
Reprinted from 

T H E  P H Y S I C S  O F  F L U I D S  V O L U M E  1 1 .  N U M B E R  3 

Printed in U. S.  A .  
M S R C K  1 9 6 8  

Theory for Cyclotron Harmonic Radiation from Plasmas 

KARL-BIRQER PERSSON AND E. G. JOHNSON, JR. . 
National Bureau of Standur&, Boulder, Colorado 

D. A. UALENBROCK 
Department of Mathematics, University of Wisconsin, Madison, Wkconsin 
(Received 5 September 1967; final manuscript received 7 December 1967) 

AND 

A highly simplified hydrodynamic model for the cause of cyclotron harmonics radiation in a magneb 
ized, abnormal-glow, helium plasma is proposed. The high-velocity electrons are treated as sources for 
the charge density waves in the plasma. Electromagnetic radiatiori results from interaction of these 
wake waves with the statistical fluctuations (the granular structure in the ion density). This radiation 
contains the cyclotron harmonics. Some numerical cuwes of the radiation spectra are shown for a 
number of plasma parameters. 

INTRODUCTION 

The present paper derives a theory which gives a 
reason for the incoherent electromagnetic noise that 
is emitted in the neighborhood of the electron 
cyclotron frequency and its harmonics under the 
circumstance that the plasma here considered is 
an abnormal-glow helium plasmal located in a 
uniform magnetic field. A following paper describes 
the experimental arrangements necessary to observe 

* the emitted spectrum and compares this and other 
theories with the observations.2 

The radiation spectra discussed here have been 
subjected to rather intense investigations, both 
theoretical as well as experimental, for the past 
ten years without leading to positive identification 
of the mechanism responsible for the radiation. The 
confusing situation probably exists because there 
could be several different physical mechanisms in- 
volved and because most plasma configurations used 
will not allow a simple theoretical de~cription.~ To 
compound the difficulties the proposed theories are 
so incomplete that they can not be compared with 
the experimental observations. A reasonably com- 
plete summary and bibliography on this subject is 
given by Bekefi.4 As he points out, in order to 
understand the emission of electromagnetic radia- 
tion from magnetized plasmas, it is necessary to 
determine the coupling between longitudinal and 
transverse electromagnetic waves and to calculate 
the absolute radiative intensities. We address our- 
selves to these points. 

Because the abnormal negative glow plasma is 
sufficiently spatially uniform, we have a situation 

1 K. B. Person, J. Appl. Phys. 36, 10 (1965). 
* H. W. Wassink, Phys. Fluids 11, 629 (1968). 
a V. L. Ginsburg and V. V. Zhelezhiakov, Soviet Astron. 2, 

4 G. Bekefi, Radiation Processes in Plasmas (John Wiley & 
653 (1958). 

Sons, Inc., New York, 1966), Chap. 7. 

that permits possible quantitative agreement be- 
tween theory and experiment. Since we chose to 
observe only the radiation from the field-free part 
of the plasma, it was necessary to do some modifica- 
tions to the discharge tube described in Ref. 1. 
These modifications are shown in Fig. 1. The dis- 
charge tube is divided into parts I and I1 by the 
mesh anode. As a consequence, the space I which 
includes the cathode and the cathode fall range is 
completely shielded by this fine metal mesh struc- 
ture. Because the anode is sufficiently transparent. 
the high-energy electrons generated in the cathode 
fall range enter the space II and generate a sub- 
stantial and essentially spatially uniform plasma. 
The magnetic field is applied parallel to the tube 
axis. This configuration permits observation of the 
emitted radiation both parallel and perpendicular 
to the applied magnetic field. The theory under dis- 
cussion attempts to explain the cause of radiation 
emitted in the direction parallel to the magnetic 
field. This case is chosen because additional in- 
formation about the radiation process can be gained 
by distinguishing between left- and right-hand cir- 
cularly polarized radiation. 

The order of magnitude of some of the parameters 
which characterize the abnormal negative-glow 
plasma for helium at a pressure of 0.5 Torr follow: 
the electron density is 10l2 ~ m - ~ ,  the electron-beam 
density is 10' ~ m - ~ ,  the temperature of the cold 
electrons is 0.05 eV, the energy of the beam electrons 
is 3000 eV, the collision frequency of the cold elec- 
trons is lo8 sec-', the collision frequency of the 
beam electrons is 10' sec-', and the Debye length 
is lo-' cm. Because the Debye length is two orders 
of magnitude smaller than the average distance be- 
tween electrons in the beam, we can rule out possible 
collective phenomena involving the beam. 

