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Consequently, the dispersion relation may be written as
mw?(k) = 3k337143_ 0D, (BRI
J

Xexp—3k*8H{ Py '+ 8+ i 742571}, (C14)
where $;;71 is the ith-jth element of the inverse of the
matrix °®. For sufficiently small values of B~ (i.e., for
low temperatures), the usual phonon dispersion relation
Eq. (C4) will follow from Eq. (C14).

The necessary limiting value of 8 is related to the
lattice spacings and interparticle potential energies. For
example, for a lattice of nearest-neighbor interactions,
Eq. (C14) may be shown to be

(k) = 36~k 2mw >

X {1— (coskd)e~# @Bun™m™1} = (C15)
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where, in the above expression, 7w p? equals the lattice
force constant and § is the lattice spacing. Thus, in this
instance, in order to obtain the usual phonon dispersion
relation, the inequalities 70 p%3623>1 and &%/ (mfBw p?)<K1
must be satisfied.

Let us now prove the assertion made in Ref. 9, viz,,
that the eigenfunction given by Eq. (2.14) reduces to
zero when evaluated for a harmonic lattice. Indeed, for
small %

Yr=[44(k)+|k|w2LA5(k)]
~—ik(MN/V)"*[gi+o?pi]. (C16)
Thus, in virtue of Eq. (C5), one has

Yettie(k)=0. Q.E.D.
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Relaxation Theory of Spectral Line Broadening in Plasmas™*
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In this theory of spectral line broadening in plasmas, the radiation process is treated as the relaxation of an
excited atom, weakly coupled to a thermal bath, to a state of lower energy. The theory presented here em-
phasizes the Liouville-operator formalism, as developed by Zwanzig, and may be considered an extension of
Fano’s theory of pressure broadening in neutral gases. It may further be considered an illustration of a case
in which an observable quantity can be expressed in terms of a well-defined correlation function, which can
be evaluated without resorting to a microscopic analysis of the interactions. A comparison is made with
the impact theories of Griem, Kolb, and Baranger; specifically, it is shown that the assumption of binary col-
lisions and the impact approximation are not necessary in the relaxation theory. Of special importance are
frequency-dependent “width” and “shift” operators which produce asymmetries in the intensity profile that
are not predicted by the previous plasma-broadening theories. These asymmetries are illustrated in an
application of the relaxation theory to the Lyman-a line. The line shape is calculated to second order in the
weak-coupling potential, and a comparison is made with experimental observations of this line.

1. INTRODUCTION

HE shape of the broadened spectral lines emitted
or absorbed by neutral and ionized gases is de-
termined primarily by the interparticle forces present
in the gas. Consequently, much effort has been devoted
to the development of a theory which will accurately
predict the shape of these lines. Such a theory would
permit the observable characteristics of a given line
(shift, width, etc.) to serve as noninterfering probes for
a determination of the temperature, density, etc., of
the gas.

* This work was supported by the National Defense Education
Act (title IV), the Research Corporation, and the National
Aeronautics and Space Administration.

T The work reported here is based on a dissertation submitted
to the University of Florida in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

The most successful line shape calculations have been
obtained by the impact theories of Kolb,! Griem,? and
Baranger.? These theories use a time-dependent pertur-
bation and employ an impact approximation that is
based on a binary-collision model.

The application of these binary-collision-impact
(BCI) theories to the Stark broadening in plasmas is
plagued by the familiar divergences that result when a
binary-collision model is used to treat long-range inter-
actions. Attempts to avoid these divergences by means
of impact-parameter cutoffs have led many BCI theories
to neglect the long-range electron-atom interactions.

1 A. C. Kolb and H. R. Griem, Phys. Rev. 111, 514 (1958).

2 H. R. Griem, Plasma Spectroscopy (McGraw-Hill Book Com-
pany, Inc., New York, 1964).

3 M. Baranger, Afomic and Molecular Processes, edited by D.
Bates (Academic Press Inc., New York, 1962), Chap. 13.
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The time-dependent perturbation methods used by the
BCI theories require that complicated time integrals
be performed; the explicit evaluation of these integrals
requires certain simplifying assumptions. In particular,
the impact approximation and additional approxima-
tions based on its assumed validity are used to replace
the time-dependent perturbation by a constant effective
interaction JC.

In arecent theoretical study of relaxation phenomena,
Fano* has shown that an important formal simplifica-
tion of the line-broadening problem may be achieved
by means of the Liouville operator formalism and the
relaxation techniques developed by Zwanzig.5 Several
authors*®:7 have applied these techniques to the prob-
lem of pressure broadening in neutral gases; however,
they have used the time-dependent “f-matrix” formal-
ism which is far too difficult to permit any practical
calculations.

In this paper, the Liouville operator formalism and
Zwanzig’s projection operator techniques are employed
in the development of a relaxation theory for line broad-
ening in plasmas. A time-independent perturbation
theory is used and no time integration difficulties are
experienced.

The model used by the relaxation theory contains a
radiating atom weakly coupled to an electrically neutral
gas of electrons and ions, which serves as a thermal bath
for the atom. The primary broadening mechanism (i.e.,
the weak coupling) is the Stark interaction between the
atom and the electric microfield produced by the elec-
trons and ions. The effect of the ion broadening is ap-
proximated by assuming that the ions are stationary.
The electric microfield is therefore composed of a
rapidly fluctuating electron field plus the static ion com-
ponent. The line shape of the atomic spectral radiation
is obtained from a Laplace transform of the autocorrela-
tion function, (d-d(f)), of the atomic dipole vector.
The autocorrelation function is obtained by taking an
ensemble average of d-d(f) over the states of the atom
and the thermal bath. It is shown that the ensemble
average over the ion subsystem may be replaced
by the familiar microfield average, in the static ion
approximation.

The ensemble average over the electron subsystem is
performed with a many-particle dilute gas treatment of
the electron-atom interaction. The impact approxima-
tion and the binary-collision assumption, used by the
BCI theories, are replaced by this dilute gas assump-
tion, thus obviating the necessity for an impact param-
eter cutoff.

4U. Fano, Phys. Rev. 131, 259 (1963); Lectures on the Many-
Body Problem, edited by E. R. Caianiello (Academic Press Inc.,
New York, 1964), Vol. IT, p. 217.

5 R. Zwanzig, J. Chem. Phys. 33, 1338 (1960); in Lectures in
Theoretical Physics, edited by W. E. Downs and J. Down (Inter-
science Publishers, Inc., New York, 1961), Vol. III, p. 106; Phys.
Rev. 124, 983 (1961).

