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I. INTRODUCTION 

It is natural to choose as a standard of frequency and time interval 
some periodic phenomenon appearing in nature that is especially uniform. 
The periodic rotation of the earth on its axis at one time provided a suffi- 
ciently uniform time base. As techniques of measurement improved it was 
demonstrated that the rotational period o€ tlie earth was slowly increasing, 



an effect that has been attributed to tidal friction. In addition, there were 
observed irregular changes ajnd almost periodic fluctuations in the length 
of the solar day. More recently (1956) astronomers have chosen the period 
of the orbital motion of the earth about the sun as the basis for the defini- 
tion of time. This is the basis upon which time is defined (in the practical 
sense) today. There are secular variations in this period, but they are much 
more predictable than the changes in the length of the solar day. For this 
reason the second has been defined as 1/31,556,925.9747 of the tropical 
year a t  1 2 h  ET, 0 January, 1900. 

Highly complex macroscopic systems such as our solar system probably 
are subject to some unpredictable changes and aging effects. For many 
purposes the periodic motions in microscopic systems of atoms would be 
more suitable for defining time intervals and frequency. To be sure, the 
separations of tthe quantum states of a completely isolated atom or mole- 
cule are expected to be fixed in time. The measurement of one of thesc 
separations by a suitable apparatus would provide a very excellent stand- 
ard if the measurements can be made with the required precision. 

Microwave and atomic beam magnetic resonance techniques provide a 
method of measuring state Separations with probably the greatest accuracy 
and ease of interpretration of all the presently known spectroscopic tech- 
iiiques. Atomic beam techniques have the advantage that Doppler and 
collision broadening of the spectral line are practically eliminated. Certain 
atoms, especially the alkali metals, have intense spectral lines that are 
easily detected. Moreover, the transitions fall in a convenient range of the 
electromagnetic spectrum easily accessible to available coherent radiators. 

A transition between the hyperfine structure (hfs) levels in the ground 
state of cesium provides the present 'working standard of frequency for the 
United States (I), the United Kingdom (g), Canada ( S ) ,  and Switzerland 
(4). This transition can be measured with the remarkable precision of f2 
parts in It appears that 
even further improvements in precision and acciiracy can be expected in 
the near future. 

The frequency of the ( F  = 4, mF = 0)  +-+ ( F  = 3, m~ = 0) transition in 
cesium has been measured in terms of the Ephemeris Second-the standard 
unit of time obtained through astronomical observations. This frequency 
is 9192631770 f 20 cps (5). The probable error, AZO cps (or 2 X lov9), 
arises because of experimental limitations on the astronomical measure- 
ments and on long distance frequency comparisons. The astronomical data 
used in arriving a t  this figure were accllmulated over a period of three ycxrs. 
A longer measurement time would reduce the probable error. 

and with an accuracy of f1 .7 parts in 

* Hereafter relative precisions a n d  accuracies shdl tw written in  the form 2 X 
for example. This has the meaning of 2 parts in 10'O. 
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With this relationship between astronomical time and the hfs separatioii 
of cesium, atomic frequency standards together with proper summing 
devices for counting equally spaced events can now make astronomical 
time immediately available, although even a temporary lapse in the sum- 
ming device will irrecoverably lose the epoch at which the count was 
started. The long delays previously required to determine and publish 
the corrections to the propagated time signals are no longer necessary. 
Atomic time is also available with its greater uniformity. On the atomic 
time scale A . l  introduced by Markowitz (6) of the U.S. Naval Observatory, 
The frequency of cesium is assumed to be 9192631770.0 cps for atomic 
time. That is, there are that many cycles in one second of atomic time. 

The present article deals primarily with cesium atomic beam frequency 
standards. It is not purported to be an exhaustive review. Its purpose is to 
provide : (a) some background in atomic beam spectroscopy in view of the 
fact that the area of atomic beam frequency standards is no longer solely 
of interest to the physicist,2 (b) some design considerations of atomic beam 
standards, and (c) results of comparisons between various cesium standards. 

The Introduction is followed by a description of the spectrum upon 
which the cesium standard is based (Sections 11, 111, and IV). Section V 
describes the beam apparatus and the salient features of its design. Section 
VI is a discussion of the excitation process. Inaccuracies in atomic beam 
measurements are considered in Section VII. In Section VIII, various 
cesium standards are compared using radio transmission data. A discussion 
of various other types of atomic standards and new developments and 
possibilities in the field is found in Section IX. 

11. ATOMIC HYPERFINE STRUCTURE 
The quantum transitions employed in present day atomic beam stand- 

ards occur between the hyperfine levels in the ground state of the alkali 
metal cesium. The hyperfine splitting arises because of the interaction 
between the magnetic moment of the nucleus and the magnetic field pro- 
duced by the valence electron at the position of the nuclens. (See Fig. 1.) 

The Hamiltonian for this interaction is given by 

x = -pz H ~ I ,  (1) 

where is the magnetic dipole moment of the nucleus, and He1 is the 
magnetic field a t  the nucleus produced by the electron. For hydrogenlikc 
atoms, He1 can be estimated from some simple semiclassical considerations. 
The complete discussion is complicated (9). 

The field at the nucleus has a contribution from both the orbital motion 

2 See also the general references on atomic and molecular beam spectroscopy (6, 7, 8). 
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FIG. 1. Pictorial representation of the interaction of the nuclear magnetic moment 
with the fields produced by the orbital motion and spin of the electron. 

of the electron and its intrinsic magnetic moment. Thus 

He1 e &bit -I- H s p i n ,  (2) 

where 
contribution from the spin moment. From the Biot-Savart Law, 

is the contribution from the orbital motion, and Hspin is the 

e r X v  e r X p  
c T3 mc r3 

or 
ehL L 
mcr3 - 2ro 2) = - - = (3) 

where r is the position vector of the electron relative to the nucleus, v is 
the velocity of the electron, hL is the orbital angular momentum, and 
po = eh/2mc is the Bohr magneton. 

The field at the nucleus arising from the intrinsic magnetic moment of 
the electron can be obtained from the classical expression for the field of a 
dipole moment ps = -2~0s.  

where ps is the magnetic moment of the electron. 

this average as 
We wish the average value of He,, and it will prove convenient to  write 

(5 )  
J 

He1 = (He1 * J) ~ 2 )  

463-560 0 - 1 
5- 4 
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where J = L + S. If the sum of (3) and (4) are inserted into (5), 

(6) 
2PO J 
T3 

He1 = - - [L2 - S2 + 3(8, S)er(L + S)] 3. 

The unit vector 0, is in the direction of r. The vectors L and 8, are perpen- 
dicular so that (6) becomes 

(0, S)2 can be estimated from the vector model: L and S precess rapidly 
about J in the laboratory frame of reference. Consider the coordinate 

FIG. 2. Coordinate system in which L and 
et are fixed. 

system in which L and 0, are fixed. In  this system S precesses about L 
(Fig. 2). For one electron (S = 1/2), the average of the square of the pro- 
jection of S on 0, is 

Using this value for (e, S)2 and the eigenvalues of L2, S2, and J2 which are 
L(L + l),  S(S + l), and J(J + 1) respectively, (1) becomes 

3nce we have chosen the particular case for which S = %, 
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The hyperfine structure interaction is then given by 

where gI is the nuclear g-factor, I is the nuclear angular momentum vector, 
and P N  is the nuclear magneton. pI = g lpNI  and p N  = eh/2Mc = 5.05038 X 

erg/gauss where M is the mass of the proton. 
The vector model for the hydrogenlike atom (assuming Russell- 

Saunders coupling) is shown in Fig. 3. It will be helpful in evaluating 

+ 

(a 1 (b) 
FIG. 3. Vector model for hydrogenlike atom. 

I - J, where I is the nuclear angular momentum vector, and F is the total 
angular momentum vector for the atom. L and S precess rapidly about J 
because of spin orbit interaction. J and I are magnetically coupled to a 
lesser degree and precess relatively slowly about F. The angle 8 of Fig. 
3(b) is given by the law of cosines: 

1 2  + J 2  - F' cos 8 = 1 21J 

so that we may write 

1 - J = ; [W + 1) + J ( J  + 1) - F(F + l)]. 
Now 

The quantity ((l/r3)) can be evaluated from the known wave functions of 
hydrogenlike atoms. The result is 

7- 6 



where a0 is the radius of the first Bohr orbit [ao = (h2/me2) = 5.2917 X 
cm], n is the principle quantum number, and 2 is the charge on the nucleus. 
Finally, 

F ( F  + 1) - I ( I  + 1) - grpNpoZ3 uo3n3 [ 
The various constants can be grouped and written in terms of the Rydberg 
and the fine structure constants, R, and a: 

J ( J  + 1)(L + $6) W =  

me4 
R, = - (cm-9 , 4ah3c 

arid 
e2 
hC 

ff = -. 

These have been determined more accurately than the result obtained for 
each by combining the separate constants. In terms of R, and a! 

m g r ~ 3  F(F + 1) - 1(1 + 1 )  - 
J ( J  + 1)(L + $9 W = ?rhcR,cu2 (B)  7 [ 

Frequently, W is written as 

T/1; = UI * J, 
where 

2?rhcR,a2(m/M)gTZ3 
a = J ( J  + I)(L + +6)n3* 

It is evident from Eq. (12) that the interactio'n between the electron and 
nucleus splits a given electronic state into a number of hyperfine levels. 
They are designated by the various values of the total angular momentum 
quantum number F. The separations between the F levels fall in the radio 
and microwave frequency ranges of the electromagnetic spectrum. F call 
have the values 

F I + J ,  I + J  - 1, I + J - 2 , .  . . , I - J 

i f  I 2 J or 

if J 2 I .  The total number of possible F stlates is 2J + 1 if I 2 J a d  
21 + 1 if I J .  Actually Eq. (12) is not valid for L = 0. 111 this case 
(( l/r3)) vanishes (9). The more sophisticated relativistic caclulation yields 
the same result as (12) so that Eq. (12) is a valid approximation. 

F = J + I , J + I - l , .  . . , J - I  
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For hydrogen in its ground electronic state, L = 0, J = 36, gr 2: 5.56, 
and I = 55 so that F can have only the two values, 1 and 0. Then, putting 
numerical values into Eq. (12), the separation between the F = 1 and 
F = 0 states is 1417 Mc. The experimental value obtained with atomic 
beam techniques is 1420.40573 f 0.00005 Mc (IO). More refined calcula- 
tions yield almost exact agreement with experimental values for the hfs 
separation in hydrogen and deuterium. 

The accurate calculation of the hfs separation for cesium has not been 
calculated nor is it likely to be in the near future. The large number of 
electrons, 55, for cesium makes the calculation extremely difficult. The 
frequency of this hfs separation in cesium is the present standard of fre- 
quency. The actual number is assigned with reference to astronomical time. 

111. THE VECTOR MODEL 
The vector model is a simple and useful concept for the analysis of the 

fine and hyperfine structure of atoms in either very weak or very strong 
externally applied fields. For very precise measurements and for inter- 
mediate field conditions more detailed considerations are needed. These 
will be discussed in Section IV. 

A .  Weak Magnetic Fields 
When the interaction between the spin and orbital motion of the elec- 

tron is much greater than their interaction energy with the externally 
applied field, the field is considered weak. The resulting splitting that occurs 
is referred to as the Zeeman effect of the fine structure. Correspondingly, 
when the interaction energy between the nuclear moment with the elec- 
tronic angular momentum is much greater than the interaction with an 
external field, the field is considered weak. It gives rise to the Zeeman 
effect of the hyperfine structure (hfs). 

Consider an atom with zero nuclear spin. Under weak field conditions 
L and S add vectorially, and the total angular momentum is J = L + S. 
L and S are strongly coupled and precess rapidly about J. The vector J, 
in turn, precesses slowly about the applied magnetic field Ho. A given 
electronic state will be split ihto a number of substates. The energies of 
the various substates relative to the zero field energy are given by the 
Hamiltonian 

X = -pj*Ho = gjpJ*Ho.  

From the vector model (Fig. 4), 

J HO = JHO cos (J,Ho) = mJHo 
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FIG. 4. Vector model of atom with zero nuclear spin. 

It is necessary to write gJ  in terms of known quantities. It can be written 
in terms of the known g-factors of the electron, g5 = 2 and gL = 1. This 
can be done in the following way. The projection of pL and p , ~  on the direc- 
tion of J is 

Using the law of cosines and the vector model in addition to the quantum 
mechanical equivalents of S2, L2, and J2, we have 

This expression for gJ) together with Eq. (13)) gives the eigenvalues of the 
Hamiltonian when Russell-Saunders coupling applies. The important selec- 
tion rules for transitions between sublevels of a given J and sublevels 
belonging to different J are AJ = 0, f l  and AmJ = 0, 3 ~ 1 .  

