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Abstract-A quantum-mechanical impact theory for the combined effects of Doppler and pressure broadening 
is developed from quantum radiation theory. The results arc compared with other semiclassical theories and 
certain simplifying approximations relevant to cases of experimental and theoretical interest arc discussed. , 

1 .  I N T R O D U C T I O N  

IN MOST calculations of spectral line shapes, it is assumed that the translational motion of 
the radiator is unperturbed during the time of interest. The total line profile is then given 
by the familiar Doppler convolution integral") 

I(o) = Zdw')Ip(o - 0') d d ,  (1.1) I 
where I, is the pressure broadened line profile and I, is the unperturbed Doppler profile, 

(1.2) 

for radiators of mass M at a temperature T ; A o  = (o - oo) denotes the frequency separa- 
tion from the center of the natural line at oo. If I p  is a simple Lorentz profile 

(1.3) 

I&) = ( M ~ ~ / 2 1 r k T o 3 " ~  exp( - ( A ~ / o , ) ~ ( M c ~ / 2 k T ) } ,  

Id4  = (2r/7O/(Ao2 + r2) 
then I ( o )  as given by equation (1.1) is referred to as a Voigt profile. 

Since recent experimental results(2' have shown an appreciable deviation from these 
simple calculations, there has been some interest in improving the theoretical description 
of combined Doppler and pressure broadening. To date, most calculations have used 
GALATRY'S'~' collisional narrowing results in which the Doppler profile I,(o) is modified 
in order to account for the effect of collisions on the radiator motion. Assuming that 
Doppler and pressure broadening mechanisms are statistically independent, the modified 
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Doppler profile is then folded into t h v r e i M t e  brgened’~1ine  as in equation (1 .1 ) .  
Attempts to describe the statistical correl fion b e e e n i .  hppier and pressure broadening 
mechanisms have employed a classical phase shiftyreatment of the pressure br~adening.‘~’ 
A very clear and comprehensive review of this work is given by RAUTIAN and SOBEL‘MAN.‘~’ 

In the present paper we derive a quantum mechanical line shape expression which 
describes the combined effect of Doppler and collisional broadening including their 
statistical correlation. This derivation is based on a dipole transition probability obtained 
from quantum radiation theory. The only approximations employed in the formal 
development are familiar from conventional pressure broadening theorie~(~-” and their 
regions of validity are well known. The value of the results thus obtained lies in their 
consistent development from quantum radiation theory. 
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2 .  T H E  M A T H E M A T I C A L  MODEL 

(A) The particles 
We wish to consider the spectral distribution of radiation emitted (or absorbed) by a 

particular species of atom or molecule when these radiators (or absorbers) are immersed 
in a gas of perturbing particles of some other species. We will assume that the number of 
radiators is a small fraction of the total number of particles in the gas so that we may 
neglect any interaction between radiators. We will therefore regard the gas as being divided 
into a large number of cells in such a way that each cell contains one radiator and a large 
number of perturbing particles. 

The perturbers will be regarded as a gas of statistically independent particles in 
equilibrium at a temperature T. This approximation is useful because the perturbers can 
influence the spectral emission from the radiator only through collisions with the radiator. 
For a gas of neutral atoms or molecules interacting via short range forces, a given radiator- 
perturber collision is not appreciably affected by the remaining perturbers. Since shielding 
accounts for the long range forces between charged perturbers, this approximation is also 
applicable to plasmas if the perturbers are regarded as shielded quasi-particles. 

We have now represented the gas by a collection of noninteracting cells. Each cell may 
be described by a Hamiltonian of the form 

where H ,  is the Hamiltonian for an unperturbed radiator which is at rest with respect to 
some observer (i.e. H, describes the discrete spectrum), K, is a kinetic energy operator 
which describes the translational motion of the radiator relative to the observer, Hp( i )  
describes the internal states (discrete spectrum) of the jth perturber and K&) gives its 
kinetic energy relative to the observer. The interaction y p  between the radiator and 
perturbers will be regarded as a sum of binary interactions VU) between the radiator and 
thejth perturber: 

- 

i 

The eigenstates and eigenvalues of H will be denoted by IA),  IB),  etc. and E,, E,, etc. 
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The eigenstates and eigenvalues of H, will be denoted by la>, Ib), rtc. and E,, E,, etc. 
The mass and translational momentum operator for the radiator will be denoted by M 
and P so that K, = P 2 / 2 M .  We neglect resonance broadening processes by assuming that 
the perturbers do not have any natural frequencies near the radiation frequency of the 
radiator (i.e. we ignore resonant exchange of excitation). 

(B) The radiation field 

radiation will be quantized in the usual manner (Sect. 7 of Ref. 8) so that 
The radiation field in any given cell will be described by a Hamiltonian Hrad. This 

H r a d  = c HX.2 (2.3) 
x 3  

where x is the propagation vector for a photon moving in the direction 2 = x / x  having a 
frequency w, = xc and a polarization e(%). The eigenstates of Hx31nx.i where nx,2 denotes 
the number of photons having a wave vector x and a polarization E@). The eigenstates of 
Hrnd are therefore given by products of the states Inxmt). 

