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The electron spin resonance of 0.019, Mn** in single crystals of ZnSO, has been studied in order to in-
vestigate the crystal-field interaction, which may be representative of the single-ion anisotropy in MnSOs.
The symmetry group for the zinc site, which the Mn?* ions are assumed to occupy, is C;. There are, in general,
four inequivalent zinc sites which produce a spectrum of 320 possible lines at an arbitrary orientation.
However, data have been taken with H, in symmetry planes of the crystal so that pairs of inequivalent sites
become equivalent. This results in some simplification of the spectrum and provides a method for accurate
alignment of the crystal. The spectrum has been fitted to a low-symmetry spin Hamiltonian. Since crystal-
field terms are large, perturbation theory could not be used, and the spin-Hamiltonian analysis of the spec-
trum was accomplished by computer programs that diagonalize the spin-Hamiltonian matrix. An iso-
tropic g factor of 2.00174-0.0010 and spin-Hamiltonian parameters Cao= (3.79220.001) X 1072 cm™, Cy
= (3.81520.001) X102 cm™, Cs2= (5.808+0.001)X10~2 cm™ with lobe orientations Ae1=152.6° and
A22=86.5° describe the room-temperature spectrum reasonably well. The inclusion of the Cy, terms im-
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proves the fit.

INTRODUCTION

INC sulfate is isomorphous with some of the an-

hydrous iron-group sulfates which are antiferro-
magnetic at helium temperatures. We have investigated
ZnSO, doped with manganese as part of a program to
determine the magnitude of single-ion anisotropy in
MnSOs, which is of current interest because of its
complex magnetic structure in the antiferromagnetic
state.l'? Figure 1 indicates the structure of the ortho-
rhombic crystal ZnSO,s. The unit cell contains four
equivalent but differently oriented zinc sites. Approxi-
mately 0.01% of these are occupied by Mn?* ions. These
sites possess only inversion symmetry; hence, a more
complicated spin Hamiltonian than usual is required to
describe the spectrum resulting from an electron-
paramagnetic-resonance (EPR) experiment. The lack
of a definite symmetry axis for the site permits one to
choose an arbitrary coordinate system in which to
describe the crystalline-field interaction associated with
the site. The spectrum due to the Mn?* ions (S=3%,
I=3%) which occupy the four zinc sites consists of 120
first-order transitions, and may be further complicated
by the presence of over 200 ‘“forbidden transitions.”
The experimentally observed spectrum simplifies for
certain restrictions (related to the crystal symmetry)
on the magnetic field direction. This simplification
dictates the choice of a coordinate system for the
analysis of the spectrum. The magnitude of the param-
eters in the spin Hamiltonian precluded the use of
perturbation theory, hence direct diagonalization was
required to analyze the data. Diagonalization and

* Research supported in part by the National Science Foundation.

t Work based on a portion of D. J. Sukle’s Ph.D. thesis at the
University of Colorado.

1 G. Will, B. C. Frazer, G. Shirane, D. E. Cox, and P. J. Brown,
Phys. Rev. 140, A2139 (1965).

2Y. Allain, J. P. Krebs, and J. de Gunzbourg, J. Appl. Phys. 39,
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parameter fitting were accomplished with the aid of
computer techniques.

EXPERIMENTAL

The experimental investigation was conducted in a
K-band spectrometer operating at 23.3 GHz. An
automatic frequency-control (AFC) circuit locked the
klystron to the frequency of the spiral-groove sample

F1e. 1. Photograph of a model of ZnSOs. The light-colored
spheres represent sulfur atoms. The dark spheres representing
oxygen atoms form distorted octahedra about the shaded spheres
which represent zinc ions. The Mn?* ions go into the lattice sub-
stitutionally for the zinc. We use the notation where the lattice
constants are ¢=4.77 A, b=8.58 &, and ¢=6.73 A. The b and ¢
axes are indicated in the figure.