Now suppose that the nucleus has a spin I different from zero. The 
vector model is shown in Fig. 3 and described in Section I1 page 6. I and 
J precess about F, and F precesses relatively slowly about the small field 
Ho. 



The portion of the total Hamiltonian of interest is 

X = d * J + gFp$ * Ho. (15) 
A quadrupole term is not included because we will confine ourselves to the 
case where J = 36. For this case, the quadrupole term will not affect the 
state separations. The first term in Eq. (15) is the hfs interaction in zero 
field. It has been considered in Section 11. The second term gives the 
splitting of the various possible F states in the weak field Ho. Within the 
present approximation, the relative energies of the substates for a given 
F are 

W F  = Q F ~ O ~ F H O .  (16) 

The quantity g F  may be written in terms of gJ  and 
previously written in terms of gs and g L .  

just as g J  had beeii 

From the vector model 

1 
F g F  =- - [gJJ COS (J, F) - QII COS (I, F)] 

and 

1 F(F + 1) + J(J + 1) - I ( I  + 1) 
2F(F + 1) 

F(F + 1) + I ( I  + 1) - J(J + 1’1. (17) 
+ S I [  2F(F + 1) 

g F  = g J  

Equations (16) and (17) give a rather good quantitative estimate of the 
splitting in weak fields. 

Let us consider the case when J = ++-atoms in 2S3i and 2Pfi states, 
for example. There are only two hyperfine 1evels-F = I + $6 and 
F = I - 56. Let these two values of F be designated by F+ and F-, 
respectively. The g-factors for these two levels are: 

and 

Note that the g F  values are slightly different for the two values of F.  The 
splitting in the two F levels in a weak field will then be slightly different. 
The energy level diagram may be drawn using Eqs. (16) and (18). 

The diagram for cesium is shown in Fig. 5. The ground electronic state 
is 2S% so that, J = 36; the nuclear spin of cesium-I33 is 75. The best value 
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F =  4 

F.3 - 

- 

- -2 

- 0  

- 

- 

- +2 

J I I I I I I I I I I I I I I I I I I I  L 
r u r u r u r u r u r u i u i  

t 
YO 
I 

FIG. 5. Energy level diagram for Cs’w. The nuclear moment is positive, I = x, and 
J = 34. The selection rules are AF = 0, f 1; Amp = 0, If: 1. 

of gI is obtained from the measured value of the magnetic moment of the 
cesium-133 nucleus : 

p c S  = +2.57887 in units of the nuclear magneton p N ;  

- (magnetic moment in units of pN) 
(angular momentum in units of t ~ )  ’ gr = 

gr = -0.737. 

In units of the Bohr magneton, 

m gr = -0.737 - = -4.01 X M 

Since Eq. (16) was written in terms of the Bohr magneton po, these are the 
units of 

The sequence of mF states is inverted in the P = 3 level with respect to 
that in the F = 4 level as a result of the minus sign of the first term of 
Eq. (18b). The F = 4 level is higher than the F = 3 level. This can be seen 

that must be used. 
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from the following considerations. The magnetic moment associated with 
the angular momentum J is antiparallel to J. The magnetic moment of the 
nucleus is parallel to  I in the case of cesium (the usual circumstance). If I 
is parallel to J, the magnetic moments are antiparallel and the energy of 
interaction is evidently greater than if I is antiparallel to  J. Thus when 
(JI is negative (and pz positive), the state F = I + 55 lies above the state 

The closely spaced doublets appearing in Fig. 5-f which there are 
F = I - $5. 

six-have a separation 

Avdoublet = - poHo [2gr] - 1.1 x 103 sec-1 gauss-', 

which is a very small frequency separation at the field intensities normally 
used in atomic frequency standards (-0.010-0.100 oe). The transition 
(F  = 4, m~ = 0) w (F = 3, mF = 0) is chosen as the standard frequency 
transition because it is insensitive to the magnetic field. In  fact, in the 
vector model approximation i t  is completely insensitive to the field. A more 
exact treatment shows a small quadratic field dependence of the transition 
frequency, as we shall see. The field sensitive lines provide a useful measure 
of the uniform field of the beam standard. 

h 

B. Strong Magnetic Fields 
The vector model also provides a good approximation under conditions 

of very strong fields. The external field is said to be strong when the inter- 
action energy between the nuclear moment and the electronic angular 
momentum is much less than the coupling with the field. Under these 
conditions I and J decouple and precess independently about the field 
direction (Fig. 6). The Hamiltonian is given by 

(19) X = a1 J + gJrd HO + gZPNI Ho. 
In this case the first tern is not large compared with the other terms. 

In the strong-field approximation I J can be evaluated from the vector 
model (Fig. 6) : J precesses much more rapidly about HO than does I. We 
may then consider the average value of J-which is its component along 
&-as interacting with I. Thus, 

I J = IJ  COS (J, Ho) COS (I, Ho), 
and 

I J = mImJ. 

The energy eigenvalues are then given by 

W = a m ~ m ~  + gJpomJH0 + grCtNmzHo 
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FIQ. 6. Vector model of atom in strong magnetic field. 

in very strong fields. This relation is a rather good approximation for 
cesium for fields greater than about 5000 oe. 

IV. THE BREIT-RABI FORMULA ( 7 , I I )  
The vector model does not give an estimate of the energy separations in 

intermediate fields nor does it give a close enough approximation in weak 
and strong fields for precise beam experiments. The energy levels in any 
external magnetic field can be determined from the Hamiltonian: 

The last term is due to the interaction between the electric quadrupole 
moment of the nucleus and the electronic charge distribution. There will 
be no quadrupole interaction in the case J = >d where the electronic 
charge distribution is spherically symmetric. This is the case that applies 
to existing atomic beam standards, and this is the only case that we will 
consider. 

it is necessary to diagonalize the secular determinant asso- 
ciated with the Hamiltonian 

For J = 

The solutions are 

AW is the hfs separation in zero field (AW = hvo) between the states 
F = I + $ S a n d F =  I -  $4; 
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In accordance with the usual convention, the quantum numbers F and 
mp are used with the understanding that at high fields these are the quan- 
tum numbers of the state from which the high field state is adiabatically 
derived. Equation (22) is called the Breit-Rabi formula, first given by 
Breit and Rabi in 1931 (12). 

The energy level scheme is shown in Fig. 5 for weak applied magnetic 
fields. The transition most insensitive to the field is the (F = 4, mF = 0) - 
(F  = 3, mF = 0) transition. The slight field dependence of the frequency of 
this transition is given by the Breit-Rabi formula, Eq. (22). Assuming 
small Ho: 

= Yo + 2”2 yo - 9 x 4  + . . . 
8 

Introducing the z-value for CS’~~,  

v = Y O  + 427.18H02 - 9.93 X 10-Wo4, (23) 
where v is in cps and Ho in oersted. The term involving Ho4 is entirely neg- 
ligible since Ho falls in the range 0.1 to 0.01 oe for most cesium beam 
standards. 

Equation (23) gives the zero field hfs separation Y O  from the measured 
frequency Y after the value of H O  is determined. The field Ho can be easily 
evaluated by measuring any of the other observable transitions. For 
example, the microwave transitions (AF = =tl, Amp = 0) for which 

= v0 + 7.0062 X 106mpHo + 26.699(16 - mp2)Ho2. (24) 
The very low frequency transitions between the sublevels of a given F 
state (AF = 0, Amp = =tl) can also be used. In this case 

= 350.870 X W H O  - 13.349(2m1 - 1)Ho2, (25) 
or 

= 349.746 X 1O*Ho - 13.349(2ml + 1)Ho2. (26) 
The magnetic quantum number ml is associated with the lower of the two 
substates involved in the transition. For the small values of H o  ordinarily 

15- 14 



2 

I 

4s O 

- I  

-2 

-(-l/2, -712 1 
*(-l/2, -512) 

--(-l/2, -312 1 
+/2, - 1/21 
+/2, +I121 

4-1/2, + V 2 )  
4-1/2, +3/2) 

4 4 2 ,  +7/2) 

0 I 2 3 
X 

FIG. 7. Energy level diagram of Cs13a in the 2Ss ground state as a function of thc 
applied magnetic field. The hfs separation is AW = Avo. 

used, all of the transitioiis of Eys. (25) aiid (26) coincide a t  least for the 
practical purpose of measuring Ho. 

Figure 7 shows a plot of the energy levels as Ho varies from zero to very 
large values. The vector model applies in the extreme left hand and right 
hand sides of the graph. Equation (22) must be used for intermediate 
points. 
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V. THE ATOMIC BEAM SPECTROMETER 
The frequencies of weparation between the hfs levels in atomic spectra 

can be measured very precisely by means of atomic beam techniques. A 
schematic of a typical spectrometer used in atomic beam resonance experi- - 
ments is shown in Fig. 8a, b. Many variations in design exist depending on 
the nature of the atom to be investigated. The design that will be discussed 

VACWY ENVELOPE 

DEFLECTING MAGNET 

ATOMIC BEAM >E CROSS - SECTION 

c4 
FIG. 8a. A schematic of a typical atomic beam spectrometer. The indicated trrtjec- 

tories are for atoms that make transitions. 

A P 

(3) (4 1 (51 (6 1 

(b) 
Fro. 8b. The trajectory of a single atom leaving the source at an angle e and with a 

particular speed v. 
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here applies particularly to the longer of the two National Bureau of 
Standards cesium beam frequency standards (when specific numbers are 
given). 

Neutral atoms effuse from the oven at the left in Fig. 8 and pass through 
the nonuniform magnetic field of the A deflecting magnet. The atoms have 
a magnetic dipole moment and consequently transverse forces act upon 
them in this nonuniform field. The magnitude and direction of this force 
depends upon which of the states a particular atom is in. Of all the atoms 
effusing from the oven at angle el and speed v suppose those in the upper 
group of levels of Fig. 8 (electron spin “up”, or m~ = +45)3 have their 
trajectories bent toward the axis and follow the path 1. All atoms in the 
lower group of levels (electron spin “down”, or m~ = ->5)* effusing at an 
angle 8 2  = -el with speed v will have their trajectories bent toward the 
axis also and follow a trajectory along path 2. Note that the atoms in the 
upper group of levels are subject to forces that are opposite in direction to 
the forces on atoms in the lower group-their moments have opposite sign. 

The spin “up” atoms traversing the trajectory 1 and the spin “down” 
atoms traversing the trajectory 2 will cross the axis at the collimator slit, 
pass through the slit and enter the region of the B deflecting magnet. The 
B magnetic field is exactly like that of the A magnet. Consequently, the 
transverse forces of the atoms will be the same as in the A magnetic field. 
The spin “up” atoms will experience a downward force as before and the 
spin “down” atoms will experience an upward force, as before. However, 
now the atoms have crossed the center line at  the collimator slit and the 
forces will tend to make the trajectories diverge from the center line. If, 
however, a radiation field is applied in the uniform C field region between 
the A and B magnets of frequency 

v YO + 427H02, 

transitions will take place between the states ( F  = 4, m p  = 0) and (F = 3, 
mF = 0). The magnetic moments will be flipped. Atoms in the upper state 
will be induced to emit, and atoms in the lower state will absorb a quantum 
of energy-with a certain probability. Thus the sign of the magnetic 
moment will change for all atoms undergoing a transition. Consequently, 
the forces on these atoms will be opposite in the B magnet’s field to what 
they were in the A magnet’s field and they will be refocused unto the axis 
at the detector. 

As the frequency of the exciting radiation is swept through v, the 
detected signal will increase and reach a maximum at frequency v and 
then decrease as the radiation frequency is varied beyond v. 

J It is assumed that the deflecting fields are strong fields for the purpose of qualitative 
discussion. 
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A .  Atomic Trajectories (6, 7) 

The atomic trajectories and deflections can be calculated rather simply 
for the elementary field configurations ordinarily used in the deflecting 
fields of atomic beam machines. The energy W of the atom is given by the 
Breit-Rabi formula, Eq. (22). This energy is a function of the magnitude 
of the field intensity H .  The fields of the deflection magnets are conserva- 
tive so that the force on the atom is given by4 

F =  -vW. (271 
This can be rewritten as 

F = - % O H ,  

provided that the only dependence of W on position is through the spatial 
variation of the magnetic field intensity H .  F is different from zero only 
when the field has a gradient different from zero, Le., when the field is 
nonuniform. 

