO+28.*AJl~*Z-l5.*AJO-3.*Yl 
CINE = COSF(2)  
S INE = S I N F ( 2 )  
CC = CC + A2*B2*(CINE * F A C l  + S I N E  * FAC2) /6 .  
SS 3 SS + A2*B2*(CINE * FAC2 - S I N E  * FAC1) /6 .  
GO TO 500 
F A C l  = 0.1322319336 * A2 * 8 2  * Z**(-3.5) 
CC = CC + F A C l  * (1. - (3.937512 + 1.)*4.375/2) 
SS = SS - F A C l  * (1. - (3.937512 -. 1.)*4.375/2) 
I F  (DOM.LTm0.I SS = -SS  
FOUTR = ARG * ARG * CMPLX(-SS~CCI 
RETURN 
SS = (P2*B1  - A21 * DOM 
FOUTR = 0.3183099 * CMPLX(SS,-P2) 

112 



RETURN 
END 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
1 2  
1 3  
14 
1 5  
16 
17 

SUBROUTINE WEDDLE (DX, N9 F P  A 9  FO) 

INTEGRATION SUBROUTINE 
DIMENSION F ( N )  

K = N - 1  
DO 1 5  I = 1 9  6 

00 6 J = 11 K 9  6 
SUM = SUM + F ( J )  

A = 0.0 

SUM = 000 

GO TO ( 8 1  10, 129  10, 8 9  141, I 
A = A + 5 0 0  * SUM 
GO TO 1 5  
A =I A + SUM 
GO TO 1 5  
A = A + 6.0 * SUM 
GO TO 1 5  
A = A + 2.0 * SUM 
CONT I NUE 
A = 0.3 * DX * ( A  + FO + F ( N ) )  
RETURN 
END 
FUNCTION WFLD(B1 

CALCULATION OF THE ION HICROFIELD DIST+BUTION FUNCTION USING A 
5POINT INTERPOLATION FOR THE DATA READ INTO THE MAINPROGRAM 
COMMON/PFW/FIELD(301) 
WFLD = 0.0 
I F  (B.LE.30.0) GO TO 200 
SBS = 1 . / (B  * SQRTIB) )  
WFLD = ( ( 2 1 . 6  * S8S + 7.639) * SBS + 1.496) * SBS/B 
RETURN 

200 I F  (8oLE.000)  RETURN 
J = ( 6  + 002) * 10.0 
L = J - 1  
I F  (J.GT.2) L = J - 2 
I F  (J.GT.3) L = J - 3 
I F  (J.GT.300) L = 297 

70 LLL = L + 4 
DO 7 5  K = LpLLL 
A K x K - 1  
TERM = 100 
DO 74 M = L9LLL 
I F  (KeEQoM) GO TO 74 
A M = M - 1  
TERM = TERM * (1Oo*B - AM) / (AK - AM) 

TERM = TERM * F I E L D ( K )  

RETURN 
END 

74 CONTINUE 

7 5  WFLD = WFLD + TERM 
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FUNCTION S3J ( F J l r  FJ29 FJ39 F M l r  FM2r FM3 1 

CALCULATION OF 3J-SYMBOL 
S3J=0.0 
I F ( A B S ( F M 1  + FM2 + FM3) .GTo 0.001) G o  TO 153  
FM3=FMl+FM2 
A=FJ2+FJ3+fM1+.005 
B=FJ1--FM1+.005 

D=FJ3+FM3+.005 
E=FJl-FJ2-FM3+.005 
F=FJ l -FJ2+FJ3+*005  
G=FJl+FJZ-FJ3+.005 
H=FJl+FJ2+FJ3+1*0+.005 
E ~ I F C T R L ( B ) * F C T R L ( F J ~ + F M ~ ) ” F C T R L ( F J ~ - F M ~ ) * F C T R L ( F J ~ + F M ~ )  

c=-FJ l+FJ2+FJ3+0005 

I F  ( E l )  1539 153, 1 5 0  

I l = X M A X l F ( O * O r  -E+O*01) 
1 2 = X M I N l F ( A r  C r  D )  
I F  ( 1 2 - 1 1 )  1539 151,  1 5 1  