§D. W. Ross, Ann. Phys. (N. Y.) 36, 458 (1966).

7 A. Ben-Reuven, Phys. Rev. 141, 34 (1966); 145, 7 (1966).
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In the relaxation theory, the effects of the perturbing
particles in the plasma are represented by a frequency-
dependent effective-interaction operator 3C(w). This
operator replaces the static operator 3C obtained by the
BCI theories. The frequency dependence of 3C(w) is
shown to be a result of the time dependence of the
quadratic Stark interaction between the electrons and
the atom. This frequency dependence produces an asym-
metry in the observed line shape. In order to illustrate
this asymmetry, as well as the practical value of the
relaxation formalism, a calculation of the Lyman (Ly) &
line is made. This calculation shows an asymmetry on
the order of 109, and appears to be in agreement with
a recent measurement® of the Ly-a profile.

2. BASIC MECHANICS
A. The Liouville-Operator Representation

The time development of the density matrix is
governed by the Liouville equation

ifi(dp/dt)=[H,p]. 1)
In the Liouville representation this equation takes the
form i#(3p/30=Lp, )

where L is the Liouville operator defined by
Lp=[H,] 3

or

(-Lp)mnz Zm'n’Lmn,m’n’Pm’ n’y (4)
Lmn,m’n’szm'ann"“'6mm'Hn'n- (5)

These equations indicate that, if p is a matrix, the
Liouville operator is a tetradic, or four-index, operator.
The formal solutions of Egs. (1) and (2) provide a useful
identity for the time-development operator:

=IO iihg0).(6)

The Laplace transform of the time-development opera-
tor is frequently called its resolvent. In this paper, we
will use a complex variable w=a&-17¢ (¢>0) and the
resolvent operator is defined by

00

K(w)= —-i/ etotgmitLindi= (w—L/h)™1. (N

B. Interacting Systems

Relaxation mechanics is concerned with a system a,
in an excited state, relaxing to a state of lower energy
by means of its interaction with another system 4. In
this paper, system ¢ will be a radiating atom and system
b will be a thermal bath composed of charged perturbers
and a radiation field.

Following the treatment of Fano,? we denote the
density matrix for the composite system by p(», Each

8 R. C. Elton and H. R. Griem, Phys. Rev. 135, A1550 (1964).
9 U. Fano, Rev. Mod. Phys. 29, 74 (1957).
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row or column of p® will be labeled by two indices
(m,m) corresponding to eigenstates ¥, and ¥, ® of
the individual subsystems; p*» will thus have the
form p@®,,, wiar.

An operator Q®, pertaining to subsystem a, may be
regarded as an operator of the composite system when
it is multiplied (direct product) by the unit operator,
I®  of subsystem b. The ensemble average of Q(®I®
is given by the trace of the matrix product Q(®(®p(e.®),
This trace is denoted by Tr,s since it is a sum over states
of both subsystems. If we define a reduced density
matrix p(® by

p(a)=Trb{p(a.b)} s (8)
we obtain
(Q@[®Y="Tr,,{Q@]®pan) )

=Tr,{Q@p@}.

The subsystems are statistically independent when
the average of a quantity pertaining to one subsystem
does not depend on the state of the other, that is, when

(Q@WQ®)=(QWNQ™) (10)

for all operators Q® and Q. In this case, p(*® must
have the direct product form

p(a,b) =p(a)p(b) .

(1)

C. The Zwanzig Projection-Operator Technique

It is well known that a complete knowledge of the
state of a system is not always necessary for the calcula-
tion of observable quantities pertaining to the system.
A simple example of this is the case where the operator
Q is diagonal in some representation; in that represen-
tation, we need only the diagonal part of the density
matrix to calculate (Q)=Tr{(Qp}. Another esample is
found in problems involving interacting systems. Ac-
cording to Eq. (9), the only part of p(+® that is needed
to compute the average of an operator Q(®), pertaining
to subsystem g, is its projection p(®), in this subsystem.

Zwanzig® has developed a formal procedure for ob-
taining an integro-differential equation which governs
the time development of the “relevant” part of any
operator satisfying Eqgs. (1) and (2). The relevant part
of the quantity Q(¢) is picked out by a projection opera-
tor P and is called Q1(¢); the remainder of Q(f) is the
irrelevant part Qx(f). If Q2(0)=0, Zwanzig’s equation is

d
ih&@(t) =PLO:(t)— (/)
X / PLe#0-P)LIx(1— P)LOy(1—s)ds. (12)

In this paper we will not need Q1(¥) itself, but rather
its Laplace transform,

9(w)= / 01 (1)dt. (13)
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The Laplace transform of Eq. (12) provides the follow-
ing expression for 9:(w):

91(w) =i fio— PL— PL(fio— (1— P) L)
X (1—P)LT0:(0). (14)

3. GENERAL TREATMENT
A. The Line Shape

The model which will be used to study plasma broad-
ening contains a radiating atom weakly coupled to a
radiation field and a macroscopically neutral gas of elec-
trons and ions. The effect of the radiation field will be
approximated by means of a damping factor which pro-
duces a Lorentzian ‘“natural line.” The plasma itself is
regarded as three coupled subsystems: the atom, elec-
trons, and ions. The initial expression for the shape of
the atomic spectral radiation will be obtained by means
of a slight modification of Baranger’s® derivation.

The power radiated when the plasma makes an
atomic-dipole transition from the state |m) to the state
| 7), averaged over direction and polarization, is

P=(40,,*/3¢) 25| (m|d;|n)|?. (15)

The vectors |m) and |#) represent states of the plasma
(atom plus charged pertubers) and d; are the compo-
nents of the atomic dipole vector d. The power spec-
trum is obtained by constructing an ensemble and sum-
ming (15) over all possible initial and final states,
weighting the initial states by their probability of oc-
curence pn,. Baranger has written the power spectrum
in terms of a series of delta function lines!?:

P(&)=(40"/3c?) Z.B(Q—wmn)Hmldjlﬂ)l %om. (16)

mnj

In this paper, we will replace the delta-function spec-
trum by a series of very narrow Lorentzian lines cen-
tered about the frequencies wm,. For simplicity, each
line will be assumed to have the same natural width e
and the natural shifts will be neglected. The power spec-
trum is then written

/)
P(@)=(46'/3¢") X (

mnj (d')___wmn)2_|_ €2

The sum in Eq. (17) is called the line shape or line pro-
file. In terms of the complex variable w=a-}-7¢, the line

shape is ; ,
@)= —nt T 5 Lm0

awmi (W= Wmn)