The partial derivative, - a W / a H ,  is called the effective magnetic 
dipole moment perf. The effective dipole moment has, in general, a different 
value for each state: 

for atoms with J = $6. Note that perf is a function of H .  The magnetic 
moments given by Eq. (29) are plotted in Fig. 9 for cesium as a function 
of H (or z). 

Equation (28) can be conveniently written as 

F = PettVH. (30) 

The A and B deflecting magnets are designed such that the field configura- 
tion has a simple calculable formj6 and so that the force has the components 

F ,  = 0, 
F,  = 0, 

and 
aH F, = Perf-  = constant, 
az 

‘Here F is the force vector and is not to be confused with the previous F which 
represented the total angular momentum vector. 

6 We consider here the field of two parallel wires with currents of equal magnitude 
flowing in the opposite direction. The fields themselves will be discuesed more fully later. 
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within a reasonable approximation. Then 

where a is the acceleration imparted to the atom in the direction transverse 
to the axis of the spectrometer, and m is the mass of the atom. We choose 
the coordinate system where z is positive above the axis and negative below 
(Fig. 8b). 

The acceleration a is different from zero only in the regions 2 and Ti 
where the field in nonuniform. Int,egratiori of Eq. (31) yields 

and 

where v,i is the transverse velocity that the atom has as it enters the i th 
region, zi is the z-coordinate of the particle as it enters this region, and t 
is the time spent in this region. 

Atoms effuse from the source slit in all forward directions. Consider 
atoms emitted from the source with speed 21 and at  an angle e with respect 
to the center line of the machine. It is of interest to calculate the z-coordi- 
nate of these atoms a t  each of the y positions (1) through (6) (see Fig. 8b). 
The transverse velocity in region (1) iss 

vsl = v sin e k: v e  
and the z-coordinate in plane (1) is 

z1 = vZltl = ezl, 
where tl  = (Zl/v). 
The z-coordinate in plane (2) is given by 

z2 = ZI + u t 2  + %azV, 

where t z  = h /v ,  so that 

6 The angle e will be very small for any atom that rewhes  the detector pl:inr without 
collioion. Hence sin 8 = 8 is a good approximation. 
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or 

In order for an atom to pass through the collimating slit, 2 3  must be 
zero. This imposes a condition on e. I n  particular, 

The displacement from the center line in the detector plane is then 

a 2 1 2 ( 1 2  + 211) (14  + z6 + 16) + aSZ5(16 + 2 1 6 ) .  

2w1 + 12 + l3) 2v2 2 6  = 

From Fig. 9 it is evident that if a transition is induced for which 
AF = f l  and Am= = 0, the magnitude of the magnetic moment of the 
atom remains the same but the sign of the moment changes. Thus for this 
type of transition the forces would be equal but oppositely directed in 
regions (1) and (5) if 

Hence a symmetrical apparatus would give a refocused beam at the detector 
wire. More specifically, if 

11 = I61 

h = 16,  

/3 = 14, 

and 
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FIG. 9. The effective magnetic moment, peff, relative to the Bohr magneton, w, ie 
plotted for the various magnetic substates in Cs 188 as a function of the applied magnetic 
field. 

then 

When a transition AF = =tl, Amp = 0 is induced, (pe& = -(pefr)6 and 
26 = 0 as described above. 

Introducing some numbers, let 

and 

ZI = 6 = 24 cm, 

12 = l a  = 10 cm, 
l a  = Zr = 100 cm, 

(g)2 = ($)5 = 6800 oe/cm 
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for a field at the position of the beam in the deflecting magnets of 2100 oe. 
For this particular value of the field intensity, peff = 0.50 X erg/gauss. 
If the oven temperature is 150°C, the most probable velocity a of a cesium 
atom in the oven is 2.3 X lo4 cm/sec and 

580 d H  
26  = - [2pert] - = 0.17 cm. 4kT az 

Although a symmetrical device is not the most suitable for observing 
the AF = 0, AmF = A1 transitions, these transitions are easily observed 
and they provide a useful measure of the magnitude of the uniform C field. 
The C field is essential in beam experiments in order to preserve the state 
identity of the atom as it progresses through the apparatus. All of the 
magnetic fields are arranged to have the same direction so that at no time 
will an atom in the beam pass through a region of zero field. This avoids 
the occurrence of nonadiabatic transitions or Majorani flop. 

B. The Beam Intensity and Intensity Distribution (6, 7) 

Evidently, from Eq. (34), the point at which an atom crosses the 
detector plane depends upon its velocity and its substate. Consider first 
the case when no forces are applied to the atoms of the beam, that is, when 
the deflecting magnets are switched off. The number of atoms striking 
the detector per unit time with velocities in the range v to tr + da is given 
approximately by 

This can be rewritten as 

dN = I(u)dv = 5 cy4 tr3 exp (- 2) a? dv, 

where 

is the total number of atoms striking the detector per unit time, N O  is 
the number of atoms per unit volume in the oven, a is the oven slit area, 
A is the area of the detector, T is the total distance between the oven 
slit and the detector, E is the average speed of an atom inside the oven 
( E  = d m ,  and cy is the most probable speed inside the oven 

Equation (36) may be reexpressed in terms of the magnetic deflection : 
(ff = d3izyq. 

Let z6 be designated as sa when v = a and s otherwise so that 
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and 

Evident 1 y , 

and 

dN = I (s)ds  = -Ioexp ( - : ) $ds  - 

if the width of the parent beam is small compared to s. 
Calculation of the actual intensity distribution must take into account 

the finite width of tjhe beam. Figure 10 shows the trapezoidal beam shape 

FIG. 10. Beam profile without deflection at the detector plane. 

at the detector plane without deflection. The refocused beam would have 
the same shape if only atoms undergoing a moment change in the radiation 
field were considered. 

Considering the finite width of the beam, the magnetic deflection is s - so 
and 
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Then the contribution to the intensity at s due to the infinitesimal width 
dso at so of the parent beam is given by 

sa’ exp (- A) s - so dso, 
(s - 

d l ( s )  = l o ’ ( s0 )  (39) 

where lo’(so) is the total number of atoms incident per second on the 
detector per unit width at  the point so. If w is the width of the detector, 

+ w / 2  
lo’(so)dso = lo, approximately, 

L 2  

where 1 0  is given by Eq. (37). 
In Eq. (39), s - so must always have the same sign as sa. When s - SO 

has the opposite sign from sa there is no contribution at s and d l ( s )  = 0. 
Rather than introduce the trapezoidal shape of the undeflected beam into 
Eq. (39), it is usually sufficient to consider the equivalent rectangular 
beam shape of width 2a (Fig. 10). Integration of Eq. (39) yields 

for -a 5 s S a, and 
I ( s )  = 0 

for s 6 -a. These equations apply when sa is positive. The intensity dis- 
tribution is (ideally) symmetrical about s = 0. 

Figure 11 shows the intensity distribution for various values of sa. It is 
evident from the curves that the maximum intensity occurs at a point con- 
siderably less than s,. The probability of an atom emerging from the source 
slit is proportional to the velocity. Consequently, the most probable veloc- 
ity in the beam is somewhat greater than the most probable velocity in the 
oven. In fact, the most probable velocity in the beam is m a  = 1.22a. 
The deflection of atoms in the beam will generally be less than Sa. The 
values of Is1 at  the maxima of the curves occur at about Isa1/3 for large 
sa (sa - 10a or greater). 

In the case of cesium, the beam is composed of atoms in 16 different 
states. A different perf and sa is associated with each state. The observed 
intensity distribution is then the composite of all of these separate intensity 
distributions. All of the separate distributions have approximately equal 
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weight. The total intensity distribution is experimentally plotted by 
simply moving the detector transversely across the beam. This is a useful 
procedure in aligning the instrument. h suitable Stern-Gerlach peak 
separation is about 3 undeflected beam widths or 6a for a good signal-to- 
noise ratio of the refocused atoms. The deflecting magnets must be designed 
so that they are capable of providing an intensity distribution of this general 
character. 

The observed signal in a beam experiment is the change in detector 
current due to the induced transitions. The total undeflected beam intensity 
seen by the detector centered at s = 0 is 

and 
I O  = l6IoOw, 

10 = 161002a 

if w < 2a 

if w > 2a, 

where w is the width of the detector and 1 0 0  is the number of atoms of a 
single state colliding with the detector per second per unit width of detector. 

Equation (37) gives a relation for Io if it is assumed that simple effusion 
occurs from the oven slit. At an oven temperature of 150°C the vapor 
pressure of cesium is about 5 X mm Hg, and No - 1 X 10’4 atoms/cm3. 
If the oven slit and detector widths are 0.015 in. and the equivalent beam 
height is 0.05 in., then 

1 0  = - = 8 X lo7 atoms/sec 4?rr2 

for r = 268 cm. For a surface ionization detector, the efficiency of ioniza- 
tion can be nearly 100%. In this case the detected current would be 

(8 X lo7 electrons/sec)(l.6 X 10’lg coul/electron) = 1.3 X 10-11 amp. 

Approximately oneeighth of this total detected intensity is contributed 
by the two states (F = 4, mF = 0) and (F = 3, mF = 0) .  When the deflec- 
tion magnets are switched on, the intensity seen by the detector is 

+ w / 2  

I’ = \-w,2 I(s)ds. 

If w = a, the integration yields 

(41) 
a 
2 I’ = - 1 0 0  [3 exp ( -2sa/3a - exp (-2sa/u)]. 

The total intensity is obtained by superposing the contributions made by 
all of the states, each state having in general a different sa. 
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v i  is the relative population of atoms in the ith state. If the transitions 
( F  = 4, W Z F  = 0) c--) ( F  = 3, W Z F  = 0) are induced (with probability one), 
then the total detected intensity would be 

14 

J’total = 2 1 0 0 ~  + f 1 0 0  13 exp ( -2sui /3a)  - exp ( -2s , t /a ) ] ,  (43) 
i = l  

where it is assumed that all states have equal populations. The first term 
is due to the refocused atoms. If the deflecting fields are very strong, then 
the sui are very nearly the same for all the states. 

In order to observe the maximum change in detector signal when tt 

transition occurs, the summation term of Eq. (43) should be made small 
relative to the term 2100a (see Fig. 11). A satisfactory practical choice of 
machine parameters to attain this condition are those for which sa = loa. 

Estimates of intensity by means of the foregoing relationships assume 
that simple effusion occurs a t  the oven slit and that the velocity distribu- 
tion is not affected by the geometry of the apparatus. The oven slits are 
frequently made up of many long channels from which simple effusion does 

FIG. 12. Oven and detector offset arrangement for the selection of slower atoms. A 
narrower spectral line results. 

not occur (7, 12). This tends to concentrate the atoms effusing from the 
source within a smaller solid angle with a saving of oven material, in this 
case, cesium. The channeled source also tends to reduce the number of slow 
at’oms detected because of this concentration of the beam-at least if the 
oven and detector are placed on the axis of the machine in the usual way. 

The geometry of the apparatus will affect the velocity distribution. If 
the deflecting magnet pole shoes are too close together, the slow atoms that 
could be detected will be eliminated from the beam and the spectral line 
will be broad. It is useful to introduce a stop at  the center of the unde- 
fleeted beam for the purpose of eliminating very fast atoms. A reduction in 
intensity is incurred but the spectral line width will be narrower. It is thus 
useful to restrict the fast atoms but not the slow atoms. 

Some economy in magnet construction can be gained by using deflect- 
ing magnets with rather narrow spacing between the pole shoes and off- 
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setting the oven and detector from the machine axis. Although the slowest 
atoms will be eliminated from t.he beam if the oven and detector are both 
on the mwhine axis, the slow atoms can be observed, together with the 
consequent narrower line, by offsetting the oven slit and detector (see 
Fig. 12). In this arrangement only emission or absorption is observed 
instead of both as in the usual circumstance. 

