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A method of including electron correlations in the relaxation theory for spectral line broadening in plasmas
is presented. The effect of these correlations in the relaxation theory is compared with the analogous results
in the impact theory; numerical comparisons are made for the Lyman-« line of hydrogen. In particular, it is
shown that the impact-parameter cutoff used in the impact theory constitutes a very good approximation

to the effect of these correlations.

1. INTRODUCTION

HE spectral distribution of the radiation emitted
by atoms in a plasma is determined primarily by
perturbations which the charged particles exert on the
atom. For neutral atoms, the dominant perturbation is
a Stark effect with the electric microfield produced by
the charged particles in the plasma. Since this is a
“long-range” type of interaction, one is forced to
consider the simultaneous effect of many perturbing
particles, that is, a many-body perturbation potential.
Over the times of interest in most line-broadening
problems, the distribution of ions does not vary appreci-
ably. This fact has given rise to a static-ion approxi-
mation, in which it is assumed that the ions do not move
at all. With this approximation, it is possible to treat the
ions by means of an average over all possible static-ion
fields.! The many-body aspects of the ion-atom inter-
action are taken into account in the derivation of the
ion-field distribution function.?® In the static-ion
approximation, the atom is perturbed by an electric
field which has a static component due to the ions, and
a rapidly fluctuating component due to the electrons.
In many line-broadening theories, an attempt is made
to reduce the electron-atom interaction to a binary
collision between the atom and a single perturber. When
this binary collision treatment is used, it is necessary to
introduce an effective interaction which accounts for
the many-body effects.

Since the usual effect of particle correlations is to
produce a shielding of the potential, one is at first
tempted to use a Debye-shielded field for the electron.
Such arguments were indeed used in the early versions
of the impact theory*? to justify cutting off the range
of the electron-atom interaction at the Debye length.
However, the validity of such a procedure is open to
question because a shielded field is a time-average effect
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3 B. Mozer and M. Baranger, Phys. Rev. 118, 626 (1960).
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whereas an important characteristic of the electron
field, in this aspect of line broadening, is its rapid
fluctuation in time. A Debye-shielded field may be used
for ions since their distribution is essentially static;
however, for electrons, one should use a Coulomb field
and treat the correlations with well-defined correlation
functions.® Lewis” has approached this problem without
the use of a shielded electron field and without the
“‘completed collision assumption’ which had been made
by the impact theories. His work indicates that the
usual cutoff procedure is valid, in the line wings [see
Eq. (19) of Ref. 7], if the frequency separation Aw
from the center of the natural line is less than v,y/Ap,
where v,, is the average electron velocity and \p is the
Debye length. For larger frequency separations, the
cutoff at the Debye length is replaced by a cutoff at
Yav/Aw.

In a recently developed relaxation theory for spectral
line broadening in plasmas,' an expression for the line
profile was obtained, in the static-ion approximation,
without the use of binary collision or impact approxi-
mations. In the relaxation theory, the electrons are
treated as a many-particle dilute gas weakly coupled to
the atom. The weak coupling is provided by a dipole-
field interaction, and the electron field is not shielded.
The results of the relaxation theory are formally quite
similar to those of the impact theories; the primary
difference being in the form of the “effective-interaction
operator”” which represents the influence of the electron
perturbation on the atom. In the relaxation theory this
operator JC(w) is a frequency-dependent complex
operator whereas, in the impact theories (for hydrogen)
this operator is not complex.

In Ref. 1, calculations were made with the assumption
that the distribution of electron states may be approxi-
mated by an ideal gas. It is the purpose of this paper to
correct that ideal-gas approximation and to compare
the results of this correction with the corresponding
work in the impact theory.

It will be shown that the electron correlations in-
fluence only the effective interaction operator, 3C(w),
and their effect on the real part of this operator is
almost identical with the results obtained by Lewis” for

6 N. Rostoker, Phys. Fluids 7, 491 (1964).
7 M. Lewis, Phys. Rev. 121, 501 (1960).
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the line wings. It should be noted that the electron
correlations which are treated by Lewis and by this
paper, are the “static correlations” which can be
described by a Debye-Hiickel correlation function. The
“dynamic shielding,” which produces a distortion of the
“Debye sphere” for fast electrons, should not be im-
portant for line-broadening problems.5

It is also found that the strong electron-atom inter-
actions, which have been given no special treatment in
the relaxation theory, may influence 3C(w) in a signifi-
cant manner.

2. INITIAL FORMULATION AND
APPROXIMATIONS

In the relaxation theory, the system considered is an
excited atom weakly coupled to a macroscopically
neutral gas of electrons and ions. The weak coupling is
provided by a dipole-field interaction of the form
eR- (&,+8&;) in which R denotes the position of the
atomic electron while &, and &; represent the electric
fields produced by the electrons and ions, respectively.

The Hamiltonian for the plasma is the sum of the
unperturbed atomic Hamiltonian H,, the electron and
ion kinetic energy operators K, and K;, the electron
and ion internal potential energy operators V.. and
Vi, the electron-ion interaction V., and the weak
coupling interaction eR- (&§,+8&,):

H=H,+K+V ot Kit+ Vit VeteR- (848). (1)

Ttis assumed that the potential function (Ve Vet Vi)
can be replaced by an effective potential (V.+7V)
where V, and V; contain only electron and ion co-
ordinates, respectively. A Debye-Hiickel effective
potential is used for the ions; the electron potential will
remain temporarily unspecified.® Using V., and V;, it is
convenient to define electron and ion Hamiltonians
H e and H i by
H e= K ot Ve )

H=K+V.. (2)

As in most line-broadening theories, the ions are
regarded as infinitely massive classical particles over
the time of interest (static-lon approximation). It is
further assumed that the three subsystems are statis-
tically independent and the plasma density matrix is
given by a product of density matrices for the atom,
electrons, and ions,® p(®pp®,  This approximation
required that the coupling interaction eR- (8,4 &;) be
neglected in the density matrix.! By neglecting this
coupling, the electron-atom and ion-atom correlations
are removed. These correlations will be important for
strong fields which will be discussed further in Sec. 4.