Briefly, this theory assumes that each individual 
619 
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Fro. 1. A block diagram of the plasma tube. 

beam electron or any other fast electron in the 
plasma acts independently of any other electron of 
the same type during its Coulombic interaction 
with the cold background plasma. Because the fast 
electron has velocities at  supersonic speeds, there 
are excited longitudinal space waves in the back- 
ground plasma which, when the collision frequencies 
are small, result in a space-charge wake wave that 
has a time &"e harmonically distributed rela- 
tive to the cyclotron frequency. When the back- 
ground plasma is perfectly uniform, these longitu- 
dinal waves are not coupled to any transverse 
electromagnetic modes. As a consequence there is 
no electromagnetic radiation from the induced wave 
packet. When the exciting electron orbits in a 
spacially nonuniform plasma, the coupling is opera- 
tive and harmonic radiation ensues. Because the 
plasma has a finite number of particles and be- 
cause it has an amorphous granular structure on 
the microscopic scale, we find that there can be 
nonuniformities in the ion density. Crudely, we can 
vision each ion and the associated free electron in 
the plasma as an oscillator with a characteristic 
frequency equal to the plasma frequency. When a 
fast electron in a cyclotron orbit periodically excites 
a small number of these randomly situated oscil- 
lators, we find cyclotron harmonics. The number 
of oscillators is controlled by the cyclotron orbit 
size of the fast electron and by the fact that the 
only oscillators that are driven are those that are 
located within about a Debye radius of this orbit. 
To give some numerical idea of the number of 
oscillators we would expect on the average, we 
consider that the fast electrons of energy 1 eV are 
produced by the ionizing cpllision of the beam 
electron with the neutrals. From the typical num- 
bers associated with the plasma parameters in a 
helium negative-glow plasma, we find the number 
of ions along the cyclotron orbit is lo'. This is a 
sufficiently large number to validate the use of the 
hydrodynamic equations for the basic electromag- 
netic processes. At the same time this number is 

sufficiently small that variations in the actual 
number of oscillators permit strong coupling between 
the longitudinal and radiative electromagnetic 
modes. Please note that the number and location 
of the ions in the cyclotron orbit are stationary 
at the time scale of the motion of the fast electron. 
In addition to the above mechanism for efficient 

coupling of the longitudinal fields to the radiative 
fields, there can be generated a harmonics emission 
spectra if there are spacial time-independent ion- 
density nonuniformities at a scale of less than the 
radius of the significant cyclotron orbits. 

Ginsburg and Zheleziakov' have proposed that 
fluctuations, primarily electron density, provide effi- 
cient scattering centers for the propagating longi- 
tudinal waves and efficient coupling to radiative 
electromagnetic waves. This model probably de- 
scribes some of the observed microwave emission 
from hot plasmas; however, the mathematics asso- 
ciated with this model is currently unable to produce 
numbers that will allow quantitive comparison with 
available laboratory measurements. We differ from 
their analysis by considering the electromagnetic 
radiation induced by a longitudinal wake bounded 
to the generating electron. In its present form, our, 
model is primarily applicable to the cold plasma 
which is experimentally well represented by the 
abnormal negative glow in helium.' It does not 
invoke fluctuations of the electron gas and it does 
not depend on the presence of propagating longi- 
tudinal waves as is the case for the model suggested 
by Ginzburg and Zheleziakov. 

THEORY I. THE ELEMENTARY RADIATOR 

This theory is concerned with the emission of 
microwave radiation by a three-component (ions, 
electrons, and neutral atoms) nonrelativistic cold 
plasma with a homogeneous, static magnetic field 
Bo. The actual geometry of the plasma is a finite- 
length cylinder of radius R with the cylinder axis 
parallel to Bo. However, except for the final steps 
of the calculation the finite size of the plasma will 
be ignored in the equations and an infinite plasma 
is assumed. 

The basic equations are derived from the Boltz- 
mu-Vlasov equations for the three components 
by introducing collision terms with empirical effec- 
tive collision frequencies and taking zeroth- and 
first-order moments with respect to the velocity. 
The moment hierarchy is truncated by replacing the 
square term in the velocities by a diagonal pressure 
tensor with ideal gas law dependence on the tem- 
perature. 
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Since the ion mass is very large compared to the 
electron mass, only the limiting equations for infinite 
ionic (and atomic) mass are considered. They imply 
that the ionic current and charge densities J(+) and 
Q(+) are constant in time. Thus J(+) will vanish 
if it is assumed to vanish at some initial time, 
as will be done here. Likewise t6e equations for the 
neutral component decouple from those for the 
electron component and can be ignored. 