445



446 D. J.

—
—_—

X..ac Diagonal
Glide Plane

e

‘Q:l b Mirror

Plane

c

F16. 2. Sketch representing a unit cell shows the location of four
inequivalent zinc lons and the pertinent symmetry operations.
The sulfur and oxygen positions are omitted for clarity. Sites 3 and
4 are positioned in a b¢ plane located % from the bc plane contain-
ing sites 1 and 2. The relevant symmetry operations include the
ab mirror plane m, three orthogonal twofold screw axes, and two
glide planes. The ac diagonal glide plane carries site 1-4 and 3-2.
The bc glide planes located at ja and %a transform site 1-3 and
site 2-4.

cavity.® Frequencies were measured by a cavity wave-
meter which was calibrated by National Bureau of
Standards (NBS). Magnetic field modulation of 100
kHz and the usual phase-sensitive detection techniques
were used to display the derivative of the absorption on
an X-Y plotter. The X axis was driven by a transmitter
in the field control system, which used a Hall device to
measure the field in the 15-in. magnet. A nuclear reso-
nance fluxmeter and frequency counter were used to
obtain precise field measurements.

The ZnSO, crystals which contain about 0.019, Mn?*+
were grown by Gruzensky at NBS Boulder Labs. X-ray
and optical techniques were used to orient the crystals.
The Mn?** ions are assumed to occupy the sites of the
diamagnetic zinc ions. The structure of ZnSO, has
been determined by Kokorros and Rentzeperis* and
belongs to the space group Pbnm. The zinc sites and
some of the relevant symmetry operations are indicated
in Fig. 2. Sites labeled 1, 2, 3, and 4 are magnetically
inequivalent in the sense that their crystal environ-
ments are related by mirror or glide reflections rather
than by simple translations. For arbitrary orientations
of Ho, four inequivalent EPR spectra are thus observed ;
however, when H is parallel to a mirror or glide plane
relating two inequivalent sites, these sites then have
equivalent spectra. There is a symmetry plane parallel

3 A. R. Cook, L. M. Matarrese, and J. S. Wells, Rev. Sci. Instr.
35, 114 (1964).

4P. A. Kokkoros and P. J. Rentzeperis, Acta Cryst. 11, 361
(1958).
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to each of the crystal planes abd, bc, and ca, and each
symmetry plane relates two pairs of sites. When H, is
parallel to the crystal axes @, b, or ¢, all sites become
equivalent.

These considerations allow one to accurately align
the crystal. A specially designed sample orientation
servo® was constructed in order to utilize these sym-
metry aids in positioning the sample. This servo permits
one to change the orientation of the crystal by an
external manipulator and to observe subsequent changes
in the spectrum without removing the crystal from the
spectrometer and thus use an iterative procedure to
align the crystal.

The complicated spectrum simplifies upon desired
alignment. The spectrum has been recorded at 5°
intervals with H, in the ad, bc, and ca planes of the
crystal unit cell. Angular variation in this “simplified
spectrum’ with H, parallel to the ab plane is shown in
Fig. 3(a). The ““allowed” lines are grouped in sets of six
corresponding to the AM =1 transitions between the
states |M,m) and |M=1,m), where M and m are,
respectively, the electron and nuclear magnetic quan-
tum numbers. The (usually) weaker lines situated
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Fic. 3. (a) Experimental traces indicating angular variation in
the EPR spectrum of Mn?*in ZnSO,, with H, in the ab plane. The
magnetic field ranges from 4 to 12 kG. Successive traces are taken
at 5° intervals from a=—90° to 4-90°. Zero degrees corresponds
to H, parallel to the ¢ axis of the crystal. (b) indicates the center
of the hyperfine set from one site. The dashed portions indicate
regions where it was difficult to make accurate determinations of
the set centers. The points inside the circles represent computer-
generated points based on the spin-Hamiltonian parameters
indicated in Table I.

§D. J. Sukle and J. S. Wells, Rev. Sci. Instr. 39, 604 (1968).
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outside and between these lines appear to be transitions
of the type AM =41, Am==1. These have been
investigated by Bleaney and Rubins® and Drumbheller
and Rubins? and have been shown to be due to mixing
of states by cross terms resulting from off-diagonal
parts of the crystalline-field interaction and the hyper-
fine interaction 47 -S. The locations of these lines with
respect to the allowed lines are characteristic of the
value M in the transition M — M1, and thus serve as
an additional aid in identifying the transitions. The
angular variation is shown more clearly in Fig. 3(b),
where only the centers of the hyperfine group from one
site are indicated.