With the above approximations, it is found that the

8 The electron potential V. is needed only to determine a radial
distribution function g. It is therefore convenient to specify V,
through the choice of g»; this is done in Eq. (A35) of Appendix A.
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line shape for dipole radiation is given by!

I{w)= f Q(8)J (w,8)a%8, ©)

where Q(8) is the probability of finding an ion field, &,
at the atom and J(w,8&) is the line shape resulting from
the electron-atom interaction in the presence of the
static field &. In the relaxation theory, w is a complex
variable, w=a&-17¢, whose real part & is the true
frequency and whose imaginary part e represents the
natural width for the line being studied. The Hamilton-
ian which appears in J (w,8) is

H'=H,+H,+eR-(&,+8), 4)

where & is a vector which has the same magnitude and
direction as the ion field.!

The microfield function Q (&) is known,?3 and J (w,8&),
evaluated by means of the Zwanzig-Fano relaxation
techniques, is given by!

J(@,8)=—7"1Im Tr{d-[w— L) ] (e ?d)}, (5)

where d is the atomic dipole operator,® £(w) is an
effective Liouville operator for the atom, and the trace
is over states of the atom. In Ref. 1, £(w) is expanded
in a perturbation series based on an unperturbed
Liouville operator L, which corresponds to the
Hamiltonian (H,+H,), and a perturbation L; which
corresponds to the interaction eR- (&, 8).

The H , eigenstates |a), |b), |¢) are used in evaluating
the trace in Eq. (5) and the energy difference between
the states |a) and |b) is denoted by w,;. Denoting the
z component of R by R? and defining a variable Awgs
=w—wgp, the matrix elements of [w— £(w)] are given
by!

[w_ £ (w)]ab.a' o= Awap0sa'0bb
- (eg/h) (Rzaa'abb’ —'sz' baaa') —3{3(0.))41,,,,, by (6)

where JC(w) is an effective interaction operator which
takes the place of the operator ®,; used by Griem et al.
[see Egs. (10) and (32) of Ref. 4] or the operator 3¢
used by Baranger [see Egs. (13-46) of Ref. 117. Since
the primary difference between the impact and relaxa-
tion theories lies in 3C(w), this operator will be studied
in detail in the following sections.

3. EFFECTIVE INTERACTION OPERATOR
A. Second-Order Expression for 3¢ ()

In Ref. 1, the perturbation operator L; was written
in the form (Li*+ L), where L,° corresponds to eR- &,
and L* corresponds to ¢R- &. With these operators, the

10Tt should be noted that, while both d and —¢R are basically
dipole operators, the matrix elements of d are frequently restricted
in a manner that does not apply to —eR. This is discussed further
in Sec. 3A of Ref. 1.

1 M. Baranger, in Atomic and Molecular Processes, edited by
D. Bates (Academic Press Inc,, New York, 1962), Chap. 13.
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result of a second-order evaluation of 3C(w) was found
to be

7230 (w)=(L1*K° () L1°) (M
where (- - - ) denotes an ensemble average over electron
states and K°(w) is given by

K°(w)= (o—Lo/A)™

=—i / giate=iLalny, )
0

In order to write out an explicit expression for 3C(w),
the H, eigenstates |a), |8), |¢) and the H, eigenstates
|a), |8), |v) will be used. In terms of the composite

state vectors |aa), |88), |cy), the operator K%(w) is
diagonal :

EKO(w) aap; arar b = k(@) aabgbaar Ot OpprOaer
F(2) gatg= —-—i/ exp{it(w—wap—wap)} dt.  (9)
0

The electron-density matrix
p=exp(—H/kT)/Tr{exp(—H/kT)} (10)

is also diagonal and its matrix elements are written in
the form

Paabﬂ“) = faaaﬂaab . (11)
With the above notation, 3¢(w) may be written!

7230 (w) actp; a'ar g
=080 2 apelaar] eR- 8| cB){cB| R &,| ') fuk® () cgta
000 T ape (D'ar| eR- 8| cB)(cB| R &o|bar) fok® (@) aacs
—2ep (b'BIeR-86|6a>(da|eR- 8.]a'B) fok*(@)aarrs
— Y op (act|eR-&,|a'B)(0'B| €R - &,] bex) fok () arpra-
(12)

These terms are evaluated in Appendix A using the
classical limit of the Boltzmann factor and a linearized
Debye-Hiickel radial-distribution function to describe
the distribution of states in the electron gas; it is also
assumed that the change in the internal electron
potential V, is negligible over the times of interest
[see Eq. (A15)]. The results of this evaluation provide
the following expression :
30(w)ap,arpr= — (2i¢*n/312) (8wm/kT)

X {Zc Eabb'Rac'Rca’G(chb)—l_aaa'Rb'c'Rch(~Awac)]

’_Raa' ’Rb’b[G(Awab’)+G(’“Awa’b)] ) (13)

where m and # denote the mass and density of electrons,
and G(Aw) is an integral discussed in the following
sections.