As a result the effects of the positive and neutral 
components are represented in the equations for the 
electron component only in terms of an effective 
electron-neutral collision frequency v and the 
neutralizing, possibly spatially varying ion-charge 
density q ( + )  = qA+)(l + f), where f gives the spatial 
deviation from the average charge density q;". 
Suggested causes for this f are variations in the 
production mechanisms for the background plasma 
or the intrinsic fluctuations in the ion density which 
are being sampled in such a way that they are signif- 
icant and hence not. negligible. We assume that 
these fluctuations are essentially direct current com- 
pared to the high-frequency processes involved in 
the production of microwave radiation. 

The externally injected fast (keV) beam electrons 
and the energetic secondaries resulting from initial 
ionizations are represented in terms of their charge 
and current-density q") and J'" as the source in 
Maxwell's equations and are not included in the 
Boltzmann distribution functions. 

Thus with q, J as the electron charge and current 
densities, K = lei/m the charge to mass ratio of an 
electron, v2 the squared electron sound speed, 
o, = K lBol and re = vJw, the cyclotron frequency 
and radius of a source electron with transverse 
speed v,  and the loss rate v, ,  the basic equations 
including the usual Maxwell's equations (in mks 
units) are as follows: 
Moment equations 

% + V-J  = 0,  
at 

($ + v1 - KB .>J + v2Vq + K E ~  = 0; 

Maxwell's equations 

V-E = G1(q  + q ( + )  + q " ) ) ,  

V - B  = 0, 

Source equations 

r(')(t) = ro + [re cos oc(t - to), 

' r e  sin W S ( t  - to), 20 + V J I ,  (7) 
T,t- , t+i( t )  @(t+ - t )  - @ ( t  - t-),  (8) 

where 0 is the step function, and t+ and 1- are the 
creation and destruction times: 

q(* ) ( r ,  t )  = e 6[r - r ( a ) ( t ) I ~ f t - , l + l ( t ) ,  (9) P < 0, 
d 
dt 

J'"'(r, t )  = Q ( ' ) ( T ,  t )  - r") . 

Here r") represents the position of a beam or 
secondary source electron and T, -, 1+1 simulates the 
effect of collisions on them. 

Equation (2) is the only nonlinear equation and 
is linearized by replacing B with Bo and q with - q(+) ,  
which is found by requiring approximate local 
neutrality q + q ( + )  0 of the background plasma. 
Here E = 0 to this order in the linearization. Also 
va is taken as a constant. 

To make the system of Eqs. (1)-(10) more 
manageable, Maxwell's equations are re-expressed 
in terms of the scalar and vector potentials Qi and A: 

i a  
c at 

0 = VeA + 3 - + (Lorentz condition), (13) 

When a preferred (right-handed, orthogonal) coor- 
dinate system with coordinates (x, y, z )  and the 
z axis parallel along Bo is introduced, the vectors 
or operators (like J or V) are usefully resolved 
into longitudinal and transverse components, J I  = J .  
and JL = (J+, J-), where in turn JL is conveniently 
characterized in terms of J ,  = J. f iJ,. The time 
dependence is treated by a Fourier integral trans- 
formation according to the generic formula 

+- 
j ( t )  = / o!ue-*"tj(w) (16) 

-OD 

such that a real valued f ( t )  satisfies the identity 
f(w) * = j (  - w) with respect to complex conjugation. 

Finally, dimensionless variables and fields labeled 
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with an asterisk are introduced and defined as 
follows : 

such a choice of coordinates be impoasible. This pro- 
cedure is adequate because Eqs. (18)-(24) are linear 
in the variables. 

With C 1 r = -r*,  t = - t * ,  @ = '3 @*, 
WU e& 

ma q = 5  ews * 
A = mp~loA*, J = $ J*, c3 q I 

where 0: = € i ' K q A + ) ,  the squared (average) plasma 
frequency. 