F I = I  
E2=FCTRL(FI)*FCTRL(C-FI)*FCTRL(D-FI)/FCTRL(A-F1) 

150 E l = S Q R T ( E 2 ) / S Q R T ( E l )  

1 5 1  DO 1 5 2  I = I 1 9 1 2  

152 S 3 J = S 3 J + ( ( ( - 1 . O ) * * X M O D F [ I , 2 ) ) / E 2 ) * F C T R L ( B + F I ) / F C T ~ ~ ( E + F I )  
U=ABS(FJ1+FM2+FM3)+0.001 
S3J=S3J* (  ( - 1 . O ) * * X M O D F ( X F I X F ( U ) r 2 )  ) / E l  
FM3=-FM3 

153 RETURN 
END 

FUNCTION FCTRL(A)  

CALCULATION OF FACTORIALS REQUIRED B Y  FUNCTION S3J 
DIMENSION F C T I ( 2 0 )  

DATA ( ( F C T I ( I ) 9 1 = 1 9 2 0 )  ~ 1 ~ 0 ~ 2 ~ 0 ~ 6 0 0 ~ 2 4 0 0 ~ 1 2 0 0 0 ~ 7 2 O 0 0 ~ 5 ~ 4 O ~ O ~  
1 4 ~ 3 2 0 o 0 ~ 3 6 2 8 8 0 o 0 ~ 3 6 2 8 8 0 ~ ~ 0 ~ 3 9 9 1 6 8 0 ~ ~ 0 ~ 4 7 9 0 0 1 6 0 0 o 0 r  
2 6227020800.0~87178291200~0~13076743680C0o0r 
3 2.0922789888E139 3.55687428096E149 6.402373705728E159 
4 l o 2 1 6 4 5 1 0 0 4 0 8 8 3  E179 2o4329020081766  E181 

I F ( A )  50,60970 
5 0  I F ( A o G E . ( - O o l )  1 GO TO 6 0  

FCTRL = 0.0 
RETURN 

60 F C T R L  = 1.0 
RETURN 

7 0  I = A + 001 
I F  ( I . E Q o  0 )  GO TO 60 
I F  (1-20) 1 4 0 9 1 4 0 9 1 3 0  

1 3 0  F‘20.0 
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1 3 1  

140 
1 5 0  

C 

C 

C 

1 

C 

C 

2 
;c 

C 

C 
3 

C 

F C T R L = F C T I ( Z O )  
DO 1 3 1  J = 2 1 9 1  
F=F+1.0 
F C T R L = F C T R L * F  
GO TO 150 

RETURN 
END 

FCTRL=FCTI( I )  

S U B R O U T I N E  C G A U S S E L ( C , N R D , N R ~ N C C ~ N S F )  

D I M E N S I O N  C ( N R D 9 N C C )  9 L ( 1 2 8 9 2 )  
T Y P E  COMPLEX C ~ D E T S P ~ D I Q ~ R  
DATA ( B I T S  = 1755  4000 0000 0000 B )  
C A L L  R O L L C A L L ( 4 8 H C G A U S S E L  6 / 5 / 6 8  1-BANK B I T S = 2 * * - 1 8  1 
NR=NRR B NC=NCC 
I F ( N C . L T ~ N R O O R O N R ~ G T ~ ~ ~ ~ ~ O R O N R ~ L E ~ O )  C A L L  0 8 Q E R R O R ( 0 9 9 H B A D  CALL. )  
I N I T I A L I Z E .  
NSF=O 

DO 1 K R = l * N R  

L ( K R  9 2  ~0 
C A L L  Q 9 E X U N ( E X U N )  
I F ( N R o E Q . 1 )  GO TO 42 
E L I M I N A T I O N  PHASE. 
DO 41 KP= l ,NRM 
K P P = K P + 1  $ PM=Oo S MPN=O 
SEARCH COLUMN K P  FROM D I A G O N A L  DOWN, FOR MAX P I V O T .  
DO 2 KR=KP,NR 