[ (m|ds|n)|%om. (17)

00

=7"1Re Y

mnj ) o

exp{i(w—wmn)t}
Xdt|{(m|d;|n)|%om. (18)

10 The frequency is denoted by & in anticipation of the complex
frequency variable w=&-ie.
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The states |m) and |n) are chosen to be eigenstates
of the system Hamiltonian H, and p,, are the matrix
elements of an equilibrium density matrix. Making use
of the Hermitian nature of d and the completeness of
the H eigenstates, we readily obtain

0

I(@)=7"'Re / st Tr{d- =4 IH(pd)e M1, (19)

0

This line-shape function (with a complex frequency) is
the same as that used by Fano,* with the exception that
the imaginary part of w is now interpreted as a natural
linewidth and the limit e — 0 is not taken. The param-
eter e produces the radiation damping, exp(— ef), which
gives rise to the natural line shape. It should be noted
that the radiation damping is included primarily as a
mathematical convenience since it alters the line shape
only in the region |&—wm.|<e and, for problems
of interest, it is not possible to study this region
experimentally.

The trace in Eq. (19) is frequently called the relaxa-
tion function and is denoted by ®(¢):

B(f)="Tr{d- e #H/2(pd)eitH I} (20)

Thus, the line shape is expressed by the real part of the
Laplace transform of ®(7):

0

I(w)=7"1Re f et B(()dt. (21)

0

Equations (20) and (21) produce the entire line spec-
trum of radiation from the perturbed atom. In most
practical cases however, one is interested in only one
spectral line, or perhaps a group of very close, over-
lapping lines. In such cases, the lines of interest are ob-
tained by restricting the operator d to have matrix ele-
ments between only those atomic states which are
relevant to the radiative transitions being studied. For
example, if one is interested in the Ly-« line, d will have
matrix elements only between the hydrogen states hav-
ing the principal quantum numbers 1 and 2.

B. Weak-Coupling Approximations

The Hamiltonian for the plasma is the sum of the
unperturbed atomic Hamiltonian H,, the electron and
ion kinetic and potential energy operators (K¢ + V.
+K;+ V), the electron-ion interaction V.;, and the
interaction between the atom and the gas of charged
perturbers V.

The coupling between the electron and ion subsys-
tems is removed by assuming that it is possible to re-
place the potential energy operator (Ve.+VeitVi)
by an effective potential of the form (V4 V) in which
V. contains only electron coordinates and V; contains
only ion coordinates. The form of the potentials V, and
V. is discussed in Sec. 3.D., )
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The coupling interaction V,, will be approximated by
the dipole term in a series expansion.!! This term has the
form eR-(&,+8;), where &, and &; denote the electric
microfields produced by the electrons and ions and R is
the coordinate position of the atomic electron.!?

If we denote (K.+V.) and (K;+V,) by H, and H;,
the total plasma Hamiltonian may be written:

H=H,+H+H;i+eR-(848)). (22)

Most of the previous line-broadening theories have
assumed that the atom, electron, and ion subsystems
may be regarded as being statistically independent; this
paper will also make this approximation. According to
Eq. (11), this implies that the plasma density matrix
must have the product form p@p(®p®. In order to
achieve this product form, we neglect the interaction
eR- (8,4 8&;) in the Boltzmann factor, exp{—H/kT}.
With this approximation we obtain

pW=c, exp{—H./kT},
p®=c, exp{—H,/kT},
pW=c; exp{—H,/kT}.

The constants ¢,, c., and ¢; are determined by nor-
malizing Tr.{p®}, Tr;{p®}, and Tr.{p‘®} to unity.

The effect of ignoring the weak-coupling interaction
Vag, in the Boltzmann factor, should be quite small in
the centers of most lines. It must be noted however, that
this factor can give rise to asymmetries on the order of
10% in the wings of some lines. This approximation has
been improved by the authors; however, the correction
alters the Ly-a profile by less than 19, Since the mathe-
matics involved in this correction is somewhat lengthy,
it will be included in a future paper.

(23)

C. The Relaxation Function

A brief study of the relaxation function [Eq. (20)]
provides a framework in which we may understand the
dynamic effects of the perturbing processes. Kubo?? has
made an extensive study of such functions, and the
following treatment of perturber dynamics is based on
his methods.

The relaxation function for the line-broadening prob-
lem may be expressed as an autocorrelation function of
the atomic dipole vector, (d- d(¢)). Baranger? has shown
that this may also be regarded as the autocorrelation of
the light amplitude.

Relaxation functions, of the autocorrelation type,
have a horizontal tangent at =0, and fall smoothly to

11 If the radiator is an ion, one must also consider its Coulomb
interaction with the charged perturbers. Since this interaction
does not depend on the state of the radiator, it may be included in
the electron and ion potentials V. and V;.

12 Tt should be noted that both d and —eR are basically atomic
dipole operators; however, it was shown in Sec. 3.A that the
matrix elements of d are frequently restricted in a manner that
does not apply to —eR, thus the separate notations.

13 R. Kubo, J. Math. Phys. 4, 175 (1963); in Leciures in Theo-

retical Physics, edited by W. E. Downs and J. Down (Interscience
Publishers, Inc., New York, 1959), Vol. I, p. 120.
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zero as ¢ increases. The width and shape of ®(¢) depend
on the rate at which the light train loses the “memory”
of its original phase.

Since the line shape /(w) may be obtained by taking
a Fourier transform of e~<®(f), we expect that the ob-
served width Awis of a given spectral line, will be
related to the width Ats of ®(f) by the well-known

't
property AOJ]/QAh/gl"l (24)

of Fourier transforms.*

Equation (24) implies that any process whose time of
variation is much larger than Af;» may be regarded as
static when calculating ®(¢) and I(w). Similarly, a proc-
ess whose duration time is much smaller than Aty;s may
be approximated as being instantaneous. These limits
form the basis of the static and impact approximations
used by most line-broadening theories.

In order to use Kubo’s methods, we must determine
a correlation time 7. for the perturbing processes. This
correlation time is a measure of the rate of change in the
perturbation. We may define 7. as follows: Starting
with any time chosen at random, 7. is the average length
of time required for the potential to undergo an appreci-
able change from its value at the chosen starting time.
The calculation of 7. for the electron and ion microfields
is discussed in Sec. 3.D.