Using the notation 

w, = w + iv, 

and 

as well as leaving out the asterisk which labels the 
dimensionless variables and fields, one finds after 
the Fourier transformation the following set of 
equations : 

iwg = v,.J, + 0,,.9,, 
i w b  = v,& + Vu.&, 

(18) 

(19) 

(20) 

(21) 

(22) 

(0: + 0; + w2)@ = -(Q + q(*)  + @ + I ) ,  

(v: + 0% + U">* = -(J, + J Y ) ,  
(v: + vi + W')Al, = -4, 

QJl + v2V1(iwQ) 

QUJ,, + v2V,1(iwQ) 

+ (1 + f)V,(iwb) + w ' z ,  -- 0 ,  (23) 

+ (1 4- f)Vll(hb) + w ' B ,  = 0. (24) 

Since in Eqs. (7)-(10) the motion of a given 
source electron is assumed hehcal, the corresponding 
variables are best described in terms of a cylindrical 
coordinate system (r, 'p, z )  whose z axis coincides 
with the axis of the cylinder generated by the helix 
and whose origin is at ro. Only at  the end, when the 
incoherent contributions of the various source elec- 
trons to the radiation are summed subject to the 
varying initial conditions and orbit parameters, will 

6[r - r(')(t)] 

exp {.it[cp - wC(t  - to)] + ik,(z - zo - vat) 1, 
(25) 

one finds 

d( ' ) (T ,  c p ,  z , 4  

- - 2 /- dk,  eik*'q:')(r, k , ,  w ) ,  

(26) 
'--.=a -m 

q : v ,  k, ,  w) 

= -(21F)-'~,~ 6(r - r,) exp [ - i (k ,z ,  - .%.to)] 

.(iw,)-'[exp (iw,t+> - exp (iwtt-)I, 

with 
04 = w - CW, - k,v, 

and 

J y ) ( r ,  cp,  z ,  a) = =tirgJcefi'eLOQ(*)(r, cp,  2, w =t 0,) 

- - 2 e"'")'' [: dk,  eik*'J:.)&-, k,, w ) ,  (27) 
t - - m  

where 
J:::(T, k,, a) = =tirbuoqj')(rJ k,, w )  

and 
s;yr, 'p, 2, 0) = u , g y r ,  'p, 2, 0) .  

The quantity relevant for the description of 

A1(z, U) = /m r dr lr d'p A,@, 'p, z ,  w ) .  (28) 

With a similar notation for the other quantities 
of Eqs. (18)-(25) it is essential to note that for a 
spatially homogeneous plasma (with 0,f 5 0) the 
longitudinal and transverse equations decouple in the 
following manner: 

Longitudinal response : 

radiation propagating parallel to Bo is 

iwq = VUJfl, (291 

iw6 = va.An, (30) 

(31) (0: + w 2 ) 6  = - (a  + Q(+) + a( ' ) ) ,  
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(Vi +")All = -JII, (32) 

(33) 

(34) 

(35) 
Thus A ,  is determined from Eqs. (34) and (35) 
with the corresponding source 3:'. As in the case 
of a nonrelativistic electron gyrating in a vacuum 
there is no radiation in the longitudinal direction 
at  the cyclotron harmonics except at  the funda- 
mental frequency. 

The situation changes when VI f does not vanish 
identically. In that case the term f V,@ in Eq. (23) 
couples the longitudinal and transverse systems, so 
that harmonic radiation can result. The resulting 
system of equations leads to unwieldy convolution 
equations when Fourier integral transforms are 
applied. Instead we neglect f << 1 in Eq. (24) and 
in the d, term of Eq. (23) and keep it only in the 
critical V,@ term 'of Eq. (23), which produces 
the coupling. 

Hence by combining Eqs. (21) and (23) and form- 
ing the Fourier transform in x, y with k,  = k,  = 0, 
it follows that 

Slflf,l + U2VIl(iWQ) + VIl(iU4) + U",,. 
(Vi + w')A,  = -(jL + j y ) ,  

Q,J,  + w2A, = 0. 

Transverse response : 

[w' - QJV: + U">lA, 

= QJ:"' + iW&(V,f). (36) 
Here the operator on the left side of Eq. (36) cor- 
responds to the well-known Appleton-Hartree dis- 
persion law for the special case of longitudinal 
propagation. 

A fimt-order perturbation treatment will deter- 
mine d, to zeroth order in f from Eqs. (18)-(25) 
with f = 0. We substitute the result into Eq. (36) 
to find A,  to first order in f. 

Under these f = 0 assumptions, the longitudinal 
source velocity v, appearing in Eqs. (26) and (27) 
leads to a Doppler shift by v,k, and an inessential 
g{*) current. For simplicity, we ignore the shift by 
setting v, = 0. As a consequence the helical motion 
becomes a circular motion and the source electron 
only "samples" f at ro close to  the cyclotron orbit. 
This sampling process is most sensitive to  the cp 
dependence of f, which leads us to adopt a model 
of the form 

with constants f t ,  satisfying f T  = f-,, f o  = 0. These 
constants, reflecting the inhomogenity of the plasma, 
will, in general, vary for different source electrons. 