The field variables are written in terms of the familiar creation and annihilation 
operators 4x.2 and 4:2 : 

(2.4) 

4:.iInx,i) = J(Qw,)J(n,,i + 1Hnx3 + 1). (2.5) 

In terms of these operators the Hamiltonian If,.: is just 20; fq :~q~ .~  and its eigenvalues 
are nx,$w,. In the Coulomb gauge, the transverse electric field at some point R may be 
given by (see p. 58 of Ref. 8) 

4 x . h . D )  = J(~/2w,)J(n,.t)lnxp - 1) 

g(R)  = ,/(4n)i 1 w,.?[q,, e"" -ql3 e - i x q  
X.L 

This electric field describes the free radiation : the longitudinal field. which results from 
the electrostatic interactions KP,  has already been included in the particle Hamiltonian H. 

(C)  The dipole transition probability 
The total Hamiltonian for any given cell, Hla, is given by 

HI, = H+Hra,+Hint (2.7) 

where Hint describes the interaction between the radiation field and the particles. To 
lowest order in Hinl, the probability per unit time for emission of a photon with wave 
vector x and polarization e(%) into a solid angle dR during a transition from J A )  to IB), 
where wAB = ( E A  - EB)/h = w,, is given by (Sect. 17 of Ref. 8) 

(2.8) 

where p A  denotes the probability of finding the particles in the state IA ) .  
In general, Hi,,, should describe the interaction between the radiation field and each 

of the particles in the system; however, we will ignore any background radiation from the 
perturbers by neglecting their interaction with the field. We therefore regard Hin, as the 
interaction between the field and the constituents of the radiator. 

. 

w , ~ x ,  t )dQ = [27~~~5,p, dR/(2n~)~h~]l(B;n, j+ lIHin~IA;nx~)12 
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I t  can be shown that (see Appendix), in the dipole approximation, the interaction is 
given by 

Hint = -d.d'(R) 

where d denotes the dipole moment of the radiator located at the point R. Using equations 
(2.4)-(2.6), we evaluate the Hint matrix elements required by equation (2.8) and we obtain 

w,#, 2) dR = (w;@p, dR/27rhc3)(n,,, + I)i(Bld. t e-ix.rlA)12. (2.10) 

The result differs from the usual result for dipole radiation by the presence of the term 
exp ( - ix . R). Most pressure broadening theories ignore radiator motion by deleting the 
radiators translational kinetic energy, K,, from the particle Hamiltonian, equation (2.1). 
In such a case, R does not operate on the H eigenstates hence the term exp ( -  ix . R) is an 
unimportant phase shift which factors out of the absolute value as unity. Since we are 
interested in radiator motion we must retain the kinetic energy operator K,, in which 
case R is an operator on the states J A ) ,  IB), . . . and it may not be' factored out of equation 
(2.10). 

We note finally that equation (2.10) gives the probability for induced and spontaneous 
dipole transitions. The spontaneous transition probability is obtained simply by setting 
nx.j to zero in equation (2.10). 

, (D) The line shape 
To obtain P(w), the total spontaneous dipole power per unit frequency interval, we 

set n X g  to zero in equation (2.101, multiply by ho,&w-w,,), sum over all possible states 
I A )  and IB), sum over polarizations, and integrate over dR the direction of x :  

P(w) = (04/2ac3) p A 6 ( ~ - w A B )  dRI(Bld .2 e-ix'RIA)[z. (2.1 1) 
AB2 , 1' 

By integrating over dR we have implicity assumed that the system is spherically 
symmetric so that the emission intensity is the same in all directions. For most experimental 
situations this will be the case; however, if there is some preferred direction in space (e.g. 
an external magnetic field), the distribution of radiation will not in general be spherically 
symmetric and one would not want to average over dR. Since the mathematics for the 
spherically symmetric case are slightly simpler, and since the extension to the more general 
case is rather obvious, we will consider only spherically symmetric systems in this paper. 

The sum of the two polarizations 4%) which are orthogonal to x,  gives 

~I(Bld-te-ix'RIA)12 = I(BJde-""IA)12 -I(Bld. Ge-".ulA)12. (2.12) 

When the average over the states I A )  and IB) is performed explicitly, in the spherically 
symmetric case, the direction of R will not depend on the angle between d and x .  This means 
that the first integral on the right side of equation (2.12) is independent of dR and the other 
integral is proportional to cos' cp where cp denotes the angle between d and x. Integrating 
over dR and substituting the result back in equation (2.1 1) we obtain 

P ( 0 )  = (404/3c3)1(w) (2.13) 

.? 