B. Some Physical Properties of J¢(w)

To second order, 3¢(w) represents a quadratic Stark
interaction between the atom and the fluctuating
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electron field. In order to study the meaning of the
frequency dependence in 3C(w), we note that it is
possible to ‘interpret a quadratic Stark effect as an
induced-dipole interaction.!? The frequency dependence
in 3C(w) is therefore a result of the time dependence in
an induced-dipole interaction; that is, as the microfield
&, varies, the induced atomic dipole vector moves in
such a way that it always points in the same direction
as the field &,. An interaction of this type will lower the
atomic energy levels. Since the lower-energy states are
more tightly bound, the energies of the final states will
be less affected, the net result being a reduction in the
energy separation of the initial and final states. We
therefore expect the quadratic electron-atom inter-
actions to produce a small asymmetry in the line profile
which increases the intensity of the red wing relative to
that of the blue wing; we also expect these interactions
to shift the center of the line toward longer wave-
lengths.®

To explore the source of these shifts and asym-
metries, we note that a simple Lorentzian line may be
expressed by

Im[w—wo— (wrttw:) T r=w,/[ (Aw—w,)?+w?],

where w, denotes a shift of the line center and w; pro-
vides the linewidth. The line shape J(w,8), given by
Egs. (5) and (6), may be loosely compared with Eq.
(14), and one may expect the real part of 3 to produce
a shift while the imaginary part adds to the linewidth.
The frequency dependence of 3¢(w) indicates that these
“width” and “shift” operators may not be symmetric.
The linear Stark effect in Eq. (6) produces a symmetric
splitting and therefore contributes only to the width.
These arguments are offered merely as plausibility
arguments because, strictly speaking, one may not
discuss the operators in J(w,8) in the same manner as
the scalars in Eq. (14). Nevertheless, this does give a
rough idea of the roles played by the real and imaginary
parts of 3C in determining the line shape. It may be
noted in passing that, in the numerical calculations
made by the author, it is found that the line shift
vanishes when the real part of 3C is set to zero. Further-
more, when the shift vanishes, most of the asymmetry
in the line center also vanishes; this indicates that the
center region of the broadened line is roughly symmetric
about the shifted frequency.

(14)

C. The Integral G(Aw)

From Eq. (13), it is clear that the integral G(Aw)
contains all of the frequency dependence in the effective
interaction, 3C(w). In Appendix A, it is shown that the
influence of electron correlations is also contained in
G(Aw). Since this integral plays such an important role
in the study of the electron-atom interaction, its deriva-

12 See Sec. 5B of Ref. 1.
13 H. Bethe and E. Salpeter, Quanium Mechanics of One- and
Two-Electron Atoms (Academic Press Inc., New York, 1957).
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tion is presented in detail in that Appendix. The results
of this derivation are outlined and interpreted in this
section.

The G integral which appears in the ideal gas case
(no correlations) is given by Eq. (A38) [and also by
Eq. (58) of Ref. 1] in the form

GolAw) = f " explishAa/kT) (s+is) 1 ds. (1)

When electron correlations are considered, it is found
that a correction term is added to the integrand in Eq.
(15). The corrected integral is given by Eq. (A38) in
the form

G(Aw)=/a0 exp{ishAw/RT}[ (s2+is) 1 2—an/7

Xexp{a?(s+is)} erfc{a(s?+is)12} ] ds, (16)
where erfc is the complimentary error function. The
parameter « is defined by \/2\p/7, where X and Ap are
the thermal wavelength %/(2rmkT)'/? and the Debye
length (T /4wne?)!/? for electrons.

From Eq. (16) it is apparent that the parameter « is
a measure of the importance of electron correlations.
In the limit a — 0, the argument of the integrand in
Eq. (15) becomes 1/(s?+1s)!/2; hence G(Aw) reduces to
the ideal-gas result Go(Aw) in this limit. For any finite
a however, the ideal gas term 1/(s?+1s)!/2 will domi-
nate the erfc term for sufficiently small values of s; that
is, the electron correlations are negligible for short times
or large Aw. We note further that 1/(s*+4s)!/2 is the
large s asymptote of the erfc term. This implies that the
electron correlations will be important for long times or
small Aw.

Further analysis of the integrand in Eq. (16) shows
that the transition from the regime where correlations
are important, to the ideal-gas regime, occurs for the
values of s on the order of 1/a. Since a~#w,/kT, where
w, is the plasma frequency, we may use the well-known
property of Fourier transforms

AwAE> 1 an

to infer that correlations will be important only for
| Aw| <w,. This also indicates that the transition from
the correlated regime to the ideal-gas regime occurs for
values of | Aw| on the order of w, or 2,y/Ap, where 7,y is
the average electron velocity. This is exactly the point
where the Lewis cutoff is applied in the impact theory.?

We therefore conclude that, for frequency separations
(from the center of the natural line) less than v.y/Ap,
many-particle effects are important and electron cor-
relations must be considered. In the impact theory this
is done by shielding the electron-atom interaction, or
by cutting off the range of this interaction at the Debye
length. When | Aw| is larger than v.,/Ap the correlations
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are negligible, hence the atom is perturbed through
binary collisions with electrons and the electron-atom
interaction need not be shielded.

In order to illustrate the above conclusions graphic-
ally, it is convenient to express G(Aw) in terms of real
functions. It is possible to write G(Aw) in the form

G(Aw)=G(Ad)—iG:(Ad) , (18)

where G, and G; are real functions of the real variable
A&. The variable A®, defined by Aw=A&+1e, is the
frequency separation from the center of the natural
line. (Since the natural width e is negligibly small,
|Aw|=|A&|, except at the line center when | AG|~ze.)
There is no analog for G; in the impact theories (for
hydrogen), hence numerical comparisons will be made
only for G,.