P T = C A B S ( C ( L K R I K P )  1 
I F ( P T o L E o P M )  GO TO 2 
PM=PT !J MPN=KR 8 LMP=LKR 
C O N T I N U E  
I F  MAX P I V O T  IS ZERO9 M A T R I X  IS SINGULAR.  
I F ( M P N o E Q . 0 )  GO TO 9 

I F ( M P N . E Q o K P )  GO TO 3 

LSD=-LSD 
L ( K P , ~ ) P L ( M P N ~ ~ ) = L ( K P , ~ )  
L ( K P 9 1 ) Z L M P  
ROW O P E R A T I O N S  TO ZERO COLUMN KP BELOW DIAGONAL.  
MKP=L  ( K P  9 1) 
P=C(MKP,KP)  3 D=D*P 
DO 41 K R z K P P v N R  

Q=C(MKR,KP) /P  
1 F ~ R E A L ~ Q ~ o E Q o 0 o o A N D ~ A 1 M A G ~ U l . E Q . O . ~  GO TO 41 
SUBTRACT Q * P I V O T  ROW FROM ROW KR. 
DO 4 LCZKPPINC 
R=Q*C(MKP,LC) 
C(MKR,LC)=C(MKR,LC) -R  

NRMENR-1 8 N R P = N R + l  S D = ( 1 0 9 0 0 )  8 L S D = l  

L ( K R  ,i =KR 

L K R = L ( K R ~  

N S F = N S F + l  

NEW ROW NUMBER K P  HAS MAX P I V O T .  

MKR=L ( KR 1 
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4 
4 1  
C 
4 2  

C 

5 
6 
6 1  
C 

7 
7 1  
C 
8 
9 
9 1  

IF(CABS(C(MKR,LC) ) a L T a C A B S ( R ) * B I T S )  C(MKR,LC)=(O.,Om) 
CONT I NUE 
LOWER RIGHT HAND CORNER. 
LNR=L(NR,I )  3 P=C(LNR,NR) 
IF(REAL(P).EQaOaaAND~AIMAG(P)*EQ~Oo) GO T O  9 
NSF=NSF+l 
D=D*P*LSD 
IF(NR.EQaNC) GO TO 8 
BACK SOLUTION PHASE. 
DO 6 1  MC=NRP,NC 
C(LNR,MC)=C(LNR,MC)/P 
IF(NRaEO.1) GO TO 6 1  
DO 6 L L = l r N R M  
KR=NR-LL B MR=L(KR,1) B KRP=KR+1 
DO 5 MS=KRP,NR 
L M S = L ( M S * l )  

C (MR ,MC )=C( MR 9MC)  -R 

C ( M R I M C ) = C ( M R I M C ) / C ( M R , K R )  
CONTINUE 
SHUFFLE SOLUTION ROWS BACK T O  NATURAL ORDER. 
DO 7 1  LL=l,NRM 
KR=NR-LL 

IF(MKRmEQ.0) GO TO 71  

R=C(MR,MS)*C(LMS,MC)  

I F ( C A B S ( C ( M R , M C ) ) . L T . C A B S ( H ) + B I T S )  C(MR,MC) ' (Oa,O.)  

M K R = L ( K R ~  

M K P = L ( K R , ~ )  

Q=C(MKR,LC) 
DO 7 LC=NRP,NC 

C(MKR,LC)=C(MKP,LC) 
C(MKP,LC)=Q 
CONT I NUE 
NORMAL AND SINGULAR RETURNS. GOOD SOLUTION COULD HAVE D=Oa 
C ( 1 , 1 ) = D  B GO T O  91 
C ( l , l ) = ( O a , O . )  
CALL S9FAULT(EXUN) B RETURN 
END 

C 
SUBROUTINE BSJYO1 ( X ,  AJO, YO, AJ1,  Y 1 )  