G. The DeJlecting Fields (6, 7) 
Most atomic beam spectrometers employ iron magnets designed to 

produce the same field as two parallel wires carrying current in opposite 
directions. In a few cases, four- and six-wire field configurations have been 
used. The more common two-wire field will be considered first. Figure 13a 

FIG. 13. (a) The field intensity lines and magnetic equipotentials of two parallel 
wires normal to the diagram at x = a, z = 0 and 2 = -0, z = 0. (b) An iron deflecting 
field contoured to produce a two-wire field. 

displays the field intensity and the equipotentials of two parallel wires 
normal to the diagram at  (z = a, z = 0) and (z = -a,  z = 0). They carry 
a current I in opposite directions. The field intensity a t  the point (z, z)  is 
given by7 

and the gradient of the field is given by (see Appendix F in Ramsey, 7) 

- -  dH - - 4 4  n2 + n2 ) z .  
a2 r13r23 

7 In this relationship, Z is measured in abamperes (1 abamp = 10 amp). 
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The value of this derivative d H / d z  is almost constant in the region x = 0, 
z = 1 . 2 ~ .  If the undeflected beam is centered at x = 1.2a and the beam 
height does not exceed 1.4u, the beam will be deflected without excessive 
distortion. It may be assumed in calculating atomic trajectories that 
d H / d z  and H both are constant in an adequately large region about this 
poiii t . 

At the point y = 0, z = 1 . 2 ~ )  
1.641 

a 
H = - )  

and 
1 dH 1 

H dx a 
-- _. 

The current has been conveniently eliminated in this relationship. 
The lines of H and the magnetic equipotentials form a system of ort4ho- 

gonal circles for two parallel wires. This same field configuration can be 
produced by an iron magnet by simply contouring the pole surfaces to coin- 
cide with two equipotential surfaces (see Fig. 13b). Suitably large deflec- 
tions for cesium atoms can be obtained with rather simple low power mag- 
nets of this kind. In molecular beam experiments the effective magnetic 
moments of the molecules are ordinarily the order of a nuclear magneton; 
very large magnets are required and beam widths must be smaller. There 
appear to be some distinct advantages in using multipole deflecting fields. 
Multipole field configurations have been used successfully in atomic beam 
experiments ( I S ,  14, 15) and in gaseous masers (16). A significant increase 
in intensity is gained-perhaps an order of magnitude-because these 
field configurations accept atoms from a relatively large solid angle. In 
atomic resonance beam experiments, however, a fraction of this gain is 
lost because of nonadiabatic transitions occurring as the beam enters and 
leaves the uniform C field region. 

Figure 14 shows a cross section of a four-pole deflecting field. The sur- 
faces of the iron pole pieces have been contoured to fall on the magnetic 
equipotentials whose intersection with the plane of the diagram form 
hyperbolas. The magnitude of the field intensity can be shown to be 
(ideally) 

(47) 
H = -  H ,  

R '' 
The transverse force on an atom within this magnet assembly is radial: 

F =  -vw=(-7&.Br) aw dH 
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FIG. 14. Cross section of a four pole magnetic deflection field. 

where e, is a radial unit vector and 

dH H ,  
ar R 
- = -. (49) 

R is the distance from the axis of the assembly to the nearest point 011 each 
of the four-pole surfaces, and H ,  is the magnetic field at these points on the 
surfaces. 

In general, W is a function of the magnitude of the field H and is giveii 
by the Breit-Rabi formula. If the field produced by the magnet assembly 
is sufficiently strong so that the magnetic interaction energy with the 
external field is large compared to the interaction energy between the 
nuclear and electronic angular momentum (Paschen-Back effect), then the 
atom will have a magnetic moment peff of the order of a Bohr magneton 
independent of the magnetic field. As an example consider cesium: 1x1 
strong fields 

peff = - P O  for mJ = + 3 states 1 
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and 

Then 

1 
2 peff = + P O  for mJ = - - states. 

(50) H m  H m  F, = peff = =Fpo R = constant. 

Atoms for which peff is positive are repelled from the axis, and atoms for 
which Peff is negative are attracted toward the axis. For atoms entering the 
deflecting field with a velocity vector in a plane containing the axis, the 
equations of motion have the same form as those previously calculated for a 
two-wire field. In general the atoms will execute a spiral mot.ion through the 
deflecting field. 

In order to consider peff sufficiently independent of the field it would be 
necessary to adjust H m  to about 5 kgauss or higher for cesium and in addi- 
tion a stop would be necessary on the axis so that atoms passing through 
the low field regions in the neighborhood of the axis would be eliminated 
from the beam. The stop would insure the validity of Eq. (50) which 
assumes peff = constant. The field could also be operated at lower intensi- 
ties in which case the force on an atom is approximately proportional to T ,  

its distance from the axis. Cesium atoms in states (F = 4, mF = 0)  and 
(F = 3, mF = 0) ,  for example, in applied fields of 2 kgauss or less have an 
effective dipole moment approximately given by 

where the minus sign applies to the F = 4 state and the plus sign refers to 
the F = 3 state. The force on these atoms is 

where 

Atoms in the (F = 4; mp = 0)  state are attracted toward the axis, and 
atoms in the (F = 3, mF = 0) state are repelled from the axis. Atoms in the 
upper state would execute simple harmonic motion in passing through the 
deflecting field with angular frequency 
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A six-pole magnet with strong fields would also exert a force on the 
atoms proportional to T.  Then 

and 

A beam device might be designed such that somewhat less than or 45 
of a period of this harmonic motion occurred within each of the deflecting 
fields (see Fig. 15). Only flop-out experiments can be performed with these 
field configurations if the detector is placed on the axis as in Fig. 15a, b. 

RF AND UNIFORM C FIELD REGION 

\ 
TECTOR 

,- RF AND UNIFORM C FIELD REGION 

1- 

b - 
FIG. 15. (a) A beam device designed for 9 the period of the harmonic motion occur- 

ring in the deflection magnet’s field. (b) A beam device designed for & the period of 
the harmonic motion occurring in the deflection magnet’s field. 

The solid angle accepted from the source by the deflection magnet assembly 
can be determined in the following way. The increase in potential energy 
of an atom as it passes through the deflection field must be equal to the 
decrease in transverse kinetic energy that the atom experiences in passing 
through this field. Thus, 
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where Vtr(0) is the transverse velocity of the atom as it enters the field 
(we assume that the oven orifice is on the axis at r = 0) ,  Vtr(R) is the 
transverse velocity at a distance R from the axis, and W(R)  and W(0)  are 
the potential energies of the atom at distances T = R and T = 0 respec- 
tively. R is the radius of a circle inscribed within the pole pieces and touch- 
ing the pole tips. For the fields considered W(0)  = 0 and W ( R )  are given 
by the Breit-Rabi formula. Presumably, only those atoms having utr(R) 5 0 
will remain in the beam. Ai1 atom effusing from the source with velocity 
u can be emitted at a maximum angle e, and still remain in the beam. This 
angle will be sufficiently small so that we may write 

vtr = v sin e, = vow. 
NOW 

kR2 1 - m[ve,12 = 2' 
2 

The maximum solid angle accepted from the source is then 

ukR2 
mt? a, = re,2 = - 

for atoms in the state considered and having velocity no less than v. 

D. Beam Detection and Beam Sources (6, 7 ,  13, I?') 
When an atom approaches a metal surface ionization processes are often 

possible. An atom will be ionized if an atomic electron tunnels to any un- 
occupied electronic state in the metal. This process occurs with particular 
ease for cesium. The atoms of the beam strike a hot wire, the ions are 
boiled off, collected, and measured with an electrometer or electron multi- 
plier circuit. In Fig. 16 the metal is represented by a potential well of depth 
W ,  filled with electrons to the Fermi level I .  The work function 4 is the 
minimum energy required to raise an electron to the energy continuum. 
The atom is represented by a second potential well which is occupied by 
an electron in one of the possible energy states. The ionization potential 
of the atom is denoted by VI. 

In  order for ionization to take place, the energy level of the electron in 
the atom must coincide within narrow limits of a vacant energy level in 
the metal. The two states are then said to be in resonance and tunneling 
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may occur. The shapes of the potential wells of the metal and atom are 
deformed at close approach. This deformation is necessarily accompanied 
by a shift of the energy levels and consequently a shift in the ionization 
potential. Evidently, if an atom whose ionization potential is less than the 
work function of a metal strikes the metal surface, it  can be reevaporated 
as a positive ion (18). The metal must be sufficiently hot to prevent conden- 

t t t 

FIG. 16. A pictorial representation of the potential barrier between an atom and a 
metal surface. 

sation. Cesium has a particularly low ionization potential (VI  = 3.87 ev) 
and can be ionized with almost 100% efficiency on hot tungsten (+ = 4.5 
ev) or hot platinum (4 = 5.1). The NBS standards employ a platinum- 
iridium alloy (80% Pt; 20% Ir) with somewhat improved behavior over 
either tungsten or platinum. There seem to be fewer impurity ions in the 
alloy than in tungsten. These ions create an undesirable and erratic back- 
ground current. 

The tungsten or Pt-Ir detector is usually in the form of a ribbon. Cesium 
is detected with good efficiency if the temperature of the ribbon is main- 
tained at about 900°C. The ion current can be measured either with an 
electrometer or electron multiplier circuit. If an electrometer is used the 
ribbon is frequently surrounded by a collector ring, and if an electron mul- 
tiplier is used, accelerating and focusing electrodes must be introduced. Fre- 
quently a mass spectrometer is used to analyze the ion beam, thus removing 
the impurity ions. The National Company Atomichron employs a tungsten 
ribbon together with an electron multiplier and mass spectrometer. 

Electrometer circuits are capable of measuring currents as low as 
1 X lo-” amp. Those employed in the NBS standards have a background 
current of 4 X 10-l6 amp when operating under ideal conditions. With the 
exciting radiation adjusted in frequency to the resonance peak of the atomic 
transition, the detected current i s  typically the order of 4 X 10-12 amp so 
that the signal-to-noise ratio is about 1000. Strictly speaking, this is the 
signal-to-noise ratio for Rabi excitation (see Section V,E). Most atomic 
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frequency standards employ Ramsey type excitation. The signal-to-noise 
ratio in this case is usually given by the ratio of the peak intensity less the 
intensity at the first minimum of the Ramsey interference pattern divided 
by the root-mean-square of the noise current. Because of the distribution 
of velocities in the beam, the first minimum does not go down to the noise 
level. In  fact, typically, the current a t  this point is about 3i or % of the 
current at the peak of the spectral line. Thus the signal-to-noise rat,io of 
the Ramsey line is about 330. 

It is of interest to compare the electrometer and electron multiplier 
detectors. The electrometer circuit has the advantage of simplicity but the 
disadvantage of a longer time constant (-0.2 sec for typical current values). 

A simplified model of an electrometer circuit is shown in Fig. 17. Let 
HOT WIRE 

FIG. 17. Simplified electrometer circuit for the detection of atomic beam ion currents 

us consider the noise in such a circuit. We will neglect the noise resulting 
from beam fluctuations and impurity ions boiled off the detector wire. 
The important sources of noise remaining are the Brownian motion of 
electricity in the grid circuit and the shot noise of the grid current. Using 
the Schottky and Nyquist relations, it can be shown (19,220) that the mean 
squared deviation of the grid current is given by 

so long as the time constant 7 of the galvanometer is much less than the 
time constant, R,C,, of the grid circuit. In Eq. (57), k is the Boltzman 
constant (k = 1.38 X joules/"K), T is the absolute temperature of 
the grid resistor R,, e is the electronic charge (e  = 1.60 X 10-19 coul), and 
1 is the grid current in amperes. 
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If the galvanometer responds much more 
i.e., if T >> RgCg, and if (2kT/Rg)  >> eI ,  then 

TlCT - 
AI2 = -* 

4 4  

As an example suppose that C, = 20ppf, T = 

slowly than the grid circuit, 

(58) 

300"K, R, = 1Olo ohms, and 
I = 1 X 10-l2 amp. Using Eq. (57) and associated assumptions, the root- 
mean-square current deviation is 

A I r m s  = 1.6 X amp. 

The signal-to-noise ratio is I / A I r m s  = 630. If the ionized beam current is 
measured with an electron multiplier, the primary contribution to the 
noise, ignoring the beam fluctuations and impurity ions, is shot-noise. 

The mean squared deviation of the output noise current is given 
approximately by (21, 22) 

mal - 
= 2eIM ( ') Av, m - 1  (59) 

where I is the average ion current incident on the first dynode, M is the 
total current multiplication factor, m is the average multiplication per 
stage, e is the charge on the electroi:, . a d  Av is the bandwidth. It has been 
assumed in Eq. (59) that the probability of production of secondary 
electrons is given by a Poisson distribution which is only an approximately 
valid assumption (see 21). 