The integral corresponding to G, in the impact theory
is given by Eq. (30) of Ref. 4. The parameter ymi, used
in that paper is just 2n‘?/3 where 1 is the principal
quantum number and a=MN/2\py/w. We therefore
compare G,(A®) with

1 exp(y)
Gimpact = f dy
Ymin y

~0.08—In()—2 In(n).

(19)

This function is plotted in Fig. 1 for |Aw| smaller than
the Lewis cutoff (LC). For larger values of |Aw|, Lewis
obtains’

G1=0.8—In(%|Aw|/ET)~2 lnn. (20)

Figure 1 shows that G,(]A&|) and Gimpac: differ by a
constant over most of the correlated regime. To
illustrate the source of this constant, it may be noted
that

G,(0)~0.4—1In(a). (21)

The significant difference between Egs. (19) and (21)
is in the factor In(1). In the impact theory this factor
comes about because of a ‘strong-collision” cutoff
which is not made in the relaxation theory. This point
will be explored further in the next section.

For frequencies larger than the Lewis cutoff G.(A&)
has the form

G (A)~exp(7Aa/ 2k T)[0.8—In (2] A& /kT)]. (22)

The factor exp(%#A&/2kT) produces an asymmetry in
G-, which is observed in Fig. 1, for large |A&|. Since
Lewis’s results are symmetric, we may compare
[0.8—In(%|Aw|/kT)] (dotted line in Fig. 1) with the
expression for G, Eq. (20). Again, we find a con-
stant difference in which the factor In(n) plays a
significant role.

Figure 1 also shows the function G,(A&), calculated
with only the ideal-gas term Eq. (15). The corrected
G- goes into its ideal-gas asymptote very rapidly at the
Lewis cutoff (LC). While this transition is by no means
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as sharp as the change from Ginpact to Gr, it does
indicate that the cutoffs used in the impact theory
provide a good approximation to the effects of electron

correlations.

D. Influence of Strong Collisions

In the previous section, it was noted that G,(A&)
differs from its counterpart in the impact theories by a
nontrivial constant. It was also noted that there is no
analog for G,(A&) in the impact theories (for hydrogen)
and it is this function which gives rise to a line shift in
the relaxation theory. Since these are important points,
it is appropriate to investigate the source of these
disparities.

In the relaxation theory, the effective interaction
operator may be written in the form

50 (w)= — (i/#2) / exp(itA)(VV (D))t (23)

[see Egs. (A3) and (A4)], where (---) denotes an
average over electrons and V (¢) is given by

V()=eR-&.(0), (24)

&.(t)=exp{itH ./ "} &, exp{—itH ./} . (25)
If nonradiative transitions out of the initial states are
neglected (no-quenching assumption), the Aw which
appears in Eq. (23) will be (w—wo)7e, where wo is the
unperturbed frequency. The radiation damping is not

_relevant to the following discussion, hence we may set
¢ to zero and the Aw in Eq. (23) may be regarded simply
as the frequency separation from the center of the

natural line.
In the impact theory, the effective interaction opera-

tor corresponding to 3C(w) is, to second order,4:15

i®=— (i/h2As)< / "o / t V(t')dt'dt> . (6)

In the impact theory, the electron-atom collisions are
assumed to be instantaneous so that the limits on the
integrals may be extended to infinity and As may be
removed [see Eq. (4-44) of Ref. 147]. For purposes of
comparison however, it is convenient to use

+7 t
i%=—lim (i/2rh2)< / a0 / V(t’)dt’dt>

= —lim (i/27h2)< /_ ' / TV(t)V(t+s)de¢>- @)

In the impact theory, the average over the states of the
electrons, denoted by (---) in Eq. (27), is called a
“thermal average.”

The perturbation is usually assumed to be a station-
ary random process (although this approximation is
rarely stated explicitly), hence

V@OV (E35)=(VV(s)).

This property is illustrated, in the impact theory, by
Eq. (4A) of Ref. 7.
With Eq. (28), the expression for  may be written

(28)

b= — (i/h2) / i (VV(£))dt. (29)
0

“H. R. Griem, Plasma Spectroscopy (McGraw-Hill Book
Co., New York, 1964).

15 Equation (26) is obtained by comparing Egs. (5) and (6)
gitfh 1ilqs. (4-34) of Ref. 14 and then using Egs. (4-31) of

ef. 14.
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Comparing Egs. (23) and (29), it is apparent that the
operators 3C(w) and 7® should be identical when Aw=0.
Indeed, these operators should not differ appreciably
for Aw<1/t,, where f, is the correlation time for the
electron field, because (V' V (£) ) becomes quite small when
t>1,. Lewis” has estimated ¢, by Ap/va.v; using this
estimate, we do not expect 3¢(w) and ® to differ until
Aw> 11“/ AD.

It may be noted in passing that, in the line wings, one
may expand the line shape J (w,8) in powers of (1/Awgs).
If this were done, using Eq. (23), we would obtain, to
lowest order, an expression which is identical with Eq.
(130) of Ref. 11. While the operator 3¢(w) in the relax-
ation theory is used over the entire profile, not just the
line wings, this comparison does indicate that the impact
and relaxation theories should also agree for frequencies
much larger than vay/Ap.