(2.14) 
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Using an integral representation for the delta function, the line shape function I(w) 
is written in the form 

(2.15) 

(2.16) 

where p is an equilibrium density matrix for the particles (i.e. it is diagonal in H eigenstates) 
and the trace is taken over all particle states. Using the notion 

d(t) = eilH/hd e-itH/h (2.17) 

9 (2.1 8) R([) = eifH/hR e - i rHlh . 
the correlation function may be given by 

C(t) = Tr{d eiX" d(r) e-ix"cf'p} (2.19) 

and, since C(t) = C*( - t ) ,  the line shape becomes 
W 

I ( @ )  = ( l /n )Re  ei"'C(t)dr. ' I  0 
(2.20) 

These equations provide the starting point for our calculation of the line shape. 
Comparing with earlier pressure broadening theories,"-" we see that this correlation 
function differs from the usual pressure broadening correlation function by the presence 
of the x . R exponentials. Our correlation function will also be the same as the one proposed 
by Rautian and Sobel'man if the position operators R are replaced by classical vectors 
and the product of dipole operators d.d(t)  is replaced by the classical phase factor 
exp { -icp(t)} (cf. equation (1.14) of Ref. 1). 

3 .  T H E  T H E R M A L  A V E R A G E  

(A) An interaction representation 

Using the H, eigenstates la), )b), . - , the correlation function C(r) can be written 

C(t)  = (bldb) - (alD(tNb> 
ab 

where 

and Trp,f,  denotes a trace over perturber states and translational radiator momentum 
states. 
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The time development operator exp ( - i t H / h )  can be written in a n  interaction repre- 

(3.3) 

(3.4) 

sentation as follows: 
e - ifH/I = e - irHolRU,p(t, 0) 

H o  = H , + K , +  C[H,(j)+K,(j)] = H - V , ,  
J 

I 

U r p ( r )  = 0 exp {- (i/h) I ~ p ( s )  ds} (3.5) 

(3.6) 

0 

v r ~ s )  = euHoih v 'P e - uHo/h 

where 0 denotes the time ordering operator and we have used Urp( l )  as an abbreviated 
notation of the more familiar form Urp(tr 0). Noting the form of ' / lp stated in equation (2.2) 
we see that c p ( s )  may be written in the form 

(3.7) qp(s)  = 1 P(j: s) 
i 

P( j;  s) = exp{ i s [ H ,  + K ,  + H p ( j )  + KP( j)l/h} 

U j )  exp{ - i s [H,+  K,+H,(j)+K$j)l/hJ, (3.8) 

hence U,,(t) may be given by 

U,#) = on,v(i; t )  (3.9) 

U ( j ;  f )  = 0 exp { -(i/h) / P( j ;  s) ds} 
0 

(3.10) 

where Vu;  I) describes the binary collision between the radiator and the j th  perturber. 
I t  should be noted that U is defined by an ordered series expansion; Urp, as given by 
equation (3.9), is obtained by taking the product of all U expansions and applying the 
time ordering operator once again to all of the various product terms which occur. 

In this interaction representation. D(t)  is given by 

D(t) = Trp.,r{e-ixR e-ifHoihUrp(t)[p eix'Rd] U:,,(t) eifHol"} (3.1 1 )  

where Trp,f,  denotes a trace over all perturber states as well as all translational radiator 
states. 

(B) Tetradic notation 

V7( j ;  s) by their operation on an arbitrary matrix Marb as follows: 
To simplify the formal mathematics, we define tetradic operators L,, Lp( j), $( j) and 

(3.12) 

(3.13) 

(3.14) 

(3.15) 
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From these we further define the following 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

We next note the identities 
, - i t H o l h ~  arb ei:H~lh = , - i r L o l l ~ ~ ~  (3.20) 

Urp(t)MarbU!p(t) = Urp(t)Marb (3.21) 

which may be verified by differentiating with respect to t and noting that both sides of the 
equation satisfy the same differential equation. Finally we note the identies which will be 
used later, 

p( j ; t )  = e i t L O / h y (  j )  e - i:Loib (3.22) 

U,,,(t) = 0njU(j; t )  (3.23) 

which maybe verified by operating on Mar,, and using the definitions stated in equations 
(3.12) through (3.19). 

Using equations (3.11), (3.20) and (3.21), D(t) is given in tetradic notation as 

D(t) = Trp,rr(e-ix.u e-i"o''U,p(t)Zp eix'd]}. (3.24) 

(C) Approximate treatment of statistics 

that it can be written in the direct product form (see p. 399 of Ref. 7) 
We will make the weak coupling approximation on the density matrix by assuming 

= p(r)w P (pea) (3.25) 

where p(" is an equilibrium density matrix for the internal states of the radiator, W is a 
Maxwellian momentum distribution for the radiators translational states, and p'per') is an 
equilibrium density matrix for the perturbers. 

The weak coupling approximation is made by neglecting the influence of V,, on the 
initial distiibuticr. of states. This approximation hzs Seen shown to Srtzk down only when 
the frequency separation Am from the center of the natural line is on the order of the thermal 
energy kT or larger (see Sect. 7B of Ref. 7). With this approximation, D(t) becomes 

D(t) = Tr,r{e-ix.R e-i'Lr'*(U,,(t))[pc')W e+ixrd]} (3.26) 

where we have noted that 

TTp{e-"Lo"M arb = e-"L/*Tr,{M w b  } (3.27) 
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and defined a quantity (U,,(t)) by 

( 'vp( f ) )  = ~ r p { ~ p p ( ~ ) ~ ' p r " ) .  (3.28) 

This quantity denotes the thermal average (i.e. average over perturber states of U r p ( r ) ;  
it should be noted that (U,,(t)) is still a tetradic operator in the radiator subspace. 