A later statistical treatment will take this into 
account, when the contributions from different 
source electrons are compounded. With the notation 

*(rv cpt z ,w)  

- - 5 e"' 1; dk, eak*'@,(r, k., w ) ,  (38) 
;--.a 

the term of interest in Eq. (36) is given by 

(Vlf)4(z, U) = 1; dk, e"" 2 f 2 4  f l)f:*, 
1m-m 

* 1- dr M r ,  k ,  , w ) .  (39) 

In order to determine J: dr a, to zeroth-order 
in f from Eqs. (18)-(25), one can practically neglect 
the radiation terms. Thus Eqs. (18), (20), (23), and 
(24) with f = 0, when transformed as in Eq. (38), 
give a determined system from which a fourth-order 
ordinary differential equation in the T variable for 
a, is obtained by elimination: 

(a& + a,D, + a,)*, = ( b a t  + bO)d'), (40) 
with 

u2 = u', the velocity of sound squared. 

a, 3 xQ, - 1 - v'k;, 

a, = &(l - Qo + v'k:), (41) 

x = 1 - ($ 
b, E -v2 ,  

bo E X(u2k; - QJ. 

In a cold plasma v2 3 0, and screening distances 
are correspondingly short. Since aa = v2, the limit 
u2 + 0 is a singular perturbation limit for Eq. (40). 

The limiting second-order equation is 

(co - D,>$, = C W ,  (42) 
where 

The corresponding homogeneous equation to Eq. 
(42) is Bessel's equation with a complex scale factor 
for the argument. The regular solution at r = 0 
behaves as r i  " as T + 0. 

Short of solving the differentia1 Eqs. (40) or (42) 
and evaluating the integral J: dr 9, numerically, 
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the approximation of replacing r by r, in D ,  and 
integrating the resulting Eq. (42) gives 

or since for 4" 2 1 (a,@4) (0) = 0 and @,(O) = 0, 
we have 

According to Eq. (26) this implies = c( lm dr q:", 

ic6 exp [-i(kg,, - dw,t,)][exp (io4t+) - exp (io&)] 
8 * a r ~ t ( ~ 0  + d2/r:) 

lw dr 9, = 

By ignoring the k. dependence coming from co iw - -- (GVJ) = 6(z - zo)B:, (i.e., getting co = 0) Eq. (39) then gives 0, 

with 

where 

and 

H ,  = 0 

3 y  straightforward integration it follows from Eq. 
(27) that 

- 
J y  = 6(z - zo) f :" ,  

with 

) 
(45) 

3:) = -+ TcOc e ~ i o r t o ( e i ( o * o c ) t +  - e i ( w a o o ) t -  

(0 f w,) 

= YF,H*W, 

where 

H , .  = =Frew,. 

Within the plasma, the z dependence of A,  is 
governed by Eq. (36), thus 

(Vi + k,2)A, = B , ' ~ ( z  - 20). 

where 

k: = w"(1 - ai1)! and B, = -3;) + B:. 

If the length of the plasma column in the z direction 
is denoted by L and it is placed at  the interval 
[0, L] on the z axis, then Eq. (46) applies to the 

range 0 _< z _< L, while an analogous equation 
which holds for z 2 L has k: replaced by oz and 
B, = 0. The additional conditions which uniquely 
determine the solution are 

A,@, w )  = o (total reflection at  z = o), 

A,(L - 0, w )  = A,(L + 0, w ) ,  (continuity at z = L),  

(47) 

with A,(z, w )  outgoing wave for z > L. 
One easily finds outside the plasma that 

and consequently, 

B ,  sin ( L Z O )  A*(L, w)  = 

(49) 
k, cos (k,L) - iw sin (k,L) ' 

(2 A*)& w )  = iwA,(L, w ) .  

Finally, in order to  approximately account for the 
finite transverse size of the plasma, the far field 
limit is evaluated in the formula (Green's formula 
for the Helmholtz equation), 
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with T' = Ir - r'l, r = (0, 0, z ) ,  r' = (z', y', L),  
and dS' = dx' dy', the element of plasma surfaces 
a t  z = L. 