Kubo has used two approximations to ®(f), the <<,
asymptote ®¢(f) and the £>7, asymptote D,(¢). In
the region /<7, the wave train retains a ‘“memory” of
its original phase and ®(¢) is large. In the region £>7,
the original phase has been “forgotten” and ®(f) is
small. If the correlation time 7. is either much larger or
smaller than Aty s, we may represent ®(¢), over the times
of interest, by the corresponding asymptote.’® These
limits are called slow and fast modulation limits by
Kuboj; in line-broadening problems, they are called
static and impact limits.

The static approximation, ®(¢)=®,(f), assumes that
the coherence of the wave train persists for all times of
interest; this assumption breaks down for the long times,
t> 7., which correspond to the center region, Ad<7.7%,
on the line shape (A& is the frequency separation from
the center of the natural line).

In the impact approximation, ®(f)=®,(f), it is as-
sumed that the perturbation varies so rapidly that the
coherence of the wave train is quickly destroyed; this
assumption is invalid for the small times, ¢< 7., which
correspond to the wings, Ao> 7,7!, of the line.

If it is possible to find correlation times for the elec-
tron and ion fields, the methods of Kubo will permit a
determination of the regions of validity of the static and
impact approximations; this is the subject of the follow-
ing section.

14 The width of e~¢®(#) is roughly the same as the width of ®(z)
sAince the natural width eis much smaller than the observed width

w‘IE/?I.‘he width Afy/z is assumed to be known; it is obtained by

inverting the experimentally observed width Awi/s of the inten-
sity profile.
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D. Effective Potentials and the Correlation of Time

In Sec. 3.B, it was assumed that the potential energy
operator (Veet Vei+ Vi) could be replaced by (V.4 V5),
where V, and V; contain only electron and ion coordi-
nates, respectively. The effective potential (V.+V;)
must adequately represent the electron-ion gas for a
length of time on the order of Afy. Since effective po-
tentials are usually obtained from some type of en-
semble or long-time average, the forms of V. and V; will
depend critically on the change in the electron and ion
distributions during the time Afj;s. In this length of
time, a particle having a velocity v,y= (3kT/m)'/2 will
move a distance Ar,y=1,,Al1/s. Assuming that all par-
ticles of mass m move the same distance in the time
Aly s, it is possible to estimate the resulting change in
the magnitude of the average electric field produced by
these particles. In most plasma line-broadening prob-
lems, the ion field changes by less than 109, while the
change in the electron field may be 509, or more.

Considerations such as these make plausible the
representation of the electron-ion gas, over the times of
interest, by a system of nearly stationary ions immersed
in a rapidly fluctuating cloud of negative charge. In this
model, the electron-charge distribution will be peaked
about the slow moving ions, thus giving rise to a shield
of negative charge for each ion. We therefore use a
Debye-shielded potential for V; and the ion microfield
&; is the negative gradient of this potential'® (ie., a
Debye-shielded field).

Since the electron microfield is characterized by a
rapid fluctuation over the times of interest, we may not
use the (long-time averaged) Debye field to represent
it

In the relaxation theory, the electrons are regarded
as part of a thermal bath for the radiating atom. Since
we do not expect the distribution of bath states to be
too important in the calculation of atomic radiation, we
will approximate the distribution of electron states by
an ideal gas. The electron microfield &, will be taken to
be the familiar Coulomb field due to N electrons.7:18
It should be noted that the electron-electron correlations
thus neglected may be important for long times or small
A&. Lewis'” has studied this problem and his work in-
dicates that these correlations may alter the line shape
in the region A&<Kv,,/Ap, where Ap is the Debye length.

It is a simple matter to find a correlation time for the
ion field since a Debye-shielded field is not appreciably
altered until the ions have moved a distance on the order
of the Debye length. We therefore define 7, for the ion
field to be the time required for an ion, with a velocity
vyy= (32T /m)''2 to move this distance.

Since this paper does not use an impact or static ap-
proximation for the electron field, it is not necessary to
define a correlation time for this field.

16 B. Mozer and M. Baranger, Phys. Rev. 118, 626 (1960).
17 M. Lewis, Phys. Rev. 121, 501 (1961).
18 M. Baranger and B. Mozer, Phys. Rev. 115, 521 (1959).
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E. The Line Shape in the Static Ion Approximation

The static ion approximation is made by assuming
that the ions may be regarded as infinitely massive clas-
sical particles, during the time of interest. This assump-
tion implies that the change in the potentials ¢eR- &; and
V; due to the motion of the ions is negligible; that is,
the commutators [eR- &;,K;] and [V;,K;] are inversely
proportional to the ion mass, hence they vanish in the
infinite mass limit.

In the static ion approximation, the time-develop-
ment operator may be written in the form

exp{itH/h} =exp{itH'/h}exp{itH;/%},  (25)
H'=H,+H.+eR-(8.48)). (26)

The operator exp{i(K;+ V;)t/%} may be commuted with
both the density matrix and the dipole operator; we
therefore obtain the identity

e—itH/h(pd)eitH/h= e—icH'/h(pd)eizH’/h .

where

@27

In a similar manner we commute the ion density matrix
p® with exp{—itH'/%} and obtain

e—itH/h(pd)ei!H/h= p(i)e~itH’/h(p(a)p(e)d)eitli’/h . (28)

This relation is used in Eq. (20) to provide the following
expression for the relaxation function:

B(l)=Tr{d- pWe— il Ih(p@pOd)eitl 5} . (29)

The ion coordinates may be removed from H’ in a
manner similar to that used by Ohno.' The relaxation
function is written in terms of an integral containing
a three-dimensional delta function:

()= Tr{p(i)/d- et (g (@) (@) )

Xt (8~ 8)d*8 |, (30)

where
H"(&8)=H,+H,+eR-(848). 31)

The delta function in Eq. (30) will cause the integrand
to vanish unless & has the same magnitude and direction
as the ion field &;. We may therefore regard & as the ion
microfield even though it is not a function of ion coordi-
nates. Similarly, the Hamiltonian H”'(€) contains the
influence of the ion field without being an explicit
function of ion variables.