Theory

The ground state of the free Mn*+ ion is 8S5/2. In the
combined crystal field and external magnetic field, six
low-lying electron spin states are observed in the EPR
experiment. The nuclear spin of Mn is =4, so that the
hyperfine interaction causes a sixfold splitting of each
electron spin state. First-order magnetic dipole selection
rules are AM =1, Am=0. Thus, when states can be
labeled by the quantum numbers M and m, we may
observe 30 allowed magnetic dipole transitions in the
Mn?** ion. In general, the states are mixed so that
“forbidden” Am=4-1 (and in some cases AM ==-2)
transitions may be observed.

The spin Hamiltonian for a Mn?* ion in a crystal
environment and an external magnetic field has the
general form

where 3 is the Bohr magneton, H is the external field,
G is the g tensor, A is the hyperfine interaction tensor,
I and S are the nuclear and electron spin operators, and
JCer represents the crystalline-field interaction. 3Cgn
includes possible quadrupole and nuclear interactions
which would be masked by the large Co: term for this
experiment. The JC. term gives rise to the angular
variation referred to as fine structure of the spectrum.
Since the fine-structure interaction is large, we may
regard the hyperfine interaction as a perturbation and
consider it in first order but neglect its small second-
order corrections in interpreting the spectrum. We thus
consider the zero-order spin Hamiltonian

5¢o=BH- G- S-+5Ce. @)

The angular variation depends on the symmetry of the
location of electric charges, shown in Fig. 4, which
constitute the environment of the magnetic ion. It is
convenient?® to express the matrix for 3C., in terms of the
standard components of the irreducible spin-tensor

¢ B. Bleaney and R. S. Rubins, Proc. Phys. Soc. (I.ondon) 77,
103 (1961).

7J. E. Drumheller and R. S. Rubins, Phys. Rev. 133, A1099
(1964).

8 C. Kikuchi and L. M. Matarrese, J. Chem. Phys. 33, 601
(1960).
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F16. 4. Sketch of Mn?* and the surrounding oxygens indicating
distortion from regular octahedron. Distances between ions and
angles between lines joining ions are indicated on sketch. Data are
taken from Kokkoros and Rentzeperis.

operator T',®. Here % is a positive integer and ¢ is any
integer such that |g| <%. The T',‘®’s may be defined by
specifying their commutation relations with the spin
operators Sz, Si:

[Se, TP ]=[k(k+1)—q(g==1) T s ®,
ST M J=qT,®. ©)

As a result of these relations, the 7',(®’s transform
according to the D(® representation of the full rotation
groups; that is, they transform like spherical harmonics.
Their matrix elements in the representation |SM) are
given in terms of the Clebsch-Gordan coefficients
(SM'kq|SM ) by the Wigner-Eckart formula

(SM|T,®|SM’)
= Q@S+D)S| T PISHSM kq| MS).  (4)

The quantity (S||7,®||S), called the reduced matrix
element, depends only on k2 and S. The Hermitian
conjugate may be defined as

(SM|T P |SM")t= (SM'| (= 1) T_P|SM). (5)

The crystal-field part of the spin Hamiltonian may be
written as the linear combination

5 k
=2, 2 4 FTq®; (6)
k=0 g=—Fk

T,*’s with k>3 cannot contribute because the
Clebsch-Gordan coefficient of Eq. (4) is zero for
k>25=35. We may discard the £=0 term, since this
shifts all levels by the same amount. Also, the spin
Hamiltonian should be invariant with respect to time
reversal (applied to the external field source as well as
the crystal system). This requires coefficients for odd %
to be zero since T',‘®’s with 2 odd change sign under
time reversal. Additional terms cannot be discarded by
symmetry arguments, since the Zn site is invariant only
with respect to inversion, which eliminates the same
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Fic. 5. Sketch showing angles relating the crystal coordinate
system ¢, b, and ¢ to the field specified system X, ¥, and Z. The
angle v in the rotation matrix [Eq. (10)] is zero.

terms as time-reversal considerations. We require the
spin Hamiltonian to be Hermitian, so