Noting the form of Ur,,(t) given in equation (3.23), we define an operator p ( j ;  t )  by 

cp(j;t) = l I ( j ; t ) - - l  (3.29) 

so that 

u,,(t) = onj[l+ di; 43. (3.30) 

Having assumed that the perturbers are statistically independent, each interaction 7( j;  s) 
will be statistically independent of all the others so that the U( j; t) operators, and therefore 
the cp operators, may be averaged separately. Since all perturbers are the same under the 
average, the index j becomes redundant and, assuming that the number of perturbers 
N is large, equation (3.30) gives 

(3.31) 

Equation (3.31) gives the thermal average of U,#) in terms of an average over the binary 
collision operator 2I(t). This average therefore requires only the one-body distribution 
function n / N ,  where n denotes the perturber density (Eq. (29.17) of Ref. (9)). Equation (3.31) 
thus becomes 

(u,,(m = 0 expCU(t) - 11w (3.32) 

where the subscript au refers to the single particle average. This average is given by 

(3.33) 

where la) and Ip )  refer to the internal state and the translational momentum of a single 
perturber ; that is, la) and Jp) are eigenstates of H, and K, where we have dropped t'he index j 
to denote the fact that H, and K, refer to any perturber. The matrices p'" andfare diagonal 
in (pa) states and p$) gives the probability of finding a perturber in the state la) while 
f@) is a Maxwellian momentum distribution function for the perturbers. 

4. THE IMPACT T H E O R Y  

The form of equation (3.32) may be altered slightly by noting from the definition of U, 
equation (3.19), that 

U(t)- 1 = - ( i /h)  f(s)U(s)ds. i 0 
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One can also show that 

hence 
1 

[U(d - I I., = - ( i / h )  eiSLvlh[ .VCO)U(O, - s)],,, ds (4.3) 
0 

where we have used equation (3.27) and noted that L, commutes with p(iy 
At this point it is convenient to make the impact approximation and the completed 

collision approximation. These two approximations constitute the essence of the impact 
theory and our results will be shown to be identical in form with the impact theory results. 

We make the completed collision or Markov approximation (cf. Sect. 4B of Ref. 10) 
by assuming that there is some relaxation time or average cojlision time T.,, such that, 
for s > fovr 

[v(O)U(O, - s)Jau = [v(O)U(O, -rau)lau 

= [+WU(O, - ”.u, (4.4) 

and we assume that all times of interest t in (U,,(t)) are greater than T,,”. This essentially 
makes the collisions instantaneous so that temporal overlap effects are neglected. Defining 
an operator @ by 

@ = -(i/h)[*V(O)U(O, - m)l,, (4.5) 

the quantity [U(t)- I],,, given in equation (4.3) becomes 

plus a correction term whose magnitude is on the order of 

?a” 

J f(i/h)Cm)wO, - S ) l O V  - @t ds 
0 

(4.7) 

or smaller. At s = 0 the integrand is just -@; at s = the integrand is zero; between 
these limits weexpect the integrand to be slowly increasing, hence we estimate the magnitude 
of this integral by ?.,a. The impact approximation assumes q,,O << l(U,,(f)) is therefore 
given by equations (3.32) and (4.6) as 

1 

(u,,(t)) = 0 exp 

= eilLr/h exp{ to - itL,/h} (4.8) 
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where we have also used exP(TarO) 2: I. Substituting this result into equation (3.26) we have 

(4.9) 

which is identical in form with the usual result of an impact theory (cf. equations (4.5) 
and (4.91 with equations (39) and (42) of Ref. 6 and equations (55) and (56) in Ref. IO). 
Note that in the above equation the real part of @ provides the damping of D(t )  and thereby 
essentially becomes the half-width of the line. In the Lorentz theory the half-width is just 
the collision frequency and, as will be seen later. this is essentially the same in this case: 
the condition I-@ << 1 is therefore a statement that the collision duration time is much 
less than the time between collisions and this is the essence of the impact approximation. 

We have now represented the effect of the perturbers by means of the familiar thermal 
average. At this point in a pressure broadening theory one would take the Fourier trans- 
form of D(t) and invert the resulting atomic matrix. However, since we have included 
radiator motion, the operator @ is not diagonal in translational radiator states; this 
operator is therefore represented by an infinite dimensional matrix whose inversion would 
be intractable. We will therefore follow the differential equation approach used by 
RAUTIAN and SOBEL'MAN(') in calculating the effect of radiator motion. 

D(0 = Tr,,(e-'"''exp[rO- irL, h](y"'W e'"'"d)j 

5 .  THE EFFECT O F  R A D I A T O R  MOTION 

(A) The kinetic equation 

The operator D(t) given by equation (4.9) involves a trace over translational radiator 
states. This trace will be written out explicitly in terms of the eigenstates IP) of the trans- 
lational radiator momentum operator P. Noting that K ,  = P 2 / 2 M  and 

(5.1) 

(5.2) 

e'"'"lP) = IP + h x ) ,  
we obtain the identity 

e - ixPL, e i ~ 4 1  - - L, + h x .  P/M + h 2 x 2 / 2 M .  