It has already been shown that 3C(w) and i® are not
identical, even when Aw=0, hence the disparity be-
tween them must be due to differences in the methods
of evaluating (VV(f)). Lewis’” has evaluated this
operator in a manner which is similar to the derivation
in this paper (Appendix A) and it is possible to make a
fairly close step-by-step comparison. The essential
difference in these derivations lies in the treatment of
strong collisions. The term strong collisions refers to
those interactions in which an electron comes close
enough to the atom to produce an appreciable change
(compared with unity) in the atomic wave function;
in the impact theory, an impact-parameter cutoff
removes these strong collisions from the average in
{(VV(£)).1® The resulting error in ® is estimated by a
Lorentz-Weisskopf treatment of strong collisions and
is found to be small.* Since no special treatment has
been given for strong collisions in the relaxation theory,

16 Since the atomic wave function may be written in the form
¢ () =T ()¢ (0), the strong-collision cutoff is usually chosen by
restricting the variation in the time-development operator in such
a way that second-order perturbation theory may be used in
evaluating it.

this is clearly the source of the disparity between 3C(w)
and 7®.

To test this assertion, the author has evaluated
(VV () using a cutoff which requires all electrons to
remain outside a small spherical region around the atom
(see Appendix B). The radius of this sphere may be
taken to be n2\/4/(3r), the same as the cutoff in the
impact theory [see Eq. (19) of Ref. 4]. Numerical
calculations have been made with this cutoff, and it is
found that G,(A®) is decreased as shown in Fig. 2. In
Fig. 2, G. and Gimpact agree to within the accuracy
stated for the impact theory calculations. The function
G,(Aw) still shows an asymmetry for large | Aw| which
does not appear in Gi. This asymmetry is roughly
equivalent to multiplying Gy, by exp(#A&/2kT).

A numerical calculation also shows that the strong
collision cutoff reduces G;(A@&) so much that the shift
of the line center (for Ly-a) is reduced by a factor of 10.
When line-profile calculations are made, using the
strong-collision cutoffs, there is less than a 209, differ-
ence between the impact and relaxation theories.

4. RESULTS AND CONCLUSIONS

The role of electron correlations in plasma line
broadening has been studied, within the framework of
the relaxation theory, by the use of statistical tech-
niques. This method provides a very accurate treatment
of these correlations which is limited only by the choice
of a radial distribution function for the electron gas.
The linearized Debye-Hiickel function which was used
for this purpose is known to be quite adequate for the
temperatures and densities encountered in most Stark
broadening problems.

The results of this work indicate that the impact
parameter cutoffs, which approximate the effects of
electron correlations in the impact theories, are valid
to within the accuracy stated by these theories. In the
relaxation theory, an asymmetry is found for fre-
quencies larger than the Lewis cutoff; this asymmetry
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may be included in the impact theory if Lewis’s results
[Eq. (20)] are multiplied by exp(#A&/2kT). The
asymmetry and shift in the center region of the relax-
ation theory profiles'” are primarily due to the real part
of 3C(w), for which there is no analog in the impact
theory (for hydrogen). It has been found, however, that
the real part of 3C(w) is considerably reduced if the
strong-collision cutoff in the impact theory is also
applied in the relaxation theory.

While the primary purpose of this paper is the study
of electron correlations, the significant effects of a
strong-collision cutoff require some comment as well.
The dipole interaction, which has been used to represent
the electron-atom coupling, is certainly not valid when
a perturber comes close enough to ‘“penetrate” the
atom. For these close contacts, the elementary Coulomb
interactions between the perturber, the nucleus, and the
bound electron should be used. In the relaxation theory
there is no problem with the wave functions in a strong
collision because one is free to choose any complete set
of wave functions in evaluating a trace. There is a
problem with the Boltzmann factors however; the
electron-atom coupling which has been neglected in the
density matrix (Sec. 2) will become important in a
strong collision. Tentative investigations indicate that
it may be possible to treat strong collisions in the
relaxation theory so that no cutoff will be needed. This
work will be reported in a future paper.

In conclusion, it is noted that the relaxation theory
does not require a binary collision approximation, an
impact approximation, or a classical path assumption.
When a strong-collision cutoff is used, the results of the
relaxation theory (for hydrogen) agree to within 209,
with those of the impact theory, thus providing an
independent verification of the approximations in the
impact theory. The subject of strong collisions requires
further investigation and it is felt that the formalism of
the relaxation theory provides a promising framework
in which to study this problem.

APPENDIX A: DERIVATION OF G(Aw)
1. Separation of Correlations

In Eq. (12), the effective-interaction operator was
expressed as the sum of four terms:

730(@)as, e =[11+[2]-[3]—[4],  (Al)
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where
[1] = 5bb’zaﬂc (aal eR- & | Cﬁ) (CBI eR- 'gel a,a>fak0 (w)cﬂba ’
[2]= 002 ape(b'ex| R &,] cB)(cB| R~ &¢|ber) fuk () aaes ,
[3]=2as (08| eR-&,ba){aa|eR-&.|aB) fok* (@) aars,
[4]=2as (aa|eR- 8] 'B)(0'8| eR - &,|ber) fok" (@) arpra-
(A2)

In order to illustrate the derivation of G(Aw), the third
term, [37], will be evaluated in detail; the remaining
terms in Eq. (A2) are then obtained through simple
transformations of the dummy variables.