For z >> L and z << R,, it follows from Eq. (50) 
that 

(51) 
THEORY 11. THE POWER SPECTRUM 

The results of the previous section will now be 
used to calculate the power spectrum seen by a 
radiometer with the receiving area [W' which only 
receives radiation propagating parallel to the mag- 
netic field. The calculation is done by first forming 
the Poynting vector at the receiving plane of the 
radiometer, multiplying it by the receiving area "a", 
and then integrating it over a time At, the integra- 
tion time of the radiometer. The time At, is as- 
sumed to be large compared with T = t ,  - t-,  
the time between two consecutive collisions of the 
dource electron. The resulting radiated energy is a 
function of the time T. This energy is then averaged 
over the distribution of times T by using the ex- 
ponential distribution law with the characteristic 
time 7. This operation will eventually result in the 
usual Lorentz line shape around each harmonic. 
The characteristic time is in dimensionless units 
written as r = w&' where v2 is the collision fre- 
quency of the source electrons. The energy loss of 
the source electron is neglected in this process. To 
remind the reader, v 1  is the collision frequency of 
the background electrons. The power radiated by a 
typical source electron and associated space-charge 
wave packet is now obtained by multiplying the 
average energy radiated between two consecutive 
collisions by the collision frequency r-' for the 
source electron. The resulting average radiated 
power is a function of z,, the position of a source 
electron. By assuming that the source electrons are 

(2) The radiometer accepts energy only in a 
narrow frequency band Au which is sdciently small 
so that the integration over the frequency can be 
replaced by the integrand times Au. 

(3) The radiometer integrates the received power 
over a time At which is very large in comparison 
with the time r. 
(4) The characteristic collision T is assumed to be 

sufficiently long so that interference between dif- 
ferent '%' values can be neglected. 

Executing the operations mentioned above under 
the stated assumptions, one finds that the power P, ,  
received by the radiometer from a typical source 
electron and associated space-charge wave padiet 
located in the plane zo can be written as 

where 
sin (k+Z") F =  k, COS (k+L) - io sin (k+L) ' 

and where L, the length of the plasma, has been 
neglected in comparison with the distance z between 
the plasma and the radiometer. The asterisk ap- 
pearing in the formula above labels a conjugate 
complex quantity. 

In  order to facilitate numerical calculations and 
comparison with experimental data it is convenient 
to introduce the following ratios: 

Remembering that the radiometer accepts only 
w < 0 and changing the notation accordingly, we 
can write the index of refraction n = k+/lwl ex- 
plicitly as 

.;5 >'. (53) 1 - +yl - 2, n = n, + ini = 

distributed throughout the plasma and We define further for the expre&sions by integrating over the volume of the plasma seen 
by the radiometer, the dependence on z, is removed, 
and we obtain the total radiated power seen by 
the radiometer. Multiplying this power with the 
integration time of the radiometer then gives the 
response of the radiometer to the observed spectrum. 
Specifically the following conditions are enforced : 

(1) Only plus polarization is accepted by the 
radiometer; that is, only w = -1wI is accepted. 

(54) 

(55) 

~ - zi(1 - irl + 2,) 
z,[(l - i ~ , ) ~  - 2% - (1 - irl)zz] ' 

1 
?z cos (ncp,,) + i sin (woo) ' 2. 

and 

(56) 
uv:wr2 Aw. 

2m2 c, = 
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The power received by the radiometer as ex- 
pressed by formula (52) can then be written as 

P.  = C,P ,  sin (mpo 2) sin (n*po ;) , (57) 

with P, defined as 

The total power P received by the radiometer 
is obtained by multiplying P. with the density n. 
of source electrons in the plasma and by integrating 
over the volume of the plasma seen by the radiom- 
eter. If this is a tube with the radius R, one finds 
the total power P received by the radiometer to be 

where 

The formulas above are written in terms of the 
dimensionless parameters dehed earlier. Translating 
the formulas back to the m k s  system, one finds that 
formula (59) is applicable provided the coeficient C 
is now written as 

and provided 

It is obvious from formula (58) .that the space 
charge wave packet generated by the source electron 
does not radiate at  the harmonica of the electron 
cyclotron frequency unless the CoefEcienta f 4  are 
different from zero. These coefficients are a measure 
of the nonuniformities of the plasma along the orbit 
of a typical source electron. .It is instructive to 
consider the effect on the radiated spectrum by two 
radically different classes of nonuniformities. 

The first class is represented by a step in the 
electron density. A source electron traversing this 
step will see it at  two points along the orbit. As- 
suming that all locations of the orbit with respect 
to the step in the electron density are equally 

probable, it is easily shown by averaging over the 
position that 

1 2  

where f o  is the relative height of the step discon- 
tinuity. 