If M = lo6, m = 3 ,  Av = 5 cps, and I X 10-l2 amp, then the root- 
mean-square deviation of the output current is 

AI,,, = 1.5 X low9 amp, 

and the signal-to-noise ratio is 

= 670, MI 
AI" 

which is not much different from the value obtained for the electrometer 
with the same time constant. This signal-to-noise ratio calculated for the 
electron multiplier would have to be reduced because the efficiency with 
which Cs+ ions produce electrons a t  the first dynode is perhaps only 15% 
of the efficiency of an electron producing secondary electrons at  this sur- 
face. Thus the estimated signal-to-noise ratio is about 100, and the elec- 
trometer appears to have some advantage over the electron multiplier. The 
real advantage of the electron multiplier seems to be for measuring very 
small currents as evidenced by Eqs. (58) and (59). Also, the time constant 
of the electrometer circuit becomes excessively long for very small currents. 
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Various kinds of modulation schemes have come into use and are 
applicable to atomic beam frequency standards (23,24, 25). Vibrating reed 
electrometers are used in both the United Kingdom and the United States 
frequency standards. They have some useful advantages over the de elec- 
trometer (26). 

The response time of electrometer circuits can be made sufficiently 
short for permissible modulation frequencies. (The modulation frequency 
must be less than the spectral line width.) By following the electron mul- 
tiplier or electrometer with an amplifier and phase detector tuned to the 
modulation frequency, a correction signal may be obtained. This correction 
signal can then be used to lock the crystal oscillator from which the beam 
excitation is derived. Thus a signal source continuously locked to the atomic 
resonance is obtained. The National Company Atomichron employs this 
scheme of locking an oscillator to the cesium resonance (27'). 

The experience at  NBS with servo devices is that manual measurements 
still provide the best, most consistent measurements. The feedback circuits 
sometimes introduce troublesome systematic errors. Even though precision 
and stability are good, there remains some uncertainty in accuracy. Con- 
siderable progress is being made in the improvement of the servo systems, 
however. 

In the above considerations of noise in electrometer circuits and electron 
multipliers, the sources of noise originating from beam fluctuations and 
impurity ions boiled off of the hot wire were neglected. The noise from these 
sources may easily exceed those already discussed if proper care is not taken. 
The vacuum and beam excitation must be stable and the cesium in the 
source reasonably pure. 

Dist,illed cesium of adequate purity may be obtained commercially in 
sealed glass ampoules. Cesium reacts with air arid it is best but not neces- 
sary to break the ampoule in t8he oven under vacuum. The oven may also 
be filled with an inert gas after which the ampoule is broken and the oven 
immediately installed in the spectrometer. The vapor pressure of cesium as 
a function of temperature is shown in Fig. 18. Different groups operate the 
source at  different temperatures ranging from about 70°C to 150°C. The 
source temperature depends upon the design of the oven slit and somewhat 
on the pumping speed. The NBS ovens are operated at  150°C a t  which 
temperature the vapor pressure of cesium is about 5 X mm Hg. The 
mean free path for cesium at  this pressure and temperature is approximately 
5 cm. The oven slits may be channeled if it is desired to conserve cesium 
but they need not be unless the slit dimensions become comparable to the 
mean free path. 

In the NBS devices, when operated with t h g  oven slit and detector on 
the machine axis, it is found that the spccrld line width is significantly 
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PIG. 18. The vapor pressure of cesium versus temperature. 
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broader when a thick channeled slit is used instead of a thin slit. It is pre- 
sumed that the reason for this is that the thick slit concentrates more of the 
beam in a small solid angle about the normal. Slow atoms from the oven 
are selected by the deflecting fieIds only when they are emitted at relatively 
large angles from the normal. Ovens made of iron or stainless steel are 
popular, although copper and many other materials are quite likely to 
work satisfactorily. 

VI. THE TRANSITION PROCESS 
In an atomic beam resonance experiment, the energy level scheme of 

the atom is determined by subjecting the beam to a radiation field. This 
field is applied in the C field region between the A and B deflecting magnets 
(see Fig. 8a). When the frequency of the radiation is swept through the 
frequency of an allowed transition, a change in moment of the atoms will 
occur. As a result of this momenf, change, the transverse force on the atoms 
in the second deflecting field also changes and a variation in detected beam 
current is observed.8 

The width and intensity of the spectral lines-and consequently the 
transition probability as a function of frequency-are of considerable 
importance in the design, interpretation, and ultimate accuracy of ail 

atomic beam experiment. The line width is given approximately by the 
Heisenberg relation : 

A n -  1, 

where Av is the line width and T is the time the atom spends in the radiation 
field. In  contrast with microwave absorption spectroscopy, collision and 
Doppler broadening can be made negligibly small in beam experiments. 
For purposes of atomic frequency standards, it is logical to choose states 
with long lifetimes so that the spectral line is not broadened by spontaneous 
emission processes. 

The original Rabi method of exciting the atomic resonance employs a 
single oscillating field. In  1950, Ramsey introduced a method of excitation 
using two separated oscillating fields. There are a number of advantages 
to this method over the Rabi method. The Ramsey method improves the 
resolution of the spectrometer. It does not require as high a degree of 
uniformity of the static C field. It has a practical advantage when observing 
very high frequency  transition^.^ Two short oscillating fields separated by 

8 This is not strictly true. The moment of an atom as it passes through the A deflecting 
magnet will not differ from its moment in the B deflecting field for A F  = 0, AmF = f 1 
( m p  # I + i) transitions if the deflecting fields are strong. Consequently, no change 
will be observed in the beam intensity when a transition of this type is induced (see 
Fig. 9). 

The oscillating field should be uniform in intensity and phase, and this is difficult 
to achieve when the oscillating field region is many free-space wavelengths long. 
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a distance L provide even higher resolution than a single ideal field covering 
the entire distance L. The advantage is gained at the expense of a reduction 
in signal-to-noise ratio that depends upon the velocity distribution in the 
beam. 

A .  The Transition Probability for a Single Oscillating Field 
The Hamiltonian for an atom in the presence of a radiation field can be 

(60) 

where xo is the Hamiltonian in the absence of the radiation field, and 
x ’ ( t )  is the interaction between the radiation field and the magnetic 
moment p of the atom. This second term may be written to sufficient 
approximation as 

(61) 

where H is the magnitude of the oscillating magnetic field intensity and 
w is the angular frequency of this oscillating field. In  order to obtain the 
transition probability and the theoretical line shape, the time dependent 
Schrodinger equation must be solved. A complete solution may be obtained 
if certain assumptions are made. We will proceed to enumerate these 
assumptions. 

(a) The two states involved in the transition are well isolated from 
other states. 

(b) The diagonal elements of the interaction Hamiltonian are zero. 
(c) The atom sees a finite portion of a cosine wave as it passes through 

the radiation field region. It enters the field a t  t = 0 and leaves at time T.  

A substantial simplification can be made in the calculaticn without serious 
discrepancies in the results if it is assumed that the dipole mGment interacts 
with a rotating field rather than an oscillating field. Instead of Eq. (61), 
write 

written as: 
x(t) = xo + x’(0, 

~ ’ ( t )  = -p * H COS ut, 

x’(t) = -p ( H  cos uti - H sin dj ) ,  (62) 
where the z-axis is chosen along Ho, the uniform C field, and H rotates 
with angular velocity o in the x,y-plane. We have chosen the special case 
where the radiation field has a z-component equal to zero. 

With these simplifying assumptions, the transition probability that an 
atom initially in state p ,  will be in state q after a time T ,  is given by 

The quantity b is related to the matrix elements of the interaction Hamil- 
tonian by 
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The maximum transition probability occurs at resonance wo when b 
and 7 are related by 

or 

where is the velocity of the atoms, and I is the length of the oscillating 
field traversed by the atoms. The frequency width at half maximum for 
these optimum conditions is 

(66) 
V 

AV = 0.799 -* 1 

If the velocity distribution of the atoms in the beam is taken into 
account (6, 7) 

(67) 
a! Ib[ = 1.89- 1 

where cr is the most probable velocity in the source and the velocity dis- 
tribution in the beam is assumed to be that for simple effusion through an 
ideal aperture. The line width in this case is 

The radiation field intensity required to produce the optimum transition 
probability is given by Eqs. (64) and (67). For the purpose of an estimate 
we make the following approximation. The radiation field interacts most 
strongly with the electronic magnetic moment, and we may write 

Then 
v = V J  + vr V J .  

X’(t) = - v  . (H cos uti - H sin w t j )  

= g J p  J ( H  cos uti - H sin dj) .  

This can be rewritten as 
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where J* = J ,  rt iJ,. Now 

and 

where 

( F  - J + I ) ( F  + J - I ) ( J  + I + 1 + F ) ( J  + I + 1 - F)]’ 
c = [  4F2(2F - 1)(2F + 1) 

The selection rules AF = 0, f l ;  Amp = 0, =frl are derived from these 
matrix elements. 

If the C field is very weak, as it is in atomic frequency standards, then 
the matrix elements (70) may be used directly in Eq. (69). In the event that 
there is a component of the radiation field in the z-direction-contrary to 
the assumption made in writing Eq. (62)-the matrix elements of J ,  are 
necessary in calculating the transition probability. The (F = 4, mF = 0)  t.) 
( F  = 3,  mF = 0) transition in cesium is a case in point. 

Torrey has given a useful approximate evaluation of b for general values 
of the C field intensity (29). For ?r-transitions, 
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where H ,  is the component of the radiation field perpendicular to Ho, and 
pp,mp are the magnetic moments of the states F ,  mp. These effective mag- 
netic moments are given by 

9 2 0  
2 I ’  x + (2mF/21 + 1) 

[l  + ( 4 m ~ z / 2 1  + 1) + x2]36 p I f t , m p  = =I= 

if mF # &(I + +), and 

QJPO 
PZ+f,mp = =I= 2’ 

if mF = &(I  + +). 
For u-transitions, 

If g I  is neglected relative to gJ  then, 

(73) 

H ,  is the component of the radiation field parallel to Ho, and the quantity 
x has its previous value: 

When there is a component of the radiation field in the direction of Ho, 
the diagonal matrix elements of the interaction Hamiltonian do not vanish 
and one of the assumptions (b) used in the derivation of Eq. (63) is violated. 
If, however, lXpp’l and ]Eqq’/ << hwo, which they are for the standard 
frequency transition, then Eq. (63) still provides a reasonably good 
approximation. 

A more exact treatment of the transition probability for n-transitions 
using the rotating field approximation is given by H. Salwen (11, SO). 
Salwen’s theory includes the interaction between neighboring states. Small 
frequency shifts in the resonances result. Salwen makes the additional 
assumption that the widths of allowed lines are small compared to their 
separations. The analysis has not been made for a-transitions which are of 
particular interest in atomic beam standards. The significance of these 
frequency shifts predicted by Salwen can be demonstrated by looking for a 
displacement of the resonance peak as a function of radiation field intensity. 
If a shift is not observable within the precision of measurement over a 
range of oscillator field intensity, then the frequency shifts are not signifi- 
cant in the measurements. Of course, radiation field dependent frequency 
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shifts can, and frequently do, result from instrumental difficulties quite 
apart from the effects prcduced by neighboring states in the spectrum. 

Oscillating fields rather than rotating fields are employed in atomic 
beam experiments. Even when the effects of neighboring states are neg- 
lected, an oscillating field will produce a small shift in frequency which is 
not predicted by the rotating field approximation. An oscillating field solu- 
tion to the time dependent wave equation was first obtained by Bloch and 
Siegert (51) for particles of spin $5, In their calculation it was assumed 
that the magnitude of the radiation field H is small compared to the uni- 

form C field Ho arid that H and Ho are perpendicular to each other. They 
calculated the frequency shift to be 

+ 

(Yo’ - Y o )  = - (74) 

where YO’ is the frequency at the peak of the resonance curve and Y O  is the 
frequency separation of the two states. This relationship probably applies 
satisfactorily to the AF = 0, AmF = f l  transitions in the cesium standard 
provided that care is taken to keep H small relative to Ho. An estimate of 
this frequency shift for AF = f l ,  Amp = f l  transitions can be made 
by inserting the value of the magnetic field a t  the position of the nucleus 
into (74) for Ho rather than the magnitude of the C field intensity. This 
field is 3.3 X lo6 oe for cesium. The theoretical analysis of the oscillating 
field induced AF = f.1, AmF = 0 transitions has not been performed. 