The matrix elements (alD(tHb) required by equation (3.1) may be obtained from 

<aID(t)Ib) = 1 FaAP, f )  (5.3) 
P 

F,dP, 1 )  = (aPIF0)lbP) (5.4) 
F(t) = e-ix' exp[tQ,- itL,ih](p"'W e""d). (5.5) 

Taking the derivative with respect to t and using equation (5 .2)  we obtain the differential 
- equation 

(5.7) A(F(t)) = (e-ixRO e'X')F(t). 

Taking matrix elements of equation (5.6) we have 
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where we have neglected the term ltxZ/2M since it provides only a negligible frequency 
shift.'"' To verify this we note that the magnitude of this term is given by (h(u2,12McZ) 
where ( IJ  is the frequency of the emitted radiation; since ho << 2Mc' this term shifts the 
unperturbed frequency UJ,b by a negligible amount. 

Equation ( 5 . 8 )  has the general form of a kinetic equation. The natural or unperturbed 
oscillation frequency of F,,(P, t )  is given by the unperturbed radiator frequency wab plus 
a Doppler shift x . P/Mc (recall that x = 2(w/c)). The 'collision integral' A(F(r)) represents 
changes in F caused by collisions between the radiator and perturbers. This collision term 
will be discussed in detail in the following sections. 

( B )  The collision integral 
To write out the collision term A given in equation (5.7) we use equations (3.15), (3.19), 

(3.33), (4.5) and we use the Moller operator R(+) for a binary collision, (See equations (1.25) 
and (3.31) in Chap. 8 of Ref. 12) 

R(+) 3 U(0, -a) = Uexp{-(i/h) J' Y(s)ds}. (5.9) 
- W  

The matrix elements (aPIAlbP) are thus given by 

(aPIA(F(t))(bP) = -(in/h) 1 (aapPI [e-iX'RVf2(+) eix'np(i)fF(t)i2+)' 
Po 

- e - i x . R ~ (  + )  eiX"Lp'i)fF(t)R(+)'V]Ibcrpp) (5.10) 

where p(')  andfdenote operators pertaining to the distribution of internal and translational 
perturber states as defined in Sect. 3(C) and the states la), la), Ip), and JP) are eigenvectors 
of H,, H,, K ,  and K, respectively. 

We next note that since V depends only on radiator and perturber coordinate operators, 
it will commute with the x . R  factors. Thus both terms in equation (5.10) involve the 
operator 

0 

dsl 
= ~ e x p  { -(. i/h) - J ~ e - .  'rx'r/H P(s) eirx'r/M 

, - i x . R ~ ( + ) ~ i x . R  = ,qexp{ -(. e-ix.Rp(s)eix.R 
l /h)  

- 1  

0 

(5.11) 

where we have used equations (4.4). (5.2) (5.9) and noted that ( x  - PT/M) 5 ( w T ) ( u , , ~ c )  << 1 
where urad denotes the speed of the radiator and o is the frequency of the observed radiation. 
Notingequation (5.1), we may interpret equation (5.1 1) as a statement that the translational 
dynamics of the radiator are not appreciably altered by the recoil momentum hK which 
snouid be aaded to r in oraer io conserve momentuni when a photon is emitted. 
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The T-matrix for a binary collision is given by equation (2.66) on p. 182 of Ref. ( 

T = VQ'+'  

hence the collision integral is given by 

(aPIAlbP) = - ( in /h )  [(aapP(Tp"~F(t)R'+''lbapP) 
"P 

2)  as 

5.12) 

- (aapPlQ( +'p"'jF(t)T'lbapP)]. (5.13) 

The momentum of the center of mass, (p + P), will be conserved during a collision hence 
both (pPITlp'P) and (pPIR"lp'P') will vanish unless (p+P) = (p'+P). Equations (5.13) 
thus becomes 

(UPjAlbP) = - ( in /h )  C f@')p!)F,.,.(P, f) 
aa'pp'a'b'P 

. [(aapPI Tja'a'p'P') (b'a'p'P(Q( + "IbapP) 

- (aapPIR'+'la'a'p'P) (b'a'p'PI T'jbapP)] (5.14) 

where momentum conservation was used to eliminate the F(t) matrix elements which are 
off-diagonal in IP). The equation of motion for F(P, t ) ,  obtained by combining equations 
(5.8) and (5.14), thus requires only diagonal matrix elements of F(t) in (P) states. In a similar 
manner one finds that the equation of motion for the off-diagonal elements of F(t) depends 
only on other off-diagonal elements. Since F(0) is diagonal in IP) states (see equation (53, 
the above considerations imply that F(t) remains diagonal in IP) states for any time t .  

6 .  DOPPLER BROADENING ONLY 

In order to illustrate the similarity between our approach and the one used by RAUTIAN 
and SOBEL'MAN,(') we next consider the collisional narrowing of a pure Doppler profile. 
That is, we assume that the internal state of the radiator is not influenced by collisions so 
that the only effect of collisions on the line shape is through their alteration of the radiators 
trajectory. The results obtained for this case will be just a quantum mechanical generaliza- 
tion of the results obtained by Rautian and Sobel'man. 