We commute the integral and the trace in Eq. (30),
and factor the trace operations to obtain

@(t):/Q(S)Trce{d.e—itH”/h(p(a)p(e)d)eitH”/h}dsg, (32)

where Q(&) is defined by
Q(8)=Tr{p5(&—8&))}. (33)

19 Akiko Ohno, Quantum Chemistry Group, Uppsala Univer-
sity, Uppsala, Sweden, No. 109, 1963 (unpublished).
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This is the familiar microfield function'® which gives the
probability of finding an ion field & at the atom. Q(8)
will be regarded as a known function which is spherically

symmetric,

0(8)=0(8), (34)
and is normalized to unity,

/Q(&)dséa’: 1. (35)

Since Q(8) is not a function of time, the line shape,
in the static ion approximation, is given by

I(w)= / Q(8)J (w,€)d%¢, (36)
where
J(w,8)=7"" Re / et Trye
)]
X{d'e_”H"/"(p(“)p(e)d)e“H”/"}dt. (37)

The function J(w,8) represents the line shape produced
by the electron-atom interaction when an ion field & is
present at the atom.?® The observed line shape is ob-
tained, as indicated in Eq. (36), by averaging J(w,8&)
over all ion fields.

4. APPLICATION OF THE RELAXATION
TECHNIQUES

A. The Effective Atomic Resolvent

In order to simplify the form of the line shape J(w,&),
we introduce the Liouville operator L(§), corresponding
to the Hamiltonian H'/(&), and we define a vector opera-
tor D(¥) by

D(f) = —itH" [h(p(@ p () gitH"" 7 (38)
— -—itL/h(p(a)p(e)d).
Equation (37) may thus be written
J(w,8)=7"1 Re/ et Troo{d-D()}dt.  (39)
0

We now have a situation similar to that discussed in
Sec. 2.C; the atomic dipole vector d operates only in the
atomic subsystem, hence, the only part of D(¢) needed
in Eq. (39) is its projection in this subsystem. We define
a projection operator?* P by its operation on an arbi-
trary matrix M :

PM=p® Tr{M}. (40)

20 Tt should be noted that J(w,8) depends on & only through
R- &;in the static ion approximation, the ion field may be used to
define the z direction for the atom so that R-& becomes R*& and
J (»,8) becomes J (w,8).

21 This operator was suggested by Zwanzig and used by Fano
(see Ref. 4).



132 E. W.
It is easily verified that this operator satisfies P?=P as
well as

Troo{d-D(1)} = Trac{d- PD(2)} . (1)

We denote the relevant part PD(¢) by Dy(¢), and define
its Laplace transform by

D)= / ¢Dy(1)dL. (42)
0
Equation (39) is now written
J(0,8)=7"1Re Tro{d- Tr{Di(w)}}. (43)

Zwanzig’s technique provides an expression for ®i(w)
[Eq. (14)]; we then take the trace of ®(w), over elec-
tron states, and obtain

Tr{D1(w)} =iLw—L(w) I (p“d), (44)
where £(w) is defined by
1€ (w)=(L+L hwo—(1—=P)LT*(1—P)L)
= (LY [A=P)L/hT). (45)

The notation (M) represents Tr.{Mp(®}, which is an
operator in the atomic subsystem. Using Eq. (44), we
may express J(w,&) in the form

J(@,8)=—7"1Im Tra{d-[o—L(w) ] (p®d)}. (46)

In analogy with Eq. (7), we regard the operator K (),
defined by

K(w)=[o—L(w) 1, (47)

as an effective atomic resolvent having a frequency-de-
pendent, effective atomic Liouville operator £(w) (in
frequency units).

B. Introduction of Perturbation Theory

Equation (45) gives £(w) in terms of a series in powers
of L. It is possible to transform this into a perturbation
series by expressing L as the sum of an unperturbed
part Lo and a perturbation L;. The operator Ly corre-
sponds_to the Hamiltonian (H,+H.) and L; contains
the weak-coupling interaction e¢R - (8,4 &). In Appendix
B it is shown that L, may be commuted with the projec-
tion operator P. We use this commutativity property
to transform Eq. (45) into the perturbation series

7 (w) = <L0>+<L1§ [(o— Lo~ (1—P)LTY.  (48)

In terms of the unperturbed resolvent,
K%)= (o—Lo/R)™", (49)

Eq. (48) becomes the more familiar Green’s-function
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expansion
18 (@) = (Loy+(Ly 3 [K(@)(1— P)Lo/ By, (50)

0

The operator {LiZ[K%w)(1—P)L:/#%]") corresponds to
the relaxation operator (M .(w)) introduced by Fano.
The general structure and symmetry properties of this
operator have been discussed by Fano? and by Ben-
Reuven.”

Fano has pointed out that the first term (L;) in the
(M .(w)) series does not contribute to relaxation. This
term represents an average, static perturbation of the
atom and could therefore have been included in the un-
perturbed Hamiltonian. Something of this nature is
done in the BCI theories in which the “unperturbed”
radiator is an atom already perturbed by a linear Stark
effect with a Debye-shielded ion field. Taking note of
this fact, we write the operator £(w) in the form

%18(w) =(Lo)~+{L1)+#5C(w) , (51)

where

ne(e) = (Ls 5:': (K@) (1—P)Ly/]Y.  (52)

The operator 3C(w) contains all of the frequency depend-
ence of the effective Liouville operator and there-
fore represents the relaxation effects of the “‘time-
dependent” perturbation of the atom. In order to
compare with previous theories, we must express the
elements of the operator [w—£(w)] in terms of the
eigenstates |a), |8), |c), - - of the unperturbed atomic
Hamiltonian H,. The matrix elements of Ly and L; are
given in Appendix A, assuming that & defines the z
direction for the atom. We denote the z component of
R by R? and use Awqp= (w—wqs) = Adap+ 1€ to obtain

[w_ce(w):lab,a’b’ = Awa 30407060’
—(€8/) (R7aurdbpr— R 48 0ar) —30(@)ap,arvr . (33)

A comparison of Egs. (46) and (53) with Egs. (10) and
(32) of Ref. 22 shows that 3C(w) takes the place of
the operator ®,; used by Griem. A similar comparison
with Eq. (46) of Ref. 3 shows that it replaces the effec-
tive interaction 3C used by Baranger. It is important to
note that the effective interaction 3¢(w), obtained in this
paper, is frequency-dependent whereas the effective in-
teraction in the BCI theories is not. This frequency
dependence is due to a time dependence of the electron-
atom interactions which was lost in the approximation
made by the BCI theories. This point will be discussed
in more detail in the following section, and it will be
shown that the frequency dependence provides an asym-
metry which is not present in the BCI theories. Finally,
we note that the tetradic nature of 3¢(w) is equivalent
to the direct product, or “double-atom,” representation
used by the BCT theories.