Aqk_—_ (_1)qA_qk*_ (7)
We write the constants 4 ,* as an amplitude Cr, and a
phase factor e, where the A\, corresponds to a lobe
orientation.® We finally write
Hor=Co0ToP+Cs (T1 @) g—2iNa1| T_1(2)e+2i)\2|)
+C22(T2(2)e—2i)\22+ T_2(2)e2i)\gz)+c4oT0(4)
+C41(T1 (4)8—2i)\41+ T_14e2i)\41)
FCppo(Ty®E 22 T, e2ha2)
F-Cus(Ts @2 T te2a2)
—|—C44(T4(4)3—2i)\44+T_4(4)62i)\44), (8)

where to exhibit the normalization, we write the T',(®
explicitly in terms of S, Sy, and S_:

To® =S82—35(S+1),

T51.®=(1/4/6)(S:S++S5+52),

T2 =(1/4/6)S.2,

To® =%[355,2—30S(S+1)S.2+25S.2

+352(S+1)2—6S(S+1)7],

Til(‘l) = ('\/5/8)5':;: (25;:‘: 1) >

T1294(+/10/8)S:2[S(S+1)—9F14S5,.— 7527,

T:}:a @ = (‘\/35/8)5’5:3 (2.5',:!:3)

T14®=(v/70/16)S.*. ©)
We have obtained 3C. without appealing to any

symmetry arguments which depend on a particular

coordinate system (e.g., we have not discarded any

terms because of the presence of an #z-fold rotational-

symmetry axis); thus, (8) is valid in any coordinate

system. Since it is most convenient to obtain data in the

symmetry planes of the crystal, we shall take the axes
of quantization for Eq. (8) to be the unit cell axes of the

9 R. L. Peterson, L. M. Matarrese, and J. S. Wells, Natl. Bur.
Std. (U. S.) Tech. Note 372 (1968).
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crystal. It is convenient to express (2) in the coordinate
system for which the Zeeman term is diagonal; that is,
in the system XV Z, where Z is parallel to Ho. Both H,
and S transform as vectors so that the Zeeman term
becomes gBH S, in the new system as g was observed to
be isotropic. The transformation of the T',(®’s is
given by

Tq(k) =Z qu’k*(a’ﬁy'Y)Tq’(k) ) (10)
ql

where the T',(®’s in the summation are referred to the
new coordinate system. The transformation coefficients
are

Ry (aBy)=(S,q | eieTsc=iTube=i7=7|S ). (11)

The angles @, 8, v are the Euler angles for the trans-
formation taken in the convention of Messiah. With
this convention, a and 8 are the azimuthal and polar
angles, respectively, of Ho with respect to the crystal
axes, as indicated in Fig. 5. Substituting Eq. (10) into
(8), we obtain the spin Hamiltonian in the system,
X, Y, 2

k
k=2 2 KT/ +gBH.S.,

k=2,4 ¢=Fk

(12)
where

Kig*=3% Reg™®*(afy) (E1) %= 4Crq.  (13)

Results

The process of fitting the data to the 3Cer of (8) is
complicated by several difficulties. The absence of any
special symmetry axis precludes the possibility of taking
measurements along directions for which only one term
(say the axial or rhombic) contributes. Also related to
the low symmetry of the site is the large number of
terms to be considered in the spin Hamiltonian. Finally,
the large observed fine-structure splitting suggests that
perturbation theory is not valid, at least for most
orientations of H,. We have thus accomplished the fit-
ting to the spin Hamiltonian using computer techniques.

It is a straightforward matter to generate the trans-
formation coefficients Ryq ¥ (a,8,y) from the formula

Rarar D = g=iaM@® 300, (De=ivM’ | (14)

where Ry @ is given by the Wigner formula,I

Rarar P

((T+M)\ (T M) (T+MN (T —M"))'2
T+M—-0)I(T—-M"—)¢—M+M")!

X (cos3B)2I+M—M'=2t (sind g)2—MH+M" | (15)

‘The summation is for all 7 for which the arguments of
the factorials are zero or positive. Having generated the
R’s, the coefficients K,* in the rotated system may be
calclated, The matrices of the T,‘®’s are easily

=Z‘l (=1
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TasiE I. Spin-Hamiltonian parameters.

g=2.0017
C20=3.7921%102 cm™

C5;=3.8153 X102 cm™l, Ny =152.6°
Coo= 58077X 102 cm”l, Ao2= 86.5°
C4o= 1954)( 105 cm™!