Using Eq. (9) and the notations V=¢R-&, and
Awgp=w—wyp, We have
[3]=—i%ap 08| V]ba){aa| V|a'8)fs

00

X/ exp{t(Awqp — wap)t} dt

0

= —1/ exp (’L'Awabll)F(t)aa/,b: l,dt s (A3)
0

where F(£)aar, 575 is given by
F(t)aa',b'b=2aﬂ <a[ Vaarp® [B)(ﬁl
Xexp (itH o/ 1)V oo exp(—itH o/ 1) | )
=Tre{Vaap'® exp(itH./B)V s
Xexp(—itH./h)}. (A4)
It is convenient to use Reswr=Ry, Rys=Ry and Foor s
=F12. Since any complete set of basis vectors may be
used in evaluating a trace, we may use the eigenvectors
of the N-electron position operator, X, to evaluate the
trace in Eq. (A4). The eigenvectors of X are denoted

by x,
XlX)"—‘-X'X), X= (x15x2,""XN): (AS)

where x is a 3N-vector whose components are the
position vectors for each of the N electrons. In this
notation, Eq. (A4) becomes

F(t)12=/(x] le(e) exp{the/h} Vs
Xexp{—itH./%} | x)dx. (A6)

In the classical limit, the density matrix for the
canonical ensemble has the form!8
p@=exp(—K./kT) exp(—V./kT)/Tr,

4 X{exp(—K./kT) exp(—V,/kT)} (A7)
an

Tre{exp[—Ko/kT] exp[—Vo/kT 1} = /(Xl exp[—K./kT]|x) exp[—Vo(x)/kTJdx

= [ [ Ip0 ewl-KaTI1x) expl—v. /1 ixip

- [ [ ipyole) expl— Ko AT expl— V.0 4T Yixip. (a8)

17 E. W. Smith, Phys. Rev. Letters 18, 990 (1967).

18 K. Huang, Statistical Mechanics (John Wiley & Sons, Inc., New York, 1963).
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The 3N-vector p= (p1,ps,- - -Pv) is the N-electron momentum vector and is therefore an eigenvector of K, with
the eigenvalue K ,(p)=p*>/2m. In a position representation, the states |p) have the form

(x| p)=exp(ip-x/n)/W*N", (A9)
hence Eq. (A8) becomes

Tre{exp[—Ko/kT]exp[— Vo /kT 1} =h"3N / exp[ — p2/2mkT Jdp / exp[— Vo(x)/kT Jdx

=\ f exp[ V(x)/kT ]dx, (A10)

where \=h/(2rmkT)!/? is the thermal wavelength for an electron. Using the N-electron probability function'®

P(x)=exp[—V.(x)/kT] / / exp[— Vo(x)/AT1ix, (A11)
it is clear that
0@ x)=exp(—Ko/kT)|x)P(x)\V. (A12)

The electron time-development operator will be treated in a similar manner; we first introduce the identity

exp{it(K+Vo)/h} =exp{itK./h} exp{ (i/h)/ Vo(0)dty, (A13)
where
Vo(t)=exp(—itK o/ B)V . exp(itK o/ 1) . (A14)

Since we do not expect the internal energy of the electrons V. to vary appreciably over the times of interest, we
make the following approximation:

exp[ i/h) / t Ve(t)dt}zexp{itV,/h}. (A15)

With this approximation we have
exp(itH o/ 1)V exp(—itH ./ h)~exp(itK o/ h) Vs exp(—itK ./ %), (A16)

where V, has been commuted with ¥V, since they depend only on electron position operators.
Using Egs. (A12) and (A16), and introducing the variable s=tkT/#%, we have

F12=)\3N/ Vix)P(x){x| exp{— (1—is)Ko/kT} V4 exp{ —isK./kT} | x)dx
=\ / V1(x)P(x) / / / (xIp){p| exp{— (1—is)Ko/kT}|y)(y| V2 exp{—isK/kT} |p'){p’| x)dp'dpdydx

e / VA(x)P(x) / / / x| D) (D] )31 ) (@' | X)Valy) expl—p%/2mbT} explis (4— p)/ 2mkT) dp'dpdyds,
(A17)
where the K, eigenvectors |p) and |p’) have been used [see Eq. (A9)]. Noting Eq. (9) it is apparent that

&)l y) v [0) 0" | x) =¥y —x|p'—p)- (A18)

Changing variables from p’ to q=p’—p and noting further that (p"2—p?)=¢?4-2p-q, the p and q integrals are

1T, L. Hill, Statistical Mechanics (McGraw-Hill Book Co., New York, 1956).
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performed in the following manner:
Fum200% [ V302 [ V209 [ (5xla) expl—ing2mby
X / exp{—isp-q/mkT}) exp{—p*/2mkT}dpdqdydx

=h—~3N/2/ Vl(x)P(X)/ Vz(y)/ (y—x|q) exp{ —¢*(s>+1is)/2mk T} dqdydx

(A19)
N (st i) 2 / V()P (x) / Va(y) exp( — (y—x)tm/N(si-is)}dydx.
In order to simplify the following calculations we introduce the variable
A(s)=~/m/\(s215)'72. (A20)

The exponential appearing in the result of Eq. (A19) is expressed as a product involving the 3-vectors x; (electron

position vectors),
exp{ — (y—x)24%} =], exp{— (y,—x,)*4*}, (A21)

and a Coulomb field is used for the electrons,
Va(y)=eRa- 8.(y)=¢2; Ra-yi/3s". (A22)

With Eqgs. (A20)-(A22), the y integral in Eq. (A19) is easily reduced to
(A2/my3N 12 / Va(y) exp{— (y—x)’A*}dy= A1}, / exp{ — (y;—x)*A*H{Rs-y,/y’;} dy;. (A23)