B. The Transition Probability for T w o  Separated Oscillating Fields (7) 

In the Ramsey method of excitation, the beam passes through two 
separated oscillating fields contained within the uniform C field. The 
probability that an atom, initially in state p ,  will be in state q after passing 
through both oscillating fields is given by 

ar 1 P P s q  = 4 sin2 e sin2 - a7 [cos:(AT - 6)cos-Z- - cosesin- 2 (AT - 6)sin- 2 

where 
wo - w 

COB e = -’ P I  sin e = - a a 
a = [(wo - w)2 + j2b12]%, 

w, - WP, 
h 0 0  - 
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7 is the time taken by an atom to pass through either of the two oscillating 
fields of length I, T is the time taken bv an atom to traverse the distance 
L between the two fields, 

and b is given by Eqs. (64) and (69). It is assumed, as for Eq. (63), that 
= xpq’ = 0. The second oscillating field leads the first by the phase 

angle 6. m, and mg are the average energies of states p and q in the region 
between the two fields. 

The transition probability, Eq. (75), provides the theoretical line shape 
for a single velocity beam. A probability of one is obtained at w = wo 
when 6 = 0 and b~ = 7r/4. When P,,, is averaged over the velocity dis- 
tribution of a beam effusing from an ideal aperture, the maximum transition 
probability is given at uo(6 = 0) when 

Notice that the field intensity required is about half that required for the 
optimum condition for a Rabi flop in an oscillating field of length 1. 

The halfwidth of the central peak of the Ramsey pa.ttern is 

CY 
AV = 0.64- L (77) 

under the conditions of Eq. (76). The form of the Jiarnsey pattern is shown 
in Fig. 19. The pedestal upon which the interference pattern sits is usually 
much broader than the interference pattern. In some cases the pedestal 
width is over 700 times the width of the central peak. The minima of the 
damsey transition probability would decrease all the way to zero in the 
case of a single velocity beam. A distribution in velocity of the atoms tends 
to smooth out the interference pattern. Greater smoothing action occurs 
at larger frequency displacements from the central resonance peak. 

When the phase of the second oscillating field leads that of the first 
by 6 = ?r radians, a minimum occurs at wo rather than a maximum (see 
Fig. 19b). When 6 = (n/2), the transition probability takes the form of a 
dispersion curve about wo (see Fig. 19c). It is evident that if a small phase 
difference exists (6 Z 0) between the two fields, the peak of the resonance 
will be shifted in frequency relative to wo. An apparent frequency shift 
arising from a phase difference between the oscillating fields can be, and 
frequmtly is, significant in atomic beam frequency standards. 
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FIG. 19a. An actual trace of a Ramsey interference pattern when the two oscillating 
fields are in phase. 

b - C - 
FIG. 19. (b) The form of the Ramsey pattern when the oscillating fields differ in 

phase by 180". (c) The form of the Ramsey pattern when the oscillating fields differ in 
phase by 90". 
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VII. MEASUREMENT UNCERTAINTIES 
There are a number of uncertainties introduced into the absolute fre- 

quency measurements of a cesiurn standard. The ideal circumstance, of 
course, is to have the accuracy of these devices limited only by the random 
scatter in the data-all systematic frequency shifts having been measured 
or eliminated. Ideally then, the accuracy would be determined by the spec- 
tral line width and signal-to-noise ratio. At the present time systematic 

FIG. 20. NRS-I atomic beam frequency standard. 



errors do limit the accuracy of cesium frequency standards. Beam devices 
with 300 cps line widths have demonstrated greater accuracy than those 
devices with much narrower resonances. As time progresses it is expected 
that longer machines will more closely approach their ideal capabilities. 

Certain fixed parameters and effects that determine absolute frequency 
may be measured by auxilliary experiments. The effects that are now con- 
sidered to contribute the greatest inaccuracies are : 

(a) The magnitude and nonuniformity of the C field, including varia- 
tions in the magnitude over long periods, 

(b) A phase difference between the two oscillating field regions, and 
(c) A lack of purity of the electromagnetic field exciting the atomic 

transition. 

FIG. 21. NBS-I1 atomic beam frequency standard.  

The method of measuring these effects and the results of the measure- 
inents together with the estimated uncertainty in absolute frequency will 
be presented for the United States Frequency Standard and alternate 
standard (see Mockler, I ,  52,SS). The two devices are designated (NBS-11) 
and (NBS-I) respectively. They are shown in Figs. 20 and 21; their proper- 
ties are given in the Appendix. 
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A .  Magnetic Field Measurements 
The magnitude of the C field is determined by observing a number of 

field sensitive microwave transitions, e.g., (F = 4, mp = kl) (F = 3, 
m~ = 3tl). The frequencies for these transitions are given by Eq. (24) 
which can be written to sufficiently good approximation as: 

v = vo -l- 700.6mpB0, (78) 

where YO is the hyperfine structure separation in zero field. The quantities 
v and Y O  are measured in kilocycles and 

The low frequency transitions for which AF = 0, and Amp = =tl are 
also used to measure the magnitude of the field and, in addition, the 
uniformity of the field. The frequency of these transitions is given by Eqs. 
(25)  and (26). The abbreviated equation 

in oersteds. 

v = 350Ho (79) 
is a satisfactory approximation. The quantity v is measured in kilocycles 
and go in oersteds. Small coils were placed at  various positions (5 alto- 
gether) along the C field. The magnitude and uniformity of Ho is obtained 
by exciting each coil separately. A rotating coil fluxmeter, sensitive to 
0.002 oe, provides still another method of measuring the field and its 
uniformity . 

The uncertainty in the field measurements of amount 6Ho will produce 
an uncertainty in the standard frequency measurement given by 

&v( = 854Ho6Ho; (80) 

6 ~ 0 ’  is measured in cps and the field in oersteds. One would expect the 
average field obtained from the microwave measurements to agree with 
the average of the local field measurements made at low frequencies and 
with the rotating coil fluxmeter, provided, of course, that a sufficient num- 
ber of points are chosen along the field to give a good average. In  NBS-I this 
is the case. The fields measured in the various ways agree within the pre- 
cision of measurement’. The maximum deviation in the C field in this instru- 
ment is f0.002 oe. In NBS-I1 there is a measured discrepancy of 0.004 oe 
in the average field measurements made by the different methods. This is 
still unexplained but seems to be associated with a deteriorating of the 
shielding properties of the p-metal shields used to eliminate the earth’s 
field, the fringing fields of the deflecting magnets, and other stray fields 
in the laboratory. When the shields were first installed there was no dis- 
crepancy between the various field measurements. 

The average value of the square of the C field magnitude must be 
known in order to calculate the fzequency Y of the peak of the resonance 
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curve and consequently the frequency of the exciting radiation at  this 
point. It is obtained from Eq. (23) which can be written to sufficient. 
approximation as : 

Y = Y O  + 427H02, 

where Y and Y O  are in cps and H O  in oersteds. The zero field hyperfine sepa- 
ration, YO, is assumed to be 9192631770.0 cps for this calculation. The 
number 9192631770 f: 20 cps is the best value of vo from astronomical 
time measurements as determined by Markowitz et al. (5 ) .  Additional 
significant figures are added simply to accommodate the additional stability 
of the atomic standards. 

The average value of the field squared may be different from the square 
of the average field. Consequently, if the C field is not uniform, the low 
frequency measurements of Ho at a sufficient number of points, n, would 
give the best value of Ho2. Using these data, 

- 

i = l  

where Hoi is the average field measured by the sensing coil a t  the ith posi- 
tion in the C field. The low frequency spectral line is subject to distortion 
and power shifts. Care must be taken to maintain the radiation field 
intensity H small compared to Ho to avoid these "saturation" effects. Even 
at  these low frequencies (7 to 21 kc) the Bloch-Siegert effect, Eq. (74), is 
unimportant (4-13 cps) insofar as the field measurements are concerned. 

B. Phase Diference Errors 
If the two oscillating fields of the Ramsey excitation structure are in 

phase, a maximum beam signal is observed at the resonance frequency. If 
the two fields are 180" out of phase, a minimum signal is observed at the 
resonance frequency. The central peak is shifted approximately a fringe 
width as the phase difference is shifted from 0" to 180". Then if the width 
of the fringe is 120 cps, a phase difference of 1" will shift the frequency 
about 0.7 cps which is significant. 

For the purpose of reducing the phase difference between the two fields, 
i t  was found quite effective to pass the beam through the two ends of a 
single rectangular resonant cavity electroformed in the shape of a U .  The 
beam grazes the two end walls. The cavity is driven by the frequency mul- 
tiplier chain through a coupling iris a t  the midpoint of the U. The cavity 
is made so that it may be rotated 180", thus reversing the direction of 
traverse of the beam through the exciting structure. The frequency shift 
accompanying any phase difference will be in opposite directions for the 
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two orientations. The mean of the two frequencies is the line frequency 
and one-half the difference is the phase correction. Simple relationships 
for estimating this frequency shift from the plotted Ramsey pattern have 
been developed by Holloway et al. (34). Their method is less sensitive than 
the more common method of exchanging the oscillating fields. 

C. Errors Resulting from Impure Radiation 
The simple theory of spectral line shape assumes the atomic transition 

to be excited by pure sinusoidal or cosinusoidal radiation. If the electro- 
magnetic field is not pure, rather large frequency uncertainties are possible 
in the measurements. Actually, of course, the transition is induced by a 
certain distribution of frequencies. This distribution is determined by the 
frequency multiplier and crystal oscillator from which the exciting radiation 
is derived. The radiation, in general, is composed of the carrier frequency, 
noise and discrete sidebands resulting from frequency modulation. The 
discrete sidebands are usually due to 60 cps-the power frequency-and 
multiples thereof. (In the cesium beam experiments it is possible to reduce 
the noise to  a low enough level so that it is not the limiting factor in the 
precision of the frequency measurements). The sidebands are multiplied in 

Q 
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FIG. 22. The square root of the power spectrum of a 5 Mc quartz crystal oscillator 
multiplied in frequency to 23,900 Mc. This oscillator is used in the excitation chain of 
the United States Frequency Standard. The width and shape of the spectrum is essen- 
tially that of the response of the analyzing filter. 



intensity by the factor of frequency multiplication. This factor is rather 
large (1836) and consequently these sidebands can introduce rather large 
frequency errors. Errors of this sort are particularly significant if the power 
spectrum is unsymmetrical.1° Frequency shifts of a few parts in log have 
been observed by deliberately introducing sidebands unsymmetrically 
placed about the carrier. 

Of course, if the power spectrum is known, the proper spectral line shape 
can be calculated in order to find the proper correction to the measured 

.k 
U- 

J 

1 CARRIER L 
FIG. 23. The square root of the power spectrum of a 10 Mc quartz oscillator multi- 

plied, in effect, to 15,000 Mc. Notice the 60 cps'sidebands. The crystal in this oscillator 
is immersed in liquid helium. 

frequency. It is both more desirable and much simpler to eliminate these 
sidebands so that the simple line shape theory applies. The square root of 
the power spectrum of a 5 Mc quartz crystal oscillator multiplied in fre- 
quency to 23,900 Mc is shown in Fig. 22. This is the oscillator used in the 
excitation chain of the United States Frequency Standard. Considerable 
care was taken with this oscillator to avoid 60 cps modulation. It was found 
necessary to use regulated dc power supplies in the filament circuits both 

10 An unsymmetrical power spectrum can arise when the carrier is frequency modu- 
lated with two or more different frequencies (36). 
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in the oscillator and the frequency multiplier chain. Figure 23 plots the 
square root of the power spectrum of a similar oscillator circuit without 
regulation of the filament supply. The 60 cps sidebands are very prominent. 
Notice that the spectrum is quite unsymmetrical. In this spectrogram the 
10 Mc oscillator was multiplied to 15,000 Mc. 

The spectra of Figs. 22 and 23 were taken by means of an ammonia 
maser spectrum analyzer (36, 37) developed by James Barnes and others 
in the Atomic Frequency and Time Standards Section of the National 
Bureau of Standards. The smooth trace in Fig. 22 is the response curve of 
the analyzer filter. It has been offset and reduced in intensity relative to 
the oscillator spectrum so that the two would not coincide. The resolution 
is insufficient to see the details of the spectrum. It can be said, however, 
that the spectrum has a width of 1 cps or less a t  23,900 Me. This is suffi- 
ciently narrow to assume that the cesium transition in the frequency 
standard is excited by a pure signal. 

Low frequency crystal oscillators, for example, 100 kc oscillators, in 
most cases are unsuitable for exciting the cesium transition. The huge 
factors of frequency multiplication usually give power spectral widths 
greater than 1 kc at the aesium frequency. This is greater than the width 
of the cesium line. Ramsey (7, 38) has considered the frequency shifts 
produced by exciting a transition with two or more signals close to each 
other. 