Cy=2.874X1075 cm™, Aa=53.3°
Cs2=8.066X107% cm™, Ag=354.9°
Cqs= —3406><10_5 cm“, )\43= —25.6°
Cys=3.231X107% cm™, Ai3=62.3°

generated from the Wigner-Eckart formula (4), so the
matrix of the spin Hamiltonian in the rotated system
may be generated. This can then be diagonalized by the
computer. The eigenvalues depend on the value of the
spin-Hamiltonian parameters, plus the magnitude and
orientation of the external field.

A more difficult problem is to search for the proper
parameters in a systematic way. We have employed the
subroutine va02a written by Powell. This is an efficient
searching routine!® that finds a set of IV parameters X;
which minimizes the function

P=% [Fi(Xe - Xa0) T, (16)

=1

where the M functions F; depend on the parameters
X;. No analytical expression need be provided for the
F{s, but the programmer must provide a subroutine
which generates the M values F; given a set of param-
eters X;. In the iterative searching process, va02a
transmits sets of parameters X; to this subroutine and
receives the values of F;. The search is terminated when
certain accuracy criteria are satisfied. We take the
parameters X; to be the spin-Hamiltonian parameters
and let the functions F; be the values Eu(a,8,H)
—Ey—1(e,8,H)— kv, where Ex(a,8,H) and Ey_1(e,8,H)
are the eigenvalues of the states M and M —1 obtained
by diagonalization of the spin-Hamiltonian matrix. The
value of H, is taken as the observed resonance field for
the transition ¥ —1— M and » is the resonant fre-
quency of the sample cavity.

Unfortunately, vA02A (and similar fitting programs)
tend to converge upon the nearest local minimum,

TABLE II. Experimental and calculated resonance fields in kG.

Angles Transition

o, 3 b 3 -3 -3
0° 0° Expt  6.489 7.349 8233 9.086  9.498
Calc 6.492 7.347 8.234 9.070 9.501
0° 25° Expt 5.868 6.929 8070 9.354 10.945
Calc 5.863 9.930 8055 9.350 10.943
90° 20° Expt  6.545 7.189  7.998 9.003 10.255
Calc 6.545 7.194  7.999 9.005 10.268
45°,90° Expt 11.729 10.310 8.486 6.369 4.078
Cﬁ:: 11.728 10.308 8.487 6.371 4.080
—45°,90° Expt  6.233 7.067 8.026 9.167 10.587
Calc 6.233 7.068 8.027 9.169 10.582

M. J. D. Powell, Computer J. 7, 155 (1964).
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F16. 6. Energy levels as a function of field for Mn?** in ZnSO4
are shown for two orientations of the magnetic field. Mixing of
levels at lower fields is indicated by a large amount of “level
repelling.” (a) corresponds to H, along the crystal axis ¢ and
indicates the reason the spectrum is crowded at this orientation.
(b) corresponds to a very large separation between transitions.

rather than the absolute minimum, so it is necessary to
provide a reasonable initial estimate for the spin-
Hamiltonian parameters. A satisfactory initial estimate
was obtained with the aid of a second program, similar
to the one above, which searches for resonance fields
given a set of spin-Hamiltonian parameters. The fields
are plotted as a function of orientation on the standard
output unit of the computer. We were then able to pick
a set of parameters which yielded an angular variation
of the line positions with the same gross features as the
experimental spectrum. These parameters were used as
a starting point for the fitting program.

The final set of parameters produced by the fitting
program was inserted into the computer along with
another program which determined and plotted line
positions. A reasonably good agreement between com-
puter generated points and experimental data was
obtained using only Cs, terms. A better fit was obtained
by including the C4, terms. The points indicated in
Fig. 3(a) included both C, and C4, terms.

The spin-Hamiltonian parameters used to obtain this
fitting are listed in Table I.

Table II indicates the degree to which these param-
eters describe the spectrum. The line positions were
obtained using both Cs and Cs, terms. The average
magnitude of deviation is about 4 G. When only Cj,
terms were used this average deviation increased to
about 6 G; hence, for practical purposes the Cs, terms
describe the spectrum.