The remaining integral over y; is evaluated in spherical coordinates, choosing x; as the polar axis. The polar and
azimuthal angles between x; and y; are denoted by 6 and ¢ while the corresponding angles between R, and x; are
denoted by 6s7 and ¢.7. The scalar product Rs-y; is expanded using the addition theorem for spherical harmonics

of order 1,2
R:-y;= Roy;[ cosh cosfs’+sinb sinfy? cos(p—ea?) ], (A24)

and it is noted that the azimuthal integral of cos(¢—¢s’) vanishes. In this manner the y; integral in Eq. (A23)
is found to be

d
A/~ f Va(y) exp{— (y—x)24*}dy= —€*Ra_ cosfy’ d——[erf (w;4) /%] (A25)
X
Substituting this result into Eq. (A19) we obtain
d
F(t)12=—€*RiR5Y_ i / 2572 cosfi® cosfy’ d—[erf (x;4)/x; 1P (x)dx. (A26)
x;

Since P(x3,- - -Xy) is symmetric with respect to an interchange of particle coordinates,' the form of the integrand
in Eq. (26) indicates that only the one- and two-particle distribution functions,

Pl(Xj)=/' . -/P(x)dxl- . ‘de_lde,H' : 'dXN,

])Q(XJ‘,X]) = / . ~/P(x)dx1- . '(lXj.ldXH.l‘ . -dxk_ldxk+1- . '(IXN , (A27)

» A, R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, N. J., 1960).
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will be needed. For a gas of NV particles, these functions may be written! in the form
Pl(xi)= M’/ZV )
Py(xjxi) =nga(|x;—xi| )/ N(N—1), (A28)

where 7?2 is the density and g, is the radial distribution function for the gas. F(¢) is expressed as the sum of one-
and two-body integrals in the following manner:

F()1a=F' ()12t Fe(Dra, (A29)
where
d
F° (t) 127 —64R1R22]' ij—Z cosfy? cosfy? d——[erf(x,-A)/xj:IPl(xj)dxj
X
d
= —ne“Rle/x{‘Z COSG;[1 C05021 E—[el‘f (xlA )/x1:|dx1
%1
= (87rne4A/3\/7r)R1-R2 (A30)
and

d
Fe()19=—e*RiRo>_; > k> / / 2572 cosfr® cosy? d—[erf (w;4)/ 25 P2 (x;,X5)dX;dX5
Xj

d
= —n264R1R2//x1_2 C05011 COSszé“'[erf(sz )/xﬂgz( | X1— le )dX]_dXz. (ASl)

Ko

The one-body integral, F°, will give rise to the usual ideal-gas results, while the two-body term, F¢, represents the
influence of electron correlations.

2. Evaluation of the Correlation Term

If there were no correlation between electrons, g; would be 1 and F¢ would vanish (by virtue of the angle inte-
grals). Since F¢ vanishes if g, is replaced by 1, we may replace gs, in the integrand of Eq. (A31), by (ga—1)= —3».
In order to simplify the evaluation of F¢, we change variables to y=x;—X; and x=x, [ the 3-vectors x and y used
in this section should not be confused with the 3NV-vectors x= (X;,Xs,- - -Xn) and y used in the previous section].
With these variables, F¢ becomes

d
Fe(t)19=n%R\R> / / (x+y)2 cosf* cosﬁl‘ﬂ;—[erf (xA)/x]g2(y)dxdy
X

© © d
=n2!R 1R, f / Q(x,y)d—[erf (xA)/x]g2(y)a*y2dxdy (A32)
0o Jo X
where Q(x,y) denotes the result of integrating over the solid angles @, and Q,:

Qx,y)= / / (x+y)2 cosfe* cosfr*HdQ.d,
=//|R1]—1|x+y|‘3 cosfs*R ;- (x+y)dQ.dQ, (A33)

=g / / | x+y]|~ coshi* cosfa*dQ2.dQ,+y / / | x4y |3 cosbi* cosfyYdQ.dQ,

X0, y>zx
= (167/3x) (cosfiz)
X1, y<x.

The final step in Eq. (A33) was made by integrating first over the y angles, choosing x as the polar axis, and
then over the x angles with Ry as the polar axis; 91> denotes the angle between Ry and R; Equation (A33)
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is substituted into (A32) and the x integral is performed
with the result
Fe(f)1p=— (167rn2e“/3)R1-R2/w vga(y) erf(yA4)dy.

’ (A34)
A linearized Debye-Hiickel radial distribution function

is used in the evaluation’of Eq. (A34); this function has
the form??

Z:(y)=1—g:(y)=(¢*/kTy) exp(—y/Ap), (A35)

where \p is the Debye length, (¢7/4wne®)!/? for elec-
trons. Using Eq. (A35), F° becomes

Fc(lf) 12=— (4#%64/3>\D)R1 -R.
Xexp(1/4np24?) erfc(1/20pA4). (A36)

Combining Egs. (A20), (A29), (A30), and (A36) and
substituting in Eq. (A3) one obtains

[3]= - (214164/3) (SWM/kT)IlzRaaf . Rbl bG(Awab:) y (A37)
where G(Aw) is an integral defined by
G(Aw)=Go(Aw)+G.(Aw),

GolAw) = [ explishAc/kT} (s°4is)Pds (A38)
0
G.(Aw)= —a\/'n'/ exp{ishAw/kT}
0
X exp{a?(s*+is) }erfc[a (s241s5) 2 ]ds,
and « is a constant defined by
a=\2\p\/T. (A39)

The term denoted by [4] in Eq. (A2) is obtained by
making the transformation (a,0,a’,b",w)—(b,a,b’,a’, —w)
plus complex conjugation on [3]. It is possible to write
[1] in the form

[1:|= '—1:81,1,:2,, / exp (’itchb)F(t)car,acdt
0

=— (2ine*/3) (8em/kT)2 Y . Rac- ReaG (Awer)
(A40)

where F(f) is given by Eq. (A4). The second term [2],
in Eq. (A1) is then obtained from [1] by the trans-
formation (a,b,a’,b’w)— (b, a, ', @', —w) plus complex
conjugation. In this manner one obtains the result
stated in Eq. (13).