The second class of discontinuities is perhaps best 
illustrated in terms of the crude model of micro- 
scopic oscillators described in the introduction. The 
heavy mass of the ion relative to that of the electron 
indicates that the statistics of these oscillators is 
intimately related to the statistics of the location 
of the ions and less so to the correspondmg statistics 
of the electrons. In the limit of cold and weakly 
ionized plasmas we can safely make the aseumption 
that the ions are randomly distributed. In this case 
it is easily shown that the corresponding statistics 
gives 

where N is the average number of oscillator effec- 
tively interacting with the source electron. Note 
that the coefficients given above are independent 
of the 4 value. It is possible that a more detailed 
analysis of the statistics will show some kind of 
structure which will make the coacient functions 
of C and hence will show up in the emission spectrum. 
The suggested models for arriving at  values for 
(fj:) are strongly idealized and do not exist in the 
plasma in those forms. However, it can be expected 
that they give the correct descriptions for low 4 
valum. The upper limit is crudely given by 4,- = 
2ur,/d, where rs is the radius of cyclotron orbit 
of the source electron and d is the effective width 
of a realistic step or pulse in the electron density. 
A measure for 4- is obtained by using the Debye 
length for d giving 

where vL is the velocity of the source electron per- 
pendicular to the magnetic field and v is the thermal 
velocity of electrons in the cool background plasma. 
Radiation at  high harmonica of the electron cyclo- 
tron frequency can, therefore, be seen in plasmas 
with hot source electrons in a cold background 
plasma. 

The model suggested here for the cyclotron 
harmonic radiation is based on the assumption that 
the response of the cold background plasma to the 
hot source electron is adequately described by the 
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plasma hydrodynamic equations. The introduction 
of “pulses” of electron density along the orbit of 
the source electron may seem contradictory to this 
assumption. However, if one considers the rather 
small volume of plasma or the corresponding small 
number of ions that are sampled by a typical source 
electron, it is no longer surprising that the cyclotron 
harmonic radiation can be directly attributable to 
the fine structure of the plasma. The source electrons 
sample a volume in the form of a toroidal tube 
27r2r&, where A D  is the Debye length. The average 
number N of ions contained in this volume can be 
written as 

where N D  is the number of ions per Debye sphere. 
This number N is in the range 10 to lo3 in the 
helium abnormal negative glow plasma. It is a 
sufficiently small number so that statistical fluctua- 
tions in the number density along the orbit of the 
source electron must be considered. As the thermal 
velocity of the ions is sufficiently small relative to 
the velocity of a typical source electron, the ion 
configuration along the orbit of the source electron 
remains fixed during the sampling time of the source 
electron. With regard to the present calculation the 
ion configuration is stationary as long as the ratio 
( Y ~ / W , ) ~  is much larger than the electron to ion 
mass ratio. The lack of G dependence of Eq. (62) 
is most easily understood as being due to the thermal 
fluctuations of the ion gas. 

SOME NUMERICAL RESULTS 

The results from the calculations of some spectra 
based on the model are illustrated in Fig. 2. For 
the sake of convenience in this calculation we have 
divided the plasma into groups of electrons; the 
group of cold electrons that constitute the back- 
ground plasma and a group of hot electrons that 
act as source electrons. Furthermore we have as- 
sumed that the model is applicable to both groups 
of electrons and that the collision frequencies, den- 
sities, and energies of the groups are such that the 
coefficient C [Eq. (SO) ]  is the same for the two groups. 
In the calculation of the radiation from the cold 
electron group we have also included bremsstrahlung 
which appropriately is accounted for by adding a 
term equal to unity inside the bracket of Eq. (58). 
The normalized collision frequencies for this group 
of electrons have been set as y1 = yz = 0.25. The 
influence of bremsstrahlung from the hot electron 
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FIG. 2. T pica1 theoretical emission spectra in the neighbor- 
%ood of the electron cyclotron frequency. 

group was considered insignificant and has been 
neglected. The normalized collision frequencies for 
this group of electrons were set as yl = 0.25 and 
y2 = 0.027. The parameter cpo was set equal to 15 
corresponding to plasma length L of approximately 
10 cm at an observation frequency of 10 GHz. We 
used finally the stochastic model for the fluctuations 
and set (f&) = 2.5 X lo-’. The calculation has 
been carried out for five different values of the 
ratio w,/w. 