C 
C 
C 

CALCULATION OF THE BESSEL FUNCTIONS JO, YO, J1, AND Y 1  FOR AN 
ARGUMENT X 
DIMENSION A ( 7 ) *  i 3 ( 7 ) ,  C ( 7 ) p  D ( 7 1 9  E ( 7 ) 9  F ( 7 ) r  G ( 7 ) r  H ( 7 )  
DATA ( ( A ( I ) *  I = 1 9 7 )  OmOOO21, -0.0039444, 0.04444799 

1 -0.31638669 1.2656208, -2.2499997, 1.0) 
DATA ( ( B ( I ) ,  I = 1 9 7 )  = - 0 0 0 0 0 2 4 8 4 6 ,  0.00427916, -0.04261214, 

1 O a 2 5 3 0 0 1 1 7 ~  -0.743503849 0.60559366, 0 .36746691)  
DATA ( ( C ( I ) *  I = 1 9 7 )  Oa00014476,  -0.00072805, 0;001372379 

1 -0.00009512, -0.0055274, -0m00000077r  0 .79788456)  
DATA ( ( D ( I ) ,  I = 1971  = O.00013558, -0mQ0029333r -0 .00054125,  

1 0.00262573, -0.00003954, -0.04166397, -0 .78539816)  

1 -0.03954289, 0.210935739 -0.562499859 0.5) 
DATA ( ( E ( I ) ,  I = 1 9 7 )  t 0a00001109 ,  -0a00031761r  0 .00443319r  

DATA ( ( F ( I ) ,  I = 1 9 7 )  0.0027873, -0.04009769 0.31239519 



1 0  

20 

50 

6 0  

C 

C 
C 

1 -1.3164827, 2.1682709, 002212091, -006366198) 
D A T A  ((G(I)g I = 1 9 7 )  = - Q e o O O Z L ) O 3 3 9  O@u01136539 -0e00249511, 

DATA ( ( H ( I ) *  I = 1 9 7 )  = - L J ~ 0 0 0 2 9 1 6 6 r  0 + 0 0 0 7 9 8 2 4 r  0.00074348, 
1 0 * 0 0 0 1 7 1 0 5 9  0.01659667r  0.00000156, 0 .79788456)  

1 -0.00637879, 0.00005659 0 0 1 2 4 9 9 6 1 2 g  -2.356194491 
A X  = ABSF(X)  
I F  (AX.GT.O.0) GO T O  1 0  
A J O  = 1.0 
YO = - l .E+030 
A J 1  = 0.0 
Y 1  = -1 *E+030  
RETURN 
I F  (AX.GT.3.0) GO TO 50  
X X  = (AX/3 .0)  ** 2 
A J O  = A ( 1 )  
YO = B ( 1 )  
A J 1  = E ( 1 )  
Y 1  = F ( 1 )  
DO 20 M = 297 
AJO = A J O  * X X  + A ( M )  
YO = YO * XX + B ( M )  
A J 1  = A J 1  * X X  + E ( M )  
Y 1  = Y 1  * XX + F ( M )  
A J 1  = A J 1  * X 
ALF = 0.6366197724 * LOGF(0.5 * A X )  
YO = YO + ALF * AJO 
Y 1  = Y l / X  + ALF * A J 1  
RETURN 
X3 = 3*O/AX 
FO = C(1) 
THO = D ( 1 )  
F 1  = G(1) 
TH1 = H ( 1 )  
DO 60 M = 297 
FO = FO * X3 + C ( M )  
THO = THO * X3 + D(M) 
F 1  = F 1  * X3 + G ( M )  
TH1 = TH1 * X3 + H ( M )  
THO = THO + A X  
TH1 = TH1 + A X  

A J O =  XS * FO * COSF(TH0) 
THO) 
TH1) 
TH1) 

XS = l . /SQRT(AX) 

YO = XS * FO * SINF 
A J 1 =  XS * F 1  * COSF 
Y 1  = XS * F 1  * S INF 
RETURN 
END 

FUNCTION COSINT(X)  

CALCULATION OF THE COSINE INTEGRAL 
TYPE DOUBLE YZ,PROD,SUM,PT,DK 
IF(X.LE.0.) GO TO 5 0  
x 2 = x * x  
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IF(X.GT.20.) GO TO 30 
Y 2  = DBLE(X2)  
PROD -Y2 * 0.5 
SUM = PROD * 0.5 
DO 10 K = 2 * 5 0  
D K = 2 * K  

SUM = SUM + PRODIDK 
PROD = -PROD * Y2/ (DK*(DK - 1.)) 