A study of the hyperfine interaction has been deferred
to a later date. Such an investigation would more
profitably be done at a higher field, say 25 kG where the
mixing of levels and the intensity of the forbidden lines
would be smaller. Also, one could use perturbation
theory and obtain explicit expressions for forbidden-line
intensities. As may be seen from Fig. 6, the high-field
region involves “relatively pure” states as compared to
the region where this experiment was performed.
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In summary, the crystalline-field interaction of Mn?**
in ZnSO;4 has been investigated and reasonably good
numbers obtained to characterize it. It is anticipated
that these results along with other information may be
useful in the elucidation of the complex structure of
MnSO,. The role that single-ion anisotropy would play
in an antiferromagnetic resonance experiment!! in a
structure as complex as MnSO, has yet to be deter-

mined; however, this work along with a dipolar field

calculation should be useful in estimating a lower hound
for the zero-field cnergy gap.
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Small-Angle Scattering of S** and O!® Beams in Thin Foils*

C. K. Cung, T. E. Pierce, K. H. Purser, AND M. BLANN
Nuclear Structure Research Laboratory, University of Rochester, Rochester, New York 14627
(Received 17 October 1968)

The rms scattering angles introduced into beams of 10- to 70-MeV O jons and 10- to 110-MeV S* jons
by passage through thin foils of carbon, beryllium oxide, and aluminum oxide have been measured. The
foils used ranged in thickness from 5 to 50 ug/cm?. Qualitative agreement with the predictions of multiple
Coulomb scattering theory is found, but an over-all normalization factor of 1.8 was needed in most cases

to obtain quantitative agreement with the data.

I. INTRODUCTION

HEN an ion beam passes through a foil, multiple
electronic interactions occur which cause energy
spreads and small-angle scattering to be introduced.
With light particle beams, these effects are usually
ignored, but with heavy ions they can become experi-
mentally significant. A knowledge of the magnitude of
the dispersions introduced into heavy ion beams by
foils is, therefore, important in at least two applications.
The first is in the design of proposed heavy-ion ac-
celerators, which utilize foil strippers to increase the
charge on the beam particles. A knowledge of the
angular spread of the beam is important in determining
the transmission efficiencies of such accelerators.
Secondly, a knowledge of the magnitude of the angular
spread is essential for estimating the loss of resolution
in experiments which involve the detection of heavy-ion-
beam particles after passage through a target foil.
Previous work investigating the small-angle scatter-
ing of heavy ions in thin foils has been carried out by
Hortig and Rogge,! using beams of fluorine, arsenic,
and iodine ions in foils of carbon, aluminum, and gold.
The beam energies used range from 8 to 75 MeV. The
work presented here was designed to measure the
magnitude of small-angle scattering with other beams

* This work was supported by the U. S. Atomic Energy Com-
mission and the U. S. Air Force Office of Scientific Research.

1G. Hortig and M. Rogge, Annual Report, Max-Planck
Institute, Heidelberg, 1966 (unpublished).

and other targets. This effect has been measured as a
function of beam energy, beam particle, target material,
and target thickness. ’

II. EXPERIMENTAL PROCEDURE

The experimental apparatus is shown in Fig. 1. A
beam of heavy ions accelerated by the University of
Rochester MP Tandem Van de Graaff accelerator was
collimated by passage without focusing through two
sets of 1X1.5-mm defining slits placed 8 m apart. The
beam was then allowed to pass through a scattering
foil and was stopped in a CsI scintillator which was
optically coupled to the inside of a glass viewing plate.
The light produced by the beam particles incident on
the crystal could then be observed directly. The cesium
iodide crystal was at a known distance (158 cm) from
the scatterer so that measured beam diameters could
be converted into mean scattering angles.

sUITS SCATTERER COLLIMATOR
| I mmxlSmm & NONDEFINING
i APERTURE PM. TUBE

CRYSTAL
158m

F1G. 1. Diagram of the apparatus used for measuring
beam diameters.
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Fi6. 1. Photograph of a model of ZnSO,. The light-colored
spheres represent sulfur atoms. The dark spheres representing
oxygen atoms form distorted octahedra about the shaded spheres
which represent zinc ions. The Mn?* ions go into the lattice sub-
stitutionally for the zinc. We use the notation where the lattice
constants are a=4.77 A, b=8.58 &, and ¢=6.73 A. The b and ¢
axes are indicated in the figure.