D. Other Errors 

The peak of the Ramsey pattern may be incorrectly determined if it is 
measured against a variable background of intensity. The cesium spectrum 
is essentially symmetrical about the ( F  = 4, mF = 0 )  t+ ( F  = 3, mF = 0) 
transition and overlap errors will tend to cancel. There may be, however, 
geometrical effects in the spectrometer that reduce the intensity of certain 
lines in the spectrum relative to their symmetrically placed counterpart. 
This would lead to an overlap error. The relative intensities of the lines on 
the high and low frequency side of Y O  have been measured. The intensities 
of the (F = 4, mF = 1) c--) (F = 3, mF = 1) and ( F  = 4, mF = -1) ++ 
(F = 3, mF = -1) lines are found not to be the same but differ by about 
25%. This leads to a calculated overlap error of about 1 X 10-l2 at usual 
C field intensities. This estimate takes into account only superposition of 
the various lines of the spectrum. Lower fields will introduce still smaller 
errors. Transitions for which Amp = f 1, that is, d ines ,  are not observable 
in the NBS standards and were not considered in the calculated estimate. 

Saturation effects are thought not to contribute significantly to the 
frequency error because no frequency shifts vere observable as the radia- 
tion field intensity was changed from very sinal1 values to rather large 
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values.*l Beyond the values used, the line intensity was either too low or the 
line too broad for precise measurements. The problem of saturation as it 
applies to  cr-transitions and the effect of the oscillating field in shifting the 
line frequency requires further theoretical study. 

One would expect first order Doppler effects to broaden the spectral 
line by an unimportant amount. It is conceivable, however, that the small 
holes in the resonant cavity through which the beam passes radiate different 
amounts of energy. The entrance holes radiate differently than the exit 
holes. This radiation, though small, will be propagated against the beam 
from the entrance holes and in the direction of the beam from the exit 
holes. If both sets of holes radiate in the same way, the Doppler effect 
will broaden the line symmetrically. If they do not radiate in the same way 
the resonance peak will be shifted. A shift of this sort should be observable 
by rotating the waveguide exciting structure. It could be distinguished from 
a phase shift by changing the size of the holes. If the shift were very large, 
it would probably depend upon the radiation field intensity. No frequency 
shifts behaving in this way have been observed in the NBS standards. 

Second order Doppler effect would introduce a fractional frequency 
shift of amount 

where cy is the most probable velocity of the atoms. This is a negligible 
shift for present experiments. Small but negligible frequency shifts arise 
from electric fields that might exist, in the resonance excitation region. 
Haun and Zacharias (39) determined this shift experimentally and found 
it to be 

6v0 = 1.89.X E2 cps, 

where E is the electric field in volts/cm. For a field of 1 volt/cm, 

6vo - = 2 x 10-16. 

Frequency shifts incurred through frequency pulling of the resonant cavity 
are given approximately by 

v o  

2 AVR = (-) &Orb” ity Avc 
&line 

where AvR is the shift in the peak of the atomic resonance line, and Avc is 
the difference in frequency between the peak of the cavity response and the 

11 Relatively large saturation shifts are observed for *-transitions which are expected 
(11, SO). These saturation shifts are also observed for a-transitions if mp # 0. The 
measured saturation shifts for the ?r transit,ions do not agree satisfactorily with Salwen’s 
analysis. 
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peak of the spectral line. The estimated frequency shift from this source is 
n,bout 4 X 10-'4. 

E. Frequency Measurements 
The fractional accuracy of the beam standard will be taken as the un- 

certainty in measurement of the Bohr frequency YO relative to vo, i.e., 
6vo/v0. We suppose that Y O  may have any number of significant figures 
required, so that the accuracy as defined here is limited only by the atomic 
standards themselves and not by inaccuracies in astronomical time meas- 
urements. Precision, on the other hand, will be understood to mean simply 
reproducibility. For example, if a fixed unknown phase difference exists 
between the two oscillating fields, the precision may be quite good but the 
accuracy is limited by the unknown phase shift. 

An estimate of the fractional accuracy of a particular machine may be 
made by adding all of the experimentally determined fractional uncertain- 
ties contributed by the various effects considered in the preceding sub- 
sections of Section VII. Thus for NBS-I1 the uncertainty in the C field 
measurements introduces a frequency uncertainty of =t8 X 10-l2, and the 
uncertainty in frequency due to a phase shift is r t 2  X 10-l2. Other effects 
discussed previously are expected to be negligible, or calculable. The esti- 
mate of the fractional accuracy is the sum or rt1.0 X lo-" for NBS-11. 

The uncertainty in the C field measurements of NBS-I give a frequency 
uncertainty of 4 X 10-l2. The uncertainty due to a phase shift is f 2  X 10-12,  
and the estimate of accuracy for NBS-I is 6 X There is a measurable 
phase error in NBS-I of 8 X however, this is a measurable shift and 
may be introduced as a correction. For one orientation of the NBS-I 
cavity the two devices disagree by 1.0 X lo-", and for the other orientation 
they disagree by 2.5 X lo-". The corrected measured zero field difference 
is 1.7 x 10-11, which agrees with the sum of the individual estimates of 
accuracy for the two machines within the precision of measurement, which 
is 2 x These two standards are evidently limited in their accuracy 
by systematic errors and not by their line breadths, which are about 300 
cps and 120 cps. 

Comparisons between certain Atomichrons and the atomic frequency 
standard of the Ucited Kingdom carried on at  the National Physical 
Laboratory are discussed by Holloway et al. (34, 40) and by McCoubry 
(41). Comparisons made through propagation data are given in Section 
VIII. Figure 24 shows a sample set of comparisons between NBS-I and 
NBS-11. The oscillator was noticeably more unstable the last half of the 
day for the measurements made in Fig. 24. This oscillator was less stable 
on this particular day than usual during the spring of 1960. The precisioii 
cited in the figure for the day's nieasurements is considered the standard 
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deviation of the mean which is 

fn 
0 

0 
I 13.5041 
lk 
-I 
w 

The quantity Avi is the ith measurement of the zero field frequency dif- 
ference between the two standards, is the average frequency difference 
and n is the total number of sets of measurements. For one method of com- 
parison, see Mockler et al. ( I ) .  For the frequency multiplier chain circuits, 
see Schafer and Salazar (42). The circuits employed in the United Kingdom 
Standard are given by Essen and Parry (43). 

- 

I I I I I I I I I J  

(NBS I1 - NBS I )ov. 2 + 1.4 x I O - "  

u (EXT.  EST.) = 7 x  U M  ( INT. EST.) 2 x IO-'* 

: + 2  
=: 0 -  
fn 

- 
0 - 0 

One method of measuring bhe frequency of a crystal oscillator in terms 
of the cesium resonance is shown in Fig. 25. This is the particular arrange- 
ment preseiitly used with the United States standards. The ammonia 
maser stabilized crystal oscillator provides the most stable source for excit- 
ing t,he cesium transition that has been devised by the group. Other signal 
generators can be compared with this oscillator or with any signal output 
from either of the frequency multiplier chains for purposes of calibration. 
Also, any 5 Mc signal generator of sufficient stability may be used to drive 
the cesium beam chain directly for purposes of comparison with the cesium 
resonance. 

It may prove practical to  control the maser stabilized chain controlling 
the cesium excitation with a correction signal from the cesium beam. Thus 
the complete standard would be composed of an ammonia maser that would 
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provide short term stability and the cesium beam which would determine 
the long term stability. If this device were operated continuously, and 
suitable scalars were added to accumulate cycles at, say, 5 or 10 Mc, then 
the device could properly be called an atomic clock. 

VIII. STANDARD FREQUENCY COMPARISONS BETWEEN 

CESIUM STANDARDS VIA PROPAGATION DATA 

Comparisons have been made through propagation data between the 
United States Frequency Standards, the United Kingdom standard at the 
National Physical Laboratory and four Atomichrons in the United States. 
The propagation data was obtained from the regular reports of: S. N. 
Kalra of the National Research Council of Canada; J. 11. Pierce of the 
Cruft Laboratories; National Bureau of Standards Boulder Laboratories; 
Naval Research Laboratory, Washington, D. C. ; and National Physical 
Laboratory, Teddington, England. The results are compiled in Table I. 
In this table the designation Mq is the mean of the zero field frequencies of 
Atomichrons 106, 109, 110, and 112. The locations of these Atomichrons 
are indicated in the table. 

-10 ' J 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~ 1  

I 6 I I  16 21 26 31 5 IO 15 20 25 30 4 9 14 19 24 29 
DECEMBER 1959 JANUARY 1960 FEBRUARY 1960 

FIG. 26. Comparison of the United States Frequency Standard with that of the 
United Kingdom Standard using propagation data obtained from two different trans- 
mission links. 

Figures 26 and 27 plot some of the data used in Table I and are given 
in order to display the scatter in the measurements. Figure 28 summarizes 
the propagation data available to date in terms of monthly averages. 
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

I 6 II 16 21 26 31 5 IO 15 20 25 30 4 9 14 18 24 29 

DECEMBER 1959 JANUARY 1960 FEBRUARY 1960 

FIG. 27. Comparison of the United States Frequency St,andard with that of Canada 
and with M4. 

TABLE I. SUMMARY OF 7-MONTH COMPARISONS BETWEEN NBS-11 A X D  NPL, 
N.R.C. (CANADA), AND A GROUP OF 4 ATOMICHRONS~ 

Number of 
daily 

comparisons Links used in the 
Comparison used comparison 

(NPL-NBS 1I)av = +0.6 X lo-''' 
via N.R.C. (Canada) 

(N.R.C.-NBS II)By = +4.7 X 10-1' 

(Ma-NBS 1I)av = + 1 . 1  X 
106-Boulder 
1 12-Cruf t 
109-WW V 
1 1 O--NR T, 

96 a. 
b. 

d. 
128 a. 

b. 

d. 
e. 

128 a. 
b. 

9 1 a. 
b. 

d. 
e. 

C. 

C. 

C. 