The figure displays both the right -and left-hand 
circularly polarized radiation as functions of the 
ratio w , / o  with the amplitude proportional to the 
square root of the power in arbitrary units. The 
curves are normalized such that the amplitude at  the 
fundamental of the electron cyclotron frequency 
w, /o  is 10’ and displaced 20 units relative to each 
other. The spectra are obviously asymmetric with 
respect to polarization, and this asymmetry is a 
strong function of the ratio wJw. The radiation at  
the fundamental electron cyclotron frequency a p  
pears essentially only as plus polarization,  as^ would 
be the case if the electrons alone were responsible 
for the radiation. Radiation at the harmonics of 
the electron cyclotron frequency have both plus and 
minus polarization. The minus polarization of the 
harmonic radiation becomes very strong when the 
ratio w,/w approaches unity. This is partially due 
to a weak asymmetry in the source function H, 
but primarily due to the asymmetric index of re- 
fraction coupled with reflections at  the boundary 
as well as due to a resonance in the space-charge 
wave packet occurring at 0’ = w: + as shown 
by the factor ZZ* in expression (58). 
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SUMMARY AND DISCUSSION 

Many attempts have been made in the past to 
explain the basic mechanism causing the observed 
harmonic electron cyclotron radiation. Since Bekefi 
discusses them in his recent book,' we will not do 
so here. It is common to these theories that the 
radiation losses within the plasma are carried ex- 
clusively by the longitudinal waves and that these 
waves, when they hit the boundaries or some other 
nonuniformity in the plasma, are converted into 
electromagnetic waves in a manner presently in- 
accessible to theory. These theories have neither 
explained the shape of the spectrum nor accounted 
for the intensity of the radiation. 

Many different mechanisms can give radiation at  
the harmonics of the electron cyclotron frequency. 
To distinguish between these mechanisms, it is 
presently necessary to develop the corresponding 
theories to a s a c i e n t  degree, so that the shape of 
the spectrum, its intensity, and some other char- 
acteristic features can .be compared with the experi- 
mental data. The model presented in this paper 
is not necessarily the final explanation for the 
observed spectrum, but it satisfies the criteria men- 
tioned above and is sufficiently close to the exper- 
imental data, in particular the data obtained from 
the abnormal negative glow plasma, both in the 
shape of the spectrum and the intensity, to merit 
further sophistication. 

The model proposed in this paper has common 
elements with theories suggested in the past; never- 
theless, it is conceptually different. It requires hot 
electrons in a relatively cool background plasma. 
These hot electrons may be supplied by the high- 
velocity end of the electron-velocity distribution. 
For the sake of simplicity, this model considers a 
hot electron which pursue's a cyclotron orbit with 
a radius much larger than the Debye length. This 
electron excites plasma oscillations along its orbit 
which are primarily confined to a Debye length of 
the orbit. The amplitude of the space charge wave 
packet resonates when the hybrid frequency 
(uf + 0:)) is an integer times the cyclotron fre- 

quency. We showed that this wave packet has 
cyclotron harmonics in it; however we also found 
that this packet does not radiate at  the harmonics 
if the background plasma is perfectly uniform. B e  
cause the small volume of plasma excited by the 
source electron contains so few ions there are sig- 
nificant thermal fluctuations. These nonuniformities 
allow electromagnetic radiation to occur. Once we 
had the mechanism for the radiation, we calculated 
its numerical form by standard methods. We note 
that the asymmetry between the f polarization is 
due to the differences in the radiative absorption 
of the plasma. 

Although subject to many simplifications, this 
theory results in data that are compatible with the 
experimental information. A following paper dis- 
cusses this point more thoroughly.a When a com- 
parison is made with experimental data, the follow- 
ing points should be considered: It is likely that 
the influence of the boundary condition has been 
exaggerated in the present calculation. We have 
assumed a step profile for the plasma at  one end 
and a perfectly reflecting boundary at  the other. 
This is not realized in practice. The influence of . 
the plasma frequency through the index of refraction 1 
is therefore stronger than it should be. The plasma 
frequency appearing in the formula above has been 
viewed as a fixed parameter common for all points 
in the plasma. This again is not strictly true in 
practice due to the presence of macroscopic non- 
uniformities. The use of two groups of electrons 
instead of a smooth distribution function is an 
idealization that will influence somewhat the shape 
of the radiation spectra. However, the elimination 
of these theoretical simplifications is expected to 
change the spectra in minor ways and not its major 
characteristics. 
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