2 H. R. Griem, A. C. Kolb, and K. Y. Shen, Phys. Rev. 116,
4 (1959).
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5. CALCULATIONS

A. A Second-Order Approximation

A calculation of the line shape requires a knowledge of
the elements of the effective atomic resolvent K(w).
This, in turn, requires that the tetradic [w—£(w)] be
inverted. An nth-order calculation of K(w) is obtained
by truncating the series for £(w) [Eq. (50)] after the
nth-order term. The resulting tetradic, [w—&(w)], is
represented by a matrix (just as the direct product of
matrices is represented by a matrix?®) and the corre-
sponding resolvent is obtained by a simple matrix
inversion.

In this section, the results of a second-order evalua-
tion of K(w) are presented, and a comparison is made
with the BCI theories. The third- and fourth-order
corrections to K (w) are readily obtained by a straight-
forward, but lengthy, calculation. In order to simplify
the following calculations, we express the operator L;
in the form (Li°+ L,%), where L;¢ corresponds to the
electron-atom perturbation e¢R- &,, and Li* corresponds
to the ion-atom interaction eR- &. Since eR- & does not
operate in the electron subsystem, the projection opera-
tor [Eq. (40)] will commute with L% In the model we
are using, &, is a rapidly fluctuating field; the average
(R-8&,) will therefore vanish, thus causing (L:?) to
vanish.24

Using the commutativity of P with L;* and Lo, the
second-order term in Eq. (48) becomes

(Li(fiw— Loy *(1— P) L1)={L*(hw— Lo)~"'(1— P) L1*)
=(L1*(ho— Lo) " L1*)—(L1*(how— Lo) 1 X L1%).  (54)

Since (L:°)=0, the second term on the right-hand side
vanishes and the second-order term contains only the
electron-atom interaction,

(Ly*(fiw— Lo) ™ Ly*)=(L1*K°(w) L1?)/%.  (55)

The H, eigenstates are denoted by |a), |b), |c), etc.,
and the H, eigenstates by |a), |8), |v), etc. The elec-
tron-density matrix p(® is diagonal in the states of H,
and we denote its diagonal elements by f,. The tetradic
operator K%w) is diagonal between the composite state
vectors |aa), |BB), etc., and we denote its diagonal ele-
ments by £%(w)se,0s (see Appendix A). The matrix
elements of (L;°K%w)L1¢) have the form

(L1*K%(0)L1%)ab,artr = Obp 2 acp{aa|eR- 8,[cB)

X (C.B l eR- sel a”a>fak0(“’)cﬂba

F 800t D acp (D] eR- 8| cBY{(cB| eR - &, bar) fuk®(w) accs

—2ap (O'B|eR-&.|ba){ac| R+ &.] a'B) fk*(w)aav s

— 2 ap (ax|eR- &.|a'B)(H'B| €R - &|bar) f5k*(w)arpva-

(56)

2 E. P. Wigner, Group Theory and Iis Application to the Quantum
M ed;am’csl 8of Atomic Specira (Academic Press Inc., New York,
1959), p. 18.

2% Mar.)thematically, (R- &.) vanishes because p is a spherically

symmetric function of electron coordinates and R- &, is antisym-
metric.
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Each of these terms is evaluated by a straightforward,
but rather lengthy, procedure which we shall outline
here (for more detail, the reader is referred to Appen-
dices A, B, and C of Ref. 25). The matrix elements of
R- & are evaluated using unsymmetrized ideal gas wave
functions for the electrons. The sums over electron
states, in Eq. (56), are replaced by 3N-dimeénsional in-
tegrals over the IV electron momenta. In evaluating
these terms, it is found convenient to replace k%(w) by
its integral representation [see Egs. (7) and (A6)],
and to commute this integral with the integrals over
the electron momenta. The result of such an evaluation
gives the following second-order expression for 5¢(w):

2ie*n /8wm\1/?
Zc(w)aba’ = (*"‘—)
3n2 \ kT
X {Z [6bb’Rac' Rca'G(chb)—l—Baa’Rb’c' Rch(_ Awac)]
— Ruw R [ G(Awar)+-G(— Awn) T}, (57)
G(Aw,p) is an integral defined by

G(Aw) =/°° [s(s+in/kT) 12 exp{isAw}ds

i
= —‘3 exp{#Aw/2kT}H P (—ihAw/2kT), (58)

where H® is a Hankel function of the second kind.
Since G(Aw) is a complex function of the complex
variable Aw= A@-}-1¢, it is convenient to write

G(Aw) =G (A&)—iG(A&), (59)

where G, and G; are real functions of the real variable
Ab.

If we compare Eq. (57) with Eq. (4-45) of Ref. 2 or
Egs. (13-108) and (13-109) of Ref. 3, we see that the
difference between the BCI theory and the relaxation
theory lies in the integral G(Aw).

B. The G Integral

The G integral in the BCI theory (for hydrogen lines)
is given by Eq. (30) of Ref. 22 in the form

/ e vdy/y>~—0.577T—In ymin, (60)
ymin

where ymin is a temperature- and density-dependent
cutoff parameter. This cutoff is a result of the impact
parameter cutoffs which are necessary to avoid the
logarithmic divergences in a binary collision theory.
The integral in Eq. (60) is real, hence we compare it
with G,(A&). There is no analog for G;(A&) in the BCI
theory for hydrogen lines. For most hydrogen lines in

2% E. W. Smith, Ph.D. dissertation, University of Florida, 1966
(unpublished).
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the optical region, the condition #A&/2kT<<1 is satisfied.
In particular, this condition is satisfied in the center of
the Ly-a line. With Egs. (58) and (59) one easily obtains

P
G,(A&;)z—0.577—1n{—-—(A&;2+e2)”2}. (61)
4RT

In the relaxation theory, the frequency dependent
function (#A&/4kT) appears naturally, replacing the
cutoff ymin used in the BCI theories.

Griem?® has pointed out that this is quite similar to
the Lewis cutoff!” which replaces ymin by (#A&/nkT),
where # is the principal quantum number. To study this
similarity, we note that the usual binary-collision proce-
dure replaces the time-development operator for the
interval (¢, i+ A¢) by a product of binary-collision transi-
tion operators! for those collisions whose time of closest
approach falls in the chosen interval. Since the transi-
tion operator is essentially an .S matrix, this procedure
implicity assumes that any collision whose time of
closest approach lies in the interval (¢, t4Af) is com-
pleted in that interval. Lewis has corrected this “com-
pleted collision assumption” by averaging over N
electron-atom collisions at various stages of completion.
This treatment allows all electrons to interact simultane-
ously with the atom, regardless of their times of closest
approach. Since this is the essence of a many-particle

26 H. R. Griem (private communication).
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dilute gas treatment, it is not surprising that G,(A&)
is similar to the Lewis cutoff. It should be noted, how-
ever, that our results [Eq. (59)] differ significantly from
those of the impact theories by the presence of Gi(Aw).
Using Eq. (59) we may write Eq. (57) in the form

3 (w)=S(A&)+iW (A). (62)
Substituting this result in Eq. (53) we obtain

[w—“e(w)]ﬂb.ll’b': Awabaaa’abb’
- (eg/h) (Rzaa’abb’ _sz’baaa')
_'S(A&’)ab,a’b’_iW(Aw)ab,a' b’ (63)

Noting the role of this operator in the expression for
the line shape [Eq. (46)], we may regard S(A®) and
W(A&) as {frequency-dependent shift and width
operators.