WWVB-NBS I1 
WWVB-N.R.C. 
MSF-N.R.C. 
MSF-NPL 
106-NBS I1 
WWV-l06-(30 day averages) 
wwv-112 
MSF-112 
MSF-NPL 
WWVB-NHS I1 
WWVB-N.R.C. 
WWV-106 
106-NBS I1 
wwv-110 
wwv-112 
wwv-109 

~~~~ ~ ~~ ~ 

a Data of Nov. 30, 1959 to June 30, 1960. 
Discussions of the various frequency standards involved in these comparisons will 

be found in t,he published and unpublished literature (United Kingdom Frequency 
Standard, 2, 34, 40, 41, 43; Canadian Frequency Standard, 3, 44; The Atomichron. 
27, 34, 40, 41; The United States Frequency Standard, 1, 32, 33, 4%). 
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IX. THOUGHTS ON FUTURE DEVELOPMENTS 
The atomic beam experiments that were carried on at the National 

Bureau of Standards demonstrate that beam devices of rather modest 
length (55 cm between the oscillating fields) can hme a precision of 2 X 
for measuring times the order of one hour. This is an order of magnitude 
better than the accuracy of these same machines. The limitation on the 
accuracy results from inadequate shielding and nonuniformity of the C 
field, and cannot be alleviated by narrowing the resonance line width. It 
appears that improvements in the C field would allow accuracies of 2 X 10-l2 
in these short beam devices. Until sufficiently uniform and permanent fields 
can be constructed, longer machines have limited usefulness insofar as 
accuracy is concerned. It does seem likely, however, that these develop- 
ments will come about. Two long machines have been already put into 
operation. Essen and his group at NPL have an operating beam with the 
oscillating fields separated by 2.8 meters and a line width of about 50 cps. 
(46). The first estimate of accuracy was 1-2 X which was limited by 
the C field. Improvements in the magnetic shielding should yield higher 
accuracy. 

Bonanomi and his group at Neuchiitel have a cesium beam with a &meter 
separation of the oscillating fields and a resonance line width of about 27 
cps (4, 46). Two long resonant cavities provide the two oscillating fields. 
In this way the Rabi pedestal is narrower and overlap errors should be 
smaller. Weaker C fields can be used, thus reducing the frequency uncer- 
tainty resulting from uncertainties in the C field. One disadvantage of this 
type of Ramsey structure is that it will likely be more difficult.to measure 
phase shift errors. No estimate of the accuracy of this machine has been 
reported. 

A .  A Thallium Atomic Beam 
Thallium-205 has been suggested by P. Kusch as a possible replacement 

for cesium in atomic beam standards (47). In view of the C field difficulties 
observed in the cesium standard, thallium is particularly attractive because 
it is much less field sensitive than is cesium. 

The frequency of the field insensitive transition, (F = 1, ~ Z F  = 0)  ++ 
(F = 0, mp = 0), is given by 

v(T12&) = v ~ ( T ~ ~ ~ ~ )  + 20.4H02, (82) 

vhere v0(TPo6) is 21,310.835 f: .005 Mc (48). This is to be compared with 
Y(CS) = YO(CS) + 427Ho' 

for the frequency of the field insensitive line of cesium. Thallium' is 1/50th 
as sensitive to the magnetic field as cesium. Thallium has other advantages: 
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(a) The hfs separation y o  is more than twice that of cesium. 
(b) There is a single a-transition in thallium; there are seven in cesium. 

Frequency shifts due to overlap should be much less troublesome and a 
lower intensity C field can be used. 

(c) There are only four states in the hfs of thallium (Fig. 29); there tm 
16 in cesium. Each thallium state, therefore, will have a higher population 
than the individual states of cesium. Higher signal intensities would then 
be observed for thallium if the detector efficiency were the same as for 

F = l  0 

- I  

- -  --  

d B .  T 

FIG. 29. The hyperfine structure of thallium (205) in the ground ¶Ppj electronic 
state. I = $6. 

cesium, which it is not. ThalIium has the disadvantage that the method 
of detection is somewhat more difficult than the simpler method used for 
cesium. The relative efficiency must be determined experimentally before 
it can be said which atom will produce the better standard. 

Both the National Bureau of Standards and the National H.esearch 
Council of Canada are building thallium beams at  the time of writing. 

B. The Alkali Vapor Cell (49) 

The alkali vapor frequency standard shows considerable promise a' 
though it has the disadvantage of inherent frequency shifts due to the 
buffer gases, These shifts are not sufficiently well underst,ood to be treated 

63- 62 



tmalytically ; consequently certain recipes in construction \vould have to 
be prescribed if they were used as primary standards. I, i i ic> breadths of 
30 cps are attainable with much simpler apparatus thaii i i i i  ;!tcmic beam. 
Gas cell devices have been demonstrated by P. L. Bender :tiid E. C. Eeaty 
to have a frequency stability of 1 X lo-” over a period cf 1 month (60). 
A qualitative description of the operation of one of these devices follcws. 

Light from a rubidium-87 discharge is made incident upoii a glass 
bulb containing RbS7 at a partial pressure of about mm Hg. The bulb 
is contained within a resonant, cavity tuned to the Rb*7 hyperfine transitioii 
at 6835 Mc. The light radiation of interest from the lamp is the emission 
from the 5 2 P 3 / 2  and 52P1/2 states to the 52S1/2 ground state. By interposing a 
Rbs5 absorption cell between the light source and the cavity, the light from 
one of the hfs lines emitted from the lamp (line a in Fig. 30b) can be sub- 
dued. Thus the Rbs7 in the cavity cell will preferentially absorb b light. (The 
hfs of the optical radiation from both the 2P1,2 and 2 P 3 / 2  states will be about 
the same since the hfs intervals in the excited states are much less than 
in the ground state. The picture shown in Fig. 30b applies to both the 
2 S l I 2  t--) 2P1/2 and 2S1/2 t) 2 P 3 / 2  transitions.) 

After excitation from the ground state to the excited states, rapid 
spontaneous decay back to the ground state occurs to  both the F = 2 and 
F = 1 states with similar rates. An excess of population is accumulated 
in the F = 2 state since atoms are preferentially,excited from the F = 1 
state because of the Itbs6 filter cell. Thus when the lamp is first switched 
on, the gas contained within the cavity is in thermal equilibrium and 
absorbs most strongly. After a time the population of the F = 1 state is 
depleted by the optical “pumping” of atoms out of this state and their 
subsequent accumulation in the F = 2 state. The gas cell becomes more 
transparent as indicated by an increased signal from the photo cell. If now 
microwave radiation of frequency 6835 Me is applied to the cell, atoms 
will “flow” from the F = 2 state to the F = 1 state making more atoms 
available for excitation to the excited states. At this point the cell absorbs 
more of the incident light and a decrease in the photocell signal results. If 
the microwave radiation is swept through the 6835 Mc resonance the line 
shape may be recorded from the output of the photocell. 

The inert buffer gas serves the purpose of prolonging the lifetime of the 
alkali metal atom in its 2S1/2 ground state. In  this state, the atoms can have 
many collisions with atoms of the inert buffer gas before having transitions 
induced between the F = 2 and F = 1 states by these collisions. Thus the 
lifetime of the atomic states will be prolonged by the collision processes. 
Collisions between the alkali atoms and the walls of the container will 
induce transitions, but the frequency of these collisions is drastically 
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FIG. 30a. Rubidium47 vapor cell. The hfs transition at 6835 Mc is observed by a 
change in intensity of the optical radiation transmitted through the vapor cell. 
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FIG. 30b. The filter action of the rubidium-85 bulb results from the overlap of lines 
:I and A in the figure. 
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reduced by the presence of the relatively high pressure buffer gas. Doppler 
broadening is very small because the recoil momentum given to the radiat- 
ing system by the emitted photons is distributed throughout the buffer 
gas via the many collisions that take place in the decay time (51,52).  This 
“collision narrowing” is similar to the Mossbauer effect in which recoil-free 
gamma radiation is emitted by Fe6’, for example. 

C. Molecular Beam Electric Resonance (53) 

V. W. Hughes has suggested the (J = 0) f+ (J  = 1) transition of 
LPF occurring at about 100 kMc as a frequency standard. It would employ 
the electric resonance beam technique’ which is similar to the atomic beam 
magnetic resonance technique. In electric resonance experiments deflec- 
tions are produced through forces on the electric dipole moment in non- 
uniform electric fields. Electric dipole transitions are ordinarily observed. 
The molecular spectrum provides a much wider choice of frequencies and 
makes available much higher frequencies for use as a standard; higher 
frequencies will provide higher precision for a given signal-to-noise ratio. 
The molecules are distributed over a greater number of states than atoms 
in their ground state. Consequently, signal intensities will be substantially 
less. Signal intensities will generally be lower in electric resonance experi- 
ments than in a cesium beam experiment. This appears to be the primary 
drawback of the electric resonance method. 

D. Masers 
The ammonia maser has had considerable development as an extremely 

stable oscillator. An ammonia maser is used to stabilize the crystal oscillator 
driving the NBS cesium standards as mentioned previously (see Fig. 25). 
The measured stability for N14H3 masers is a few parts in 10l2 for periods of 
a few minutes and about 2 X lo-” for periods of several hours (54). The 
reproducibility of the N14H3 maser frequency is 2 X 10-lo (65). The best 
reproducibility, 3 X lo-”, has been obtained using N16 ammonia by 
Bonanomi and his group (4). Ammonia containing N16 has the important 
advantage that the (3.3) line is single and not composed of a group of lines 
as is the (3.3) line of N14 ammonia. The relative intensities of the members 
of this group of lines will change with changes in the focusing voltage or 
beam intensity; this will cause a shift in frequency since this hfs is not 
resolved.12 

Although the ammonia maser has good reproducibility for a given 
machine, it would probably be quite difficult to build other machines that 

I* Recently Barnes and Allan at NBS have obtained a reproducibility of 3 x 10-11 
for N*4 ammonia. They employ a servo system that continuously tunes the cavity to 
resonance. It uses Zeeman modulation to obtain the correction signal. 
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FIG. 31. The hydrogen atom beam maser. 

would oscillate a t  frequencies closer than 1 X This places a rather 
severe limitation on its use as a primary standard. There are a number of 
parameters that must be carefully controlled. Furthermore, the Doppler 
shift cannot be precisely determined. The basic difficulty is that the fre- 
quency of the maser cannot be simply related to the Bohr frequency as it 

67- 66 



can be for a cesium beam and the various parameters effectiiig the frequeiicy 
require more delicate control. Other beam masers are being built to operatc 
a t  higher frequencies (88 kMc, for example) by a number of laboratories. 
including NBS (56,5?’, 58). These devices employ a Fabry-Perot interferom- 
eter as the resonator. Considerable progress has btcii made recently in thc 
development of such resonators a t  millimeter wavelengths. Q’s exceediiig 
100,000 are attainable (see the chapter entitled “3lillimtter Wave Tech- 
niques,” by W. Culshaw, in this volume). 

Most recently Ramsey and his group a t  Harvard have succccded in 
building a hydrogen atom maser (59) (Fig. 31). In this device hydrogen 
is dissociated in a discharge tube. A beam of hydrogen atoms effuses frcm 
the discharge tube and passes through a magnetic state selector. Atoms in 
the F = 2, mF = 1,0 states are focused into a quartz bulb contained within 
a resonant cavity tuned to 1420 Mc, the hfs separation. The quartz bulb 
is coated with an inert, involatile film. Hydrogen atoms striking this film 
do not change their state-at least, not with a high probability. The atLms 
may have many wall collisions during the prcicess of emission to  the F = 1, 
mF = 0 state. As a consequence of the long storage time in the cavity 
(-0.3 sec) by virtue of the wall collisions, the resonance line width (with- 
out regeneration) is about 1 cps. 

The hydrogen beam maser differs significantly from the ammonia beam 
maser in two important ways: (a) The transitions are magnetic dipole 
transitions. (b) The radiating particles are retained in the resonating struc- 
ture by wall collisions instead of passing directly through. It appears that 
this hydrogen maser is capable of higher stability than the ammonia maser 
because of its very narrow resonance width. However, there may be fre- 
quency shifts due to the wall collisions and perhaps some aging processes 
associated with the wall coatings. 

Zero field solid state masers have been suggested by Bloembergen (60). 
Although such devices may provide highly stable oscillations, it is not 
certain how reproducible the frequency would be. 

ACKNOWLEDGMENTS 
The author wishes to acknowledge the help of the various members of 

the Atomic Frequency and Time Standards Section of the National Bureau 
of Standards in the preparation of the manuscript. 

The contributions of Messrs. Roger Beehler and James Barnes and Mrs. 
Mildred Beebe are of especial importance. 

I wish to  extend my gratitude to  Drs. Peter Bender, William Culshaw, 
J. Holloway, L. Essen, J. Bonanomi, and Rlessrs. J .  V. L. Parry, and 
P. Kartaschoff for many helpful discussions. 

68- 67 



APPENDIX 
THE NBS ATOMIC BEAM FREQUENCY STANDARDS FUNCTIONAL DATA 

NBSI NBS-I1 

I. General dimensions (see Fig. 8b) 
11 11.5 cm 
12 5:1 cm 
18 46.0 cm 
14 46.0 cm 
10 5.1  cm 
16 11.5 cm 

11. 

111. 

IV. 

V. 

VI. 

Oven (adjustable) 

Heater material Nichrome 
Heater current 0.,8 amp 
Heater coil resistance (cold) 

Temperature 150°C 

7 ohms 
Slit dimensions 0.003 X 0.038 

X 0.100 in. 

Deflecting magnets (ad justable) 
Length 
Gap width 
Radius of convex pole piece, a 
Radius of concave pole piece, b 
Number of turns 

Resistance of windings (cold) 
Typical magnet current 
Stern-Gerlach peak separation, each 

Power dissipation, each magnet 
Detector (adjustable) 
Material 
Width 
Current 
Temperature 
Center collimating slit (adjustable) 
Material 

magnet 

Width 

2 . 0  in. 
0.040 in. 
0.040 in. 
0.050 in. 
200/magnet 

#22 wire 
2 ohms 
1 .4amp 

0.006 in. 
4 watts 

80% Pt-2070 Ir  
0.005 in. 
0.6 amp 
820°C 

Plastic, brass, or 

0.003 in. 
aluminum 

Resonant cavity 
Principle mode TEo.i,m 

Coupling hole diameter 0.312 in. 
Loaded Q -7000 
Tuning range with adjustable probe 

opposite coupling hole 0.9 Mc 
Separation of ends 56 cm 

Dimensions of beam holes 1 x &in. 

16.5 cm 
10.2 cm 

100.0 cm 
100.0 cm 
10.2 cm 
16.5 cm 

150°C 
Nichrome 
0.8 amp 
7 ohms 
0.015 X 0.100 

X 0.187 in. 
(channeled) 

4 .0  in. 
0.120 in. 
0.120 in. 
0.150 in. 
440/magnet 

#14 wire 
1.6 ohms 
2-3 amp 

0.040 in. 
5-14 watts 

80% Pt-20yo Ir 
0.015 in. 
0 .6  amp 
820°C 

Plastic, brass, or 

0.015 in. 
aluminum 

TEo,i,iw 

0.328 in. 
-5500 

x in. 

1.8 Mc 
163 cm 
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