PT = ABS(PR0D * 1eD+10)  
IF(ABS(SUM).GT.PT) GO TO 2 0  

10 CONTINUE 
20 ss = SNGL(SUM) 

COSINT = SS + 0.5772156649 + LOGF(X)  
RETURN 

30 FA = 1. 
FB 1 0  

PO = 1. 
x 2  = l . /X2 
DO 40 K = 1910 
A K = 2 * K  

FA = FA + PO 

FB = FB + PO 

IF(PA.LE.FB) GO TO 4 5  

PO -PO * AK * X2 

PO = PO * ( A K  + 1.) 

PA = ABS(P0 * l.E+10) 

40 CONTINUE 
4 5  FX = FA/X 

GX = FB * X2 
COSINT = FX * S I N ( X )  - CX * COS(X) 
RETURN 

5 0  WRITE (619100) X 
100 FORMAT ( *  X LESS OR EQUAL TO ZERO, X "E17.9) 

RETURN 
END 

FUNCTION FOUTR (DOM) 
C 

C 
C FOURIERTRANSFORM OF THERMAL AVERAGE FOR MODIFIED IMPACTTHEORY 

COMPLEX FOUTR 
COMMON/FDAT/Pl,P2rBl ,A2 982 ,pPFF 
ARG = ABSF(D0M) 
cc = P2 
I F  (ARG.GT.1.22474) CC = P2 - 2.*LOGF(ARG/1.22474)*PPFF 
FOUTR = 0.3183099 * CMPLX(O.,-CC) 
RETURN 
END 
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Figure 1 .  
Debye sphere, a strong collision sphere and a straight line classical 
path trajectory. 

Schematic picture of the collision sphere showing the 

122 



1. 

1.1 

0. i 

0. f 

1 0.3 
- 
F ( S )  

Fo(S) 0.2 
- - 

0. I 

0.07 

0.05 

0.03 1 J 

b Figure 2. The thermal average F c of the time deve opment operator 
normalized with respect to the static, small intera tion time asymp- 
tote 
are ob?ained with two different lower futoff paragekers in the p - 
integral, p = 0 andp = %  t n a 

min min 

as a function of the normalized time s =z p t. The two curves 

0' 

123 



I. 5 

1.0 

0.7 

0.5 

t 0.3 - 
F (SI - 

Fo (SI 0.2 

0. I 

0.07 

0.05 

0.03 
- 4  

I I 

\ \\ / "k= 

ne = 1.3 - 10" cm e 
T = 1850 K 

- 'c \ \  

-I 

- 3  - 2  -1 0 I 2 3 

Loglo s - 
- 

Figure 3 .  
normalized with respect to the static, small  interaction time asymp- 
tote The two sets  of 

curves a r e  obtained with two different lower cutoff parameters in the 
p-integral, p = 0 and p = *  + n a . The three different curves 

in every set  correspond to different Stark components characterized by 
the quantum number \ = nq-n'q'. 

The thermal average F of the time development operator 

a s  a function of the normalized time s ='$ t. 
0 P 

2 
min min 0 

124 



Figure 4. The Fourier transform of the therm, 
with respect to the static, large frequency limii 
normalized frequency AwR = ( A w - A w i =  B)/z . 

P 
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Figure 13. 
parameters  of Vidal, 1965. 

The final line profiles for  the density and temperature 
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Figure 14. 
principal quantum number n, which have been eval ated by Vidal, 
1965, under the assumption that the AX-5/2 -wing r e vealed the 
experiment is  identical with the asymptotic Holtsmgrk ,I-'?'- Wing 
for electrons and ions. 

Plot of the electron density values as a1 function of the 
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The Balmer line profiles for the density and temperature 
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