In order to study the physical significance of this
frequency dependence, we note that (L;°K%w)L1¢) rep-
resents a second-order electron-atom interaction. In a
perturbation expansion of the dipole-field interaction,
the second-order correction to the energy has the form
&-X- &, where X~RR is the polarizability tensor. It is
possible to show that (L;°K°(w)L°) can be expressed as
the Laplace transform of four terms, all tetradics, of
the form (&,-X(¢)- &.(¢)), where X({)~R exp{itH./#}R
and &.(t)=exp{—itLo/%}&.. We therefore interpret
(L1*K%w)L1¢) as an induced dipole interaction term
whose frequency dependence is a result of the time de-
pendence of the interaction. Physically, we expect that
the electric field &, will induce an additional dipole mo-
ment and that, at any instant, the induced dipole will
point in the same direction as &,.. This interaction will
lower the atomic energy levels, and, since the lower
levels are more tightly bound, the energies of the final
states will be less effected. This will reduce the energy
separation of the initial and final states, resulting in a
preference for lower energy, or longer wavelength trausi-
tions (as compared with the center of natural line). We
therefore expect the quadratic electron-atom interac-
tions to produce a small asymmetry which increases the
intensity of the red wing relative to the blue wing. Such
an asymmetry is indeed observed in the theoretical
profile.

C. Numerical Results

Intensity profiles have been calculated for the Ly-«
line of hydrogen. These calculations have used the
microfield functions obtained by Mozer,'¢ which are
tabulated up to a relative field strength of ten. This
limit on the microfield average [Eq. (36)] imposes a
limit on the range of frequency (or wavelength) separa-
tions for which realistic intensity profiles can be calcu-
lated. A more accurate method of calculating the micro-
field function has been developed by one of us,? and
extensive calculations of the Ly-a line are now in
progress.

2 C. F. Hooper, Jr., Phys. Rev. 149, 77 (1966).
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A representative Ly-a profile is shown in Fig. 1, which
plots relative intensity against the wavelength separa-
tion AN measured from the center of the natural line.
The critical wavelength A\, indicates the point where
the static ion approximation breaks down (see Sec. 3.C).
The region |AN| <A, should not be regarded as ac-
curate since it is not known how large a correction must
be made for ion dynamics in this region. Lewis!” has
estimated that electron-electron correlations, neglected
in this paper, may be important in the region |Aw|
< 940/Ap (Where 2,, is the average electron velocity and
Ap is the Debye length). This corresponds to |AN| <5 A
in Fig. 2. However, we do not expect this effect to pro-
duce an appreciable alteration of the profile in the
region |AN| >AX..

In order to compare the theoretical Stark profiles
with experimental line shapes, we must consider the
correction for Doppler broadening. This correction is
usually made by folding the Doppler line into the Stark
profile.? Doppler corrections have been applied to all
of the Stark profiles which have been calculated by the
authors, and the only observable alteration (between
1 and 109%,) occurs in the region | AX| <AM,. Since this
region is not accurate, in the present theory, we will
compare the Stark profiles directly with the experi-
mental data and neglect the Doppler effects.

Figure 2 shows a comparison of the theoretical Stark
profiles, obtained by the BCI theories and by this paper,
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with an experimental profile measured by Elton and
Griem.8 The experimental points are corrected for self-
absorption. No correction has been made for boundary
layer reabsorption however, and the data show a strong
absorption dip at the center which is probably due to
this effect.

In the region |AN|>0.5 A, the experimental profile
shows an asymmetry on the order of 109, favoring the
red wing; this is readily verified by noting that the ex-
perimental points lie slightly below the symmetric BCI
profile on the blue wing and slightly above on the red
wing. The relaxation profile also shows an asymmetry of
about 109, and agrees quite well with the experimental
data in these regions.

The asymmetry in the relaxation profile is due en-
tirely to the quadratic electron-atom interactions since
the ion broadening is symmetric about the unperturbed
line (to the order of approximation used in this paper).
While there are many other sources of asymmetry,?28
we believe that these other sources contribute less than
19, to the asymmetry in this region of the Ly-a line.
The quadratic electron-atom interaction should there-
fore account for asymmetry in this region and Fig. 2
seems to confirm this. We also suspect that this interac-
tion will produce at least part of the unexplained asym-
metry which has been found in the wings of this line.?®

6. CRITIQUE

The theory of plasma line broadening presented in
this paper represents an initial approach to the problem
using relaxation techniques. We feel that this method
provides a more consistent treatment of the subject
than do the previous theories. While approximations
have been made, it should be possible to remove many
of these in a systematic and practical manner. Some
problems still to be considered are discussed in this
section.

It has been noted that many sources of asymmetry
have not been included in the present work; however,
the other known asymmetries may be included in a
manner similar to that used by Griem.2-2

The absence of ion dynamics, in this theory and in
other theories based on the static ion approximation,
is not too serious because it casts doubt on a very small
region at the line center. It should be noted, however,
that some small unexplained shifts have been observed
in the Ly-a and Ly-8 lines.® In order to study these
shifts, a more accurate line-center theory is necessary.

A matter of some importance is the rather crude
treatment of some correlations in this theory, and in
most other Stark broadening theories. The electron-ion
and ion-ion correlations are handled quite well by the
present ion microfield theories. The electron-electron
correlations and the correlations between the radiating
atom and the charged perturbers are not treated as well,
if they are considered at all.

28 H. R. Griem, Phys. Rev. 140, A1140 (1965).
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The electron-electron correlations are neglected in
this paper because an ideal gas Hamiltonian was used
in evaluating Eq. (56). A method of correcting this
approximation has recently been developed and nu-
merical work is now in progress to determine the extent
of this correction. Lewis!” has used a modified impact
theory in order to test the influence of these correlations
on the line shape. His work indicates that this effect is
important in the region | Aw| <v.y/Ap. Since this covers
the entire profile in Fig. 2, the electron-electron correla-
tions must be regarded as an important matter.