APPENDIX B: STRONG-COLLISION CUTOFF

A strong-collision cutoff may be imposed in the
relaxation theory by requiring that all electrons remain
outside a small spherical region around the atom. The
radius of this sphere is called ®o and, as discussed in
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Sec. 3 D, the magnitude of xo will be on the order of
the thermal wavelength for an electron.

With a cutoff at xo, the ideal-gas term, Eq. (A30),
becomes

F1z°°= - (47!'”84/3)Rl' R2/ —[erf<xA )/x:]dx

29 AX

= — (4mnet/3)Ry-Ro[erf (oA ) /x0 . (B1)

Using Eq. (A33) in the correlation term, Eq. (A32), the
cutoff gives rise to

chc: (167{'271264/3)1{1 . Rz

0 d z
X / —L[erf(x4)/x] / 2 (v)dydx. (B2)

o dx

Using the Dirichlet integral theorem we obtain the
identity

[ / " fapyia
= / :O /o K f(x,y)dydz+ f j /; :f(x,y)dydx

- [) ) / jf(x,y>dxdy+ / w / " f(oy)dady. (B3)

With this identity, Eq. (B2) becomes
F12“= ch—' (167!’271;264/3)1{1 Rz

x[xo—l erf (xod) / FB0)dy
0

- / °yzz<y>erf(yA>dy], (B4)

where F1p° is given by Eq. (A34).

Since F1.° is the correlation term without a cutoff, the
remaining terms on the right side of Eq. (B4) represent
the strong collision effects on the electron correlations.
It will be shown that strong collisions have a negligible
effect on these correlations. Using %, as given by Eq.
(35), the first integral in Eq. (B4) is found to be

— (167*n2%%/3)Ry- Ro[erf (x04) /%0 ]
% / "(@/RT)y exp(—y/Ao)dy

= — (4mne*/3)Ry-Ro[erf (xod) /0]

X[1— (1+4x0/Ap) exp(xo/Ap)]. (BS)

Since (xo/Ap) is on the order of 1072 or less, this term is
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10 times smaller than F% [Eq. (B1)]. The remaining
integral in Eq. (B4) is even smaller than the term in
Eq. (BS); hence we see that strong-collisions effects in
the correlation term are negligible compared with their
effects in the ideal-gas term.

The strong-collision cutoff may be included by sub-
tracting (F%—F°) from the F given by Eq. (A29). This
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is equivalent to subtracting

Gro(Aw)= f " expishA/RT)[ (#-Lis)-1P

— (N 2x0) exf(n/mxo/N(s2+15)1/2)]ds (B6)
from the G integral given by Eq. (A38).
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Quasisteady State in the Stimulated Brillouin Scattering of Liquids
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Measurements of stimulated Brillouin scattering in CS,, ethyl ether, and #-hexane with high time resolu-
tion (0.3 nsec) reveal a quasistationary state for most of the laser pulse. Conversion efficiencies between
70 and 909, were obtained. The linear relationship between Brillouin power and laser power, and the
dependence of the conversion efficiency on the cell length, are in agreement with a stationary theory of
stimulated Brillouin scattering. The steady-state gain factors were determined for three liquids and com-
pared with values calculated from hypersonic data. The agreement between the theoretical and experi-

mental gain factors is satisfactory.

I. INTRODUCTION

INCE the first observation of stimulated Brillouin
scattering (SBS) a considerable number of experi-
mental’™® and theoretical™® papers have appeared.
Quantitative comparisons between experiments and
existing theories were made very recently. Brewer? re-
ported on measurements of stimulated Brillouin scat-
tering in n-hexane and explained his data with the
transient theory of Kroll.® Walder and Tang® measured
the stimulated Brillouin emission in the same liquid as
a function of the incident laser intensity in the region
where the Brillouin power rises exponentially. They
found their results in good agreement with the results
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of a steady-state theory?. Pine! investigated the SBSin a
transverse resonator and correlated the threshold power
and the peak output power of stimulated Brillouin scat-
tering with the photoelastic parameters. Hagenlocker et
al.’ have compared measured gain factors for stimulated
Brillouin scattering with gain factors which were calcu-
lated from a nonstationary theory; the agreement was
found to be good in various substances. In all these
previous measurements the laser and Brillouin intensity
were integrated over the pulse time and over the cross
section of the laser beam.

In this paper measurements of stimulated Brillouin
scattering with high time resolution (0.3 nsec) are de-
scribed. This method® has the advantage that a more
direct comparison between theory and experiment is
possible.

We have investigated the stimulated Brillouin scat-
tering in CS;, ethyl ether, and n-hexane. In these liquids
high conversion efficiencies and a quasisteady state were
observed. We wish to use the term “quasisteady state”
to indicate that we are dealing with short laser pulses
and not with cw light sources. A stationary theory which
includes the strong attenuation of the laser beam by
the Brillouin light is successfully applied to the experi-
mental results. Furthermore, the dependence of the
stimulated Brillouin power on the distance from the
entrance window was investigated. These measurements
were found to provide a new method to determine ex-
perimentally the steady-state gain factors for the three
liquids. These gain factors were in reasonable agreement
with the values calculated from the hypersonic data of
the substances.