We remove the influence of collisions on the internal state of the radiator by assuming 
that V, and therefore T and R(+), is diagonal in the H ,  eigenstates la), (b) ,  . . . and all non- 
zero matrix elements are the same. For convenience we also ignore the internal states of the 
perturbers. These conditions give 

(apPI Tla'p'P') = 6,,.(pPI Tlp'P) 

(apPjQ'+'la'p'P) = b,.(pPIQ' + 'Ip'p'). (6.1 ) 

Using these relations and the identity'I3' (See equations (2.38) and (2.54) of Chap. 6 
in Ref. 12) 

(pPIR'+)p'P') = b,,.S,,. +(pPITjp'P) 

* P{ wpp, + EPp.) l )  - W E , , ,  + E P P ) l r  (6.2) 
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where 9 denotes a principle part, equation (5.14) becomes 

(aPIAlhP) = (Zn/h)Fab(P, f, /@) Im<pPITlpP) 
P 

+(2nn/h)  f(P’)l<~pl T ~ P ’ P ) ~ ~ ( E , , , +  Epp.)Fd((P), 1 ) .  (6.3) 
PP’P‘ 

The transition rate w(p’, P‘; p, P) for (p’, P‘) -, (p, P) transitions where p # p’ and 

(6.4) 

P # P’ is given by 

w(P. p‘ ; P 3  P )  = ( 2 n n / w o p p ,  + E P P * ) I ( P P I  TlP’P)12 
and the optical theorem (equation (3.9) on p. 184 of Ref. 12) gives 

Im( pP! TJpP) = - JZ 1 1 (PPI Tlp’P)I 2b(E,p, + E p y ) .  (6.5) 
p’p‘ 

Equation (6.3) may thus be written in the form 

(aPIAlbP) = 1 A ( P ‘  P)F,,,(P, t ) -  v(P)F,b(P, t )  (6.6) 
P‘ 

where 

The quantity A(P,P) gives the P -+ P transition rate for the radiators and v(P) is the 
collision frequency for radiators which have a momentum P. 

Noting that the coefficients A and v do not depend on internal radiator states, we 
define a quantity F(P, t )  by 

(6.9) F,b(p, f )  = &’d,bF(P, t ) ;  

combining equations (5.8) and (6.6) we obtain 

(6.10) 

The boundary condition for F(P, t )  is obtained from equations (5.5) in the form 

F(P,O) = (P+hxJWIP+hx) 

rr. (2nMkT)-’I2 exp(- P2/2MkT) (6.11) 
= W(P)  

where we have used a Maxwell-Boltzmann distribution W ( P )  for the radiator momenta 
and used (hx . P/M) << kT to neglect the hx factors; this is valid [or hbw << kT. 

Taking the Fourier transform of equation (6.10) we obtain 

[ v(p)  + i( x$ - *o)]F(p, w )  = W ( P )  + A(P‘, P)F(P‘, w )  (6.12) 
P’ 

I 
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where Ail) = ((I) - ('J.,,) and 

F(P, (0) = etW'F(P, r)dr. 3 0 
(6.13) 

From equations (2.20), (3.1), (5.3), (6.9) and (6.13). we see that the line shape isgiven by 

W )  = ( I f 4  1 d"ld,,lZ Re 1 F(P, 4. (6.14) 

Comparing equations (6.12) and (6.14) with Rautian and Sobel'mans equations (2.1 1 )  
and (3.1) we see that, apart from the fact that their oscillator strength is unity, our results 
are identical with theirs. 

To get numerical results for F(P,o) it is still necessary to solve the rather difficult 
Fredholm integral equation given by equation (6.1 2). Rautian and Sobel'man discuss 
approximate solutions obtained making a strong collision approximation or a diffusion 
approximation ; the latter produces GALATRYS results."' 

ab P 

7 .  F U R T H E R  S I M P L I F I C A T I O N S  

(A) Center of mass coordinates 

The problem of obtaining solutions Fa,(P, t)  which account for both Doppler and 
pressure broadening is essentially centered in the evaluation of the collision integral 
(uPIAlbP). In this section we will simplify the form of A in order that the approximate 
solutions, discussed in the following sections, may be pursued with a minimum of mathe- 
matical complication. 

We first note that the internal states of the perturbers constitute an unnecessary 
complication of the formalism (but not the numerical calculations). We will therefore 
suppress the states I x ) ,  remembering that we must average A over internal perturber 
states when calculations are performed (note equation 5.14). 