The correlations between the radiating atom and the
charged perturbers are not considered by most Stark
broadening theories. It is interesting to note, however,
that it is the absence of such correlations which causes
the factor (R- &) to vanish (see Sec. 5.A). In this paper,
(R-&,) vanishes because the operator R- &, is averaged
over a spherically symmetric electron distribution, p).
One expects, however, that the existence of the atomic
dipole R will alter this spherical symmetry in the im-
mediate vicinity of the atom. This would imply that
there may be some (R-&,) contribution from the close
electron-atom interactions. It is not known how large
an effect, if any, this may have on the line shape.

Although many refinements are still necessary, the
relaxation theory presented in this paper has some in-
herent advantages which are not found in the other
modern Stark broadening theories. In particular, the
impact approximation and the binary-collision approxi-
mation are not needed. The complicated time integra-
tions, which necessitated approximations in the impact
theories, are not found in the relaxation theory, thus
allowing one to proceed further without approximation.
Finally, the relaxation theory provides a more unified
approach in that the electrons and ions are treated to-
gether as a perturbing gas. That is, Egs. (36), (46), and
(53) were explicitly derived.

The classical path approximation, which is made by
most impact theories, assumes that the perturbers may
be represented by wave packets of negligible spread and
the trajectory of a given perturber is unaltered by the
presence of the atom and the other perturbers. In most
applications of this approximation a classical “point
particle” is used to represent the perturber. This paper
does not make the classical path approximation in the
sense that no wave packets are formed; however, the
statistical independence of the atom and the perturbers
is assumed. It is interesting to note that the divergence
which appears at small impact parameters in the clas-
sical path treatment does not occur in this paper. This
divergence is not found in the relaxation theory because
““point particles” are not used. This is more of a conveni-
ence than an improvement because a more rigorous
quantum mechanical treatment of the interactions is
necessary for such close collisions.

While we have by no means exploited all the advan-
tages of the relaxation formalism, we feel that this
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treatment provides a simple and unified framework for
future improvements in the theory of Stark broadening.

Note added in proof. Recent calculations show that
the inclusion of electron correlations removes the dip
occurring at the center of the relaxation profile while
not altering the rest of the profile appreciably [see
Fig. (2)].
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APPENDIX A

In order to facilitate the evaluation of the elements
of tetradics such as Lpn,mw, we use a direct product
notation

L=HQI-IQH*. (A1)

If |m) and |n) are eigenvectors of H, we may use the
basis |m) |n) to obtain

Lmn,m'n’ = <m| <7’Ll (I{®I_I®H*) [m’)ln’)
= (m|H|m")(n|n')—(m|m')n| H*|n')
= Hmm’ann’_ 5mm’Hn’n )

which gives Lun,mas as defined by Eq. (5).

Since the ions are accounted for by the microfield
average (36), it is necessary to calculate matrix elements
between the basis vectors of only two subsystems
(the atom and the electron gas). The basis vectors for
the atomic subsystem are the H, eigenvectors |a), |8),
|¢) having the energies E,, Ej, E.. The electron gas
basis vectors are the H, eigenstates |a), |3), |v) with
energies E,, Eg, E,. The composite vectors are |aa),
|88), |cy). A matrix operator, such as the density
matrix, will have four subscripts, as discussed in Sec.
2.B. The density matrix, p®p(®, has the elements [see

Eq. (23)]
[p(“)p‘e)]aabﬂ= Cucee—Eu/kTe—Ea/kTaabaaﬂ
= fafaaabaaﬂ ’ (A3)

where f, and f, denote ¢, exp{—E,/kT} and c,
exp{— E./kT}. A matrix operator, such as R, which
operates in only one subsystem, has the form

Raa,bﬁz Rabsaﬂ .

(A2)

(A4)
A tetradic operator, such as Lo=(H,+H.,)QI

—IQ(H.+H,)*, will have eight subscripts,

(Lo)aatp;ararvypr=[(Ea— Ev)+ (Ea— Eg) 10aa 8510 aar bpsr

= h(wub+waﬂ)5aa’ abb' 6aa' 55;9' . (AS)

The resolvent K%w), corresponding to Lo [see Eq.

(49)7], will have the same diagonal form as Ly,

K@) aabp;ararvpr = (0— Wab— Wap)  8uar 8o Oaer B

= ko(w)aabﬁaaa’abb’aaa'aﬂﬂ'; (A6)



157 SPECTRAL

we have defined the “matrix” of the diagonal elements
of K%w) by £%(w).

The operators L;° and L,* correspond to the interac-
tions eR- &, and eR- &, respectively (Sec. 5.A); their ele-
ments are given by

(Lle)aabﬁ;a’a’ v = <1106[ eR- 83[ a'a')ﬁbb,éﬂﬂ,
— (b8 e(R-8)*| 8/ V0aarduer (AT)
and
(Lli)aabﬁ; [ e&- (RaarEbb: _— Rbl bﬁaa:)aaa, Bﬂﬂr . (AS)
The elements of the operators (Lo and (L") are
readily obtained from the above; they are

<L0>ab,a’ b= Zuﬂ (LO)aaba;a’ﬁb’ﬁfﬂ
= D1wa18aa S0 (A9)
and

LaPap,ar =68 Raardprr—Rupdear).  (A10)

APPENDIX B

In order to show that P and L, commute, we consider
the operation of P on an arbitrary matrix M. Equations
(40) and (A3) give

(PM)aabﬁ= fa5a|3 Za’ Maa’.ba’ . (Bl)
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We next consider the operation of P on the matrix

(LoM),

[P(LoM) Joats= fabap

>< Z (Lo)aa’ba’; a."a"b"ﬁ"Ma"a"b”ﬂ”- (B2)
al’ u/lu"/b//ﬁll
Using Eq. (AS) and noting that wae=0, we obtain
[P(LoM) ) aavs="7fawarBag 2 ar Maarvar-  (B3)

In a similar manner, we obtain the matrix elements of

Lo(PM)

LLo(PM) Jaars=1 22

a’a’b'B’

(wab+wa6)
X60&’6bb’5aalaﬁﬂlfaraalﬁ/ Z Ma’a" brart
= hf“wabaﬁﬂ Z Maa’ba’ . (B4>

A comparison of Egs. (B3) and (B4) indicates that
P(LoM )= Lo(PM); (BS)

the proof for a tetradic M is identical.