We next express A in terms of the center of mass momenta q and Q by means of the 
canonical transformation : 

Q = p+P (7.1) 

P = pQIm-9 (7.4) 

p = mM/(m+ M). (7.5) 

In this transformation, p is the reduced mass, q is the momentum in the center of mass 
and Q is the momentum of the center of mass. We may transform from IpP) to lqQ) 
using" 3' 

IPP) = hQ> (qQlpP) 
sv 

= IqQ) W, P P / ~  -PP/W~(Q.  P + PI. 
4 

(7.6) 
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In terms of these coordinates. equation (5.13) becomes 

(aPlAlbP) = -(in/h) d(q, pQ:M - P) 
4 

x (aqQI { TfF(t)Rc + ”- R‘ + ! f F (  r)T’ I IbqQ). (7.7) 

Since the momentum of the center of mass, Q, is not altered by collisions, we have 

(aqQ1 Tla‘q‘Q‘) = (aql TIa’q’)b,, (7.8) 

(aqQlR‘+’la’q’Q’) = (aqJQ‘+’Ja‘q’)b,. (7.9) 

Noting thatland F(t) are diagonal in Ip) and IP) respectively, we obtain 

(7.10) 

using Aq = (q - q’) equation (7.7) becomes 

x [(aql Tla’q‘) (b’q’lR‘+”lbq) - (aqlR‘+’la’q’) (b‘q’l T’lbq)]. (7.1 1 )  

While this result is still rather complicated, it is nonetheless considerably simpler than 
equation (5.14) which it replaces. 

(B) The no-quenching approsirnation 
From scattering theory, we know that the probability for an inelastic transfer of an 

amount of energy A€, during a collision ofduration T, will be small unless (See equation 137 
of Ref. 14) 

(rA€/h) c 1. (7.12) 

.. We also know that the natural oscillation frequency for F,,(P, r), obtained by setting A to 
zero in equation (5.8), is just (w,b + % . P/M). Thus. for an emission line, we regard la) and 
Ib) as initial and final states respectively. Using equation (7.12) we note that collision 
induced transitions from la) to la’) or Ib) to Ib’) are negligible unless ( ~ € ~ , / h )  < 1 or 
( iEbb, /h)  c 1 respectively. We therefore define an average collision time T,, and we restrict 
the sum over la’) and Ib’) in equation (7.1 1 )  to include only those states which satisfy 
E,,. < ( h / ~ ~ ” )  and E b b ’  < ( h / ~ , ” ) ;  the states la’) and Ib’) which satisfy this criterion are 
also referred to as initial and final states (even though some la’) + (b ’ )  may not correspond 
to allowed radiative transitions). The above restriction on the type of matrix elements to 
be considered is referred to as the no-quenching approximation. 
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8 .  SMALL P E R T U R B E R  L I M I T  

At this point it is perhaps useful to show how the usual Voigt profile may be recovered 
from the present results. For this purpose, we consider an example where m << M (e.g.. 
electron perturbers). In this case the recoil of the radiator will be negligible AP << P. 
Since the momentum of the center of mass, Q, is not changed by a collision, equation (7.4) 
indicates that Aq = AI‘ << P. For simplicity we also assume that all initial and final states 
are quasi-degenerate so that E,. 2 Ebb. = 0 and f&, = 00. With these assumptions, the 
matrix elements of R ( + ’  may be given by (See equations 2.38 and 2.54 in Chap. 6 of Ref. 12) 

(aqlQ(+’la’q‘) = 6,.6,,. + (a41 Tla’q‘)[b(l/E,.,)-ins(Eqq.)] (8.1 ) 

(aPIAlbP) = 1 (ablQ\db’)F,.,.(P, I) . (8.2) 

and equation (7.1 1) becomes 

n‘b‘ 

where @ is a matrix in the ‘double atom’ or tetradic notation 

(8.3) 

In this notation, and TI operate only on initial and final states, 

The operator CP is identically the same as the ‘effective interaction’ operator which 
appears in the impact theory for pressure broadening (cf. equations (62) and (67) of Ref. (15) 
noting that Q, = - iH in the notation of that paper). 

Combining equation (8.2) with (5.8), and noting equation (6.1 l) ,  we obtain 

Fab(p, 0) = da/J’b“W(PJ (8.6) 

(8.7) 
hence 

FJP, r )  = h.*jP) (ab1 exp; - it(wo + x . P/M + i@)}la’b‘)p$’dn~b,, 
o’b’ 

Using Aw = w - o o ,  the line shape obtained from equations (2.20). (3.1). (5.3), and (8.7) is 

I ( o )  = - (1 /~)(2nMkT)-  ’Iz 1 p$’dbn . da.b, 
aba’b’ 

exp( - P 2 / 2 M k T )  
(Ao - x . P/M)- i@ 

.Im(abl/d’P 

We perform the integrals over the two P components normal to x and, for the component 
P ,  which is parallel to x,  we change variables to 

O’ = xP, /M q,P, /Mc.  



In this manner, I ( ( ? ) , )  reduces to the convolution form stated in equations ( 1 . 1 )  and (1.2) 
with I,, given by 

I,,((!)) = - ( I / I I )  p$’d,, .do.,. Im(ohl[Atu-i@]- ‘lu‘h’). (8.9) 

From these results we see that when collisions have no influence on the radiators 
oba’b’ 

trajectory, we obtain the familiar Voigt profile. 

9 .  NO LOWER STATE INTERACTION 

In many problems of interest, the final states Ib), IF),  etc. are more tightly bound and 
less polarizable than the upper states la), la’), etc. In such case one frequently finds that 
the matrix elements of V between the lower states are negligible in comparison with the 
upper state matrix elements. The lower state interaction may then be neglected by using 
<hlvlh’) = 0 for all final states. This approximation results in (hlR‘+’lh’) = dbb, and 
(hl Tlb‘) = 0. With this approximation, equations (5.8) and (7.1 1) provide 

Equation (9.1) can be solved, with the aid of equation (8.6), giving 

where we have again used coo to denote the emission frequency. Comparing with equation 
(8.7) we see that the only significant difference is in the momentum dependence of the 
@-matrix. This momentum dependence is responsible for a statistical coupling of Dopplcr 
and pressure broadening mechanisms. 

A line shape can readily be obtained using equations (2.20), (3.1), (5.3) and (9.3) and 
this line shape expression should be calculable without too much difficulty. In fact, the 
great advantage in neglecting lower state interaction is that this approximation results in 
a calculable line shape expression. When lower state interactions cannot be neglected, 
the kinetic equation in P (e.g. equation 6.12) presents an additional complication for which 
additional approximations must be introduced. 

10. SUMMARY A N D  DISCUSSION 

In the previous sections we have derived an expression for the line shape due to both 
Doppler and pressure broadening. This result may be summarized by the following 
equations: 

I(o) = ( I /n)  Re (b[dla) . I eio’Fah(P, f )  dr (10.1) 

(10.2) 
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The collision integral A is a function of F, h(P'. t )  where u.a', . . .  denote initial states 
and h, h'. . . . denote final states. The general form for A is given by equation (5.14) in terms 
of ~ p ,  P) states and by equation (7.1 1 )  in terms of center of mass states jq, Q). 

The approximations used in deriving these general results are the impact approximation. 
tile completed collision assumption, the weak coupling density matrix, and the no quenching 
assumption. The first two assumptions concern the dynamics of the system: these approxi- 
mations should be valid for neutral gases with short range forces and they are also valid 
Over part of the line profile for Stark broadened lines. The weak coupling density matrix 
has been shown to be valid for hAo(kT.  The noquenching assumption is useful i f  the 
'initial' and 'final' states are not mixed by the perturbation of the radiator; if such a 
mixing does occur, the no-quenching approximation is easily removed by simply summing 
( 1 .  h. a', b'. . . . over both initial and final states. 
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A P P E N D I X  

To prove the result stated in equation (2.9). we consider a radiating atom having only one 'orbital' electron. 
The mass, position and momentum are denoted by m,, r, and p. for theelectron and by M, R and P for the nucleus 
(r,, p,, R and Pare  vector operators whose eigenvalues are referenced to some fixed observer). We will assume, for 
convenience, that M >> m, so that M, R and P also describe the center of mass of the atom. The dipole moment 
is thus given by 

d = dR-r-) .  (A.1) 
The fundamental interaction between the radiation field and the particles is given by (p. 176 of ref. 8) 

H,,, = fe/cK(p,im,)Mr,) - ( P I M ) .  4 R ) I  (A.2) 

where d ( R )  denotes the vector potential at the point R, 
d ( R )  = ,/(4n)c xx,i E[q, e" '+ </:,i C-" '1. 

jnd  u e  have neslrcted terms of order .d' (two-photon transitions). 
(A.3) 
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we next aasume that the wavelength of the emitted radiation. I x.  is  much greater than the dimensions of the 

(A.4) 

radiator 30 that ( d ' x ' e )  <c I or. using equation (A.11, 

exp(uc , r,) = exp(ix . R)[1 - i(x. d,u) +. .]. 

Neglecting the ( x  . d,e) correction terms gives the dipole approximation .!a/&) : d ( R )  or 

H,,, = (e/c)(p,/m, - P i W .  .rd(R). (AS) 

Using [P-(r;c)d(R)] = (i/h)[H,o,, R]  with equation (A.1) and neglecting terms of order .dz we obtain 

Hi,, = -(i/hc)[H,,,,dl d ( R )  

= -(i/hc) ([H,,, d .  .dW1 - d  . [HI,, .~ f (R) l }  (A.6) 

= -(i/hc)([H+H,,,,d..d(R)]-d.[H+H,,,,d(R)]}. 
From the matrix elements for emission (see equation 2.8) 

( B ; n ,  + 1I[H + d . d W I A  ;n,.d (A.7) 

= h(w. -wan) (B;nx l  + lld . d(RWA ; n , , d  
= o  

since w, = wAB. Using the expression for HI,, given in Sect. 2(B) and the commutation relations (p. 57 of Ref. 8). 

[4*. i .  4 t . I  = (h/2%)6",,. b. ( A 4  

one can show that 

(i/hf)[H,,d, = - I ( R )  (A.9) 

where 4 R )  is given by equation (2.6). The remaining term in equation (A.6) is 
(i/hc)[H, .d(R)] = (i/2hMc)[Pz, d(R) ]  

(A.lO) 

Taking the gradient of d ( R )  (see equation A.3) we obtain the components of 8(R) (see equation (2.6)) multiplied 
by (P.  i?/Mc) 5 (l';,d/c) where denotes the radiator velocity; this term thus adds a negligible relativistic 
correction to equation (A.9). Substituting these results back into equation (A.6) we obtain 

H,,, = -d.B(R). (A. 11) 


