INFRARED-MICROWAVE FREQUENCY SYNTHESIS DESIGN:
SOME RELEVANT CONCEPTUAL NOISE ASPECTS*]

Donald Halford

Atomic Frequency and Time Standards Section
National Bureau of Standards
Boulder, Colorado 80302 USA

Abstract

Extremely accurate and precise frequency synthesis into the infrared
and visible radiation regions will allow new vistas of metrology. Frequency
and time measurements are the basic operations which will be affected, and
impact is expected in sﬁch diverse areas as length standards and metrology,
spectroscopy, timekeeping, communications, and relativistic tests.. In
addition the set of independent base units of measurement may change, and
the speed of lighf ma;y become a conventional (defimed) quantity. The A
attainment of the desired high accuracy and precision will be easiest and
cheapest if there is careful optimization of the synthesis design aspects
involving noise. When frequencies in the terahertz region are considered,
the linewidth of the signal becomes an important parameter. Due to the

low-frequency-divergence of the instability of good signal sources, the

concept of the fast linewidth becomes of particular importance. Some of the

properties and importance of the fast linewidth in system design are dis-

cussed in this paper.

Key Words: Allan variance; Base units; Fast linewidth; Frequency

multiplication; Frequency noise; Frequency synthesis;
Infrared frequency metrology; Josephson effect; Linewidth;
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1 A talk based on the material in this document was presentcd on 1 September
1971 at the Seminar on Frequency Standards and Metrology, Quebec.
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I. INTRODUCTION

Some short-term goals and some long-term goals for high accuracy
and precision in visible-infrared-microwave frequency synthesis are
‘discussed in Section II, together with some of the possible benefits to
metrology. A practical engineering model for noises of good signal sources
is discussed in Section III, and some implications are discussed for optimum
frequency syntheéié design as regards nbise problems. Thé' dependence of
the radio frequency (RF) power spectral density linewidth upon the multipli-
cation factor n is de;rived and discussed. The significance of the fa.si: K
linewidth becomes vobvious in these tx;eatments. In Section IV, I present
some hopes and speculation concerning future developments in frequency

synthesis.

II. SOME GOALS AND RECENT ACCOMPLISHMENTS

Joe Wells, David Knight, and Al Risley have just reviewed some of
the exciting pioneering work which has been going on in frequency synthesis
into the infrared radiation region.}

In the talk Which follows, 1 will consider some ideas 4
which have figured in discussions over the past couple of years with David
Knight, Bob Kamper, Jim Barnes, Dave Allan, Helmut Hellwig, Al Risley,
Don McDonald, John Hall, Len Cutler, and others. '

A long-range goal is the creation of simple, reliable, inexpensive
means of synthesizi.ng infrared (IR) and visible radiation (VR) frequefxcies,
with accuracy, stability, and reproducibility as good as the signal sources that
we have available, On the way to this long-range goal, however, we will be

momentarily content to meet some intermediate goals.

lThcir papers, which appear elsewhere in these Proceedings of the Seminar
on Frequency Standards and Metrology, should be consulted for a more
complete picture of progress in infrared frequency synthesis. For a more
reccnl survey of progress in infrared frequency synthesis see Wells et al.
1972.
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A. Some Intermediate Goals

The goal of measuring a water vapor laser at 3.8 THz (78 um), in

only one step of multiplication from X-band, has just been achieved a few

weeks ago by McDonald et al. 1972.

Al Risley has told you about that

milestonc [or, looking ahead to a unified stanaard, should we say hertz-

stone? ]. This step, by a factor of n = 401, is indicated in Figure 1.
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Figure 1. The spectrum from X-band to the visible radijation region.
The minimum number of steps which were used in experiments
as of end of 1971 arc indicated. Multiplication to frequency of

I, has not been accomplished yet,
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The measurement of the HCN laser at 0. 89 THz (337 um) in only one
step of multiplication (n = 100) from X-band was achieved a year ago by

McDonald et al. 1971. A more difficult, and more significant, goal is to

use only one step of multiplication from X-band to measure the frequency of
the water vapor laser at 10.7 THz (28 um). Perhaps it cannot be done, but
Don McDonald and Al Risley are sufficiently optimistic about doing it in one
step that they are going to spend some of their time trying it. I predict they

| will succeed.

B. Metrology and Frequency Synthesis

Let us keep in mind that the ability to measure infrared frequencies

; allows us, in general, through appropriate servos, to control and use these
signals for man.y exacting purposes in metrology. The ability to do the ‘
frequency muitiplica.tion in the smallest possible number of steps is an
exciting goal, for that ability will allow us to reduce cost and inconveniem;e

and to maximize precision, accuracy, and versatility of IR and VR

frequency synthesis. With good IR/VR/u)\ frequency synthesis, we will be

able to transfer the stability and accuracy of various excellent microwave

signal sources [Glaze 1970; Hellwig and Halford 1971] to signals in the IR
i and VR; conversely, if it develops in the future that the best signal sources
are in the IR, then we will be able to transfer their stability and accuracy

to the other portions of the frequency spectrum. Itis common to use

5-MHz carriers as a "working-frequency' for frequency metrology, to use
l-second ticks for time-scale metrology, and to use visible light for length
metrology. I note that these prefcrences can be maintained, and yet, if

desired, stability and accuracy could be improved by frequency synthesis

from that region of the spectrum where the best quality signal source exists.
There is no compelling need to choose our primary standard so that its

frequency is at the preferred working frequency of routine metrology.
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C. A Major Goal: Mecthane

If one-step multiplication from X-band to 10.7 THz proves to be
fcasible by some means, then we could try one-step multiplication by a
factor of about three thousand from X-bar;d to the various frequencies of
CO2 lasers near 29 THz. After that, it would be another factor of about
three up to the frequency of the saturated-absorption methane cell

frequency standard developed by Barger and Hall 1969a.

At the moment, and for at least the'past two years, the methane
device has been by far the most stable and accurate signal source in the
IR and VR [Barger and Hall 1969a; Barger and Hall 1969b; Hellwig et al.

1972]. Although its present accuracy of about one part in 1011 is

considerably less than the accuracy for the microwave cesium beam, its

stability in the millisecond to one-second range [Hellwig et al. 1972] is

unexcelled by any other device. There is considerable promise for

further improvements both in accuracy and in stability of the methane

device.Z

Hence, a very éignifica.nt goal, still unattained by means of
frequency metrology as of today (1 September 1971),. is the measuremerﬁ: of
the frequericy‘ of the saturated-absorption methane cell frequency standard
at'88 THz (3. 39 pm).3 Full success in the accurate measurement of the

frequency of this ultra-stable frequency source will yield4 an extremely

2] note that lasers, per se, generally are no better in stability than are
microwave klystrons, per se. In the methane device, as in the cesium
beam device, the outstanding stability and accuracy arise not from the
slave oscillator but from the passive methane and cesium resonances,
respectively. In these devices, the frequency of an oscillator (laser,
klystron, quartz crystal, Gunn) is servoed (slaved) to the frequency of
a passive resonance by mecans of frequency metrology. For a discussion
of some relevant considerations, see Hellwig 1970.

3 The first measurement of the 88-THz methane frequency (in terms of the
cesium beam frequency standard) by frequency metrology did occur ten
wecks later, on 11 November 1971 [Evenson et al. 1972].

4 Since the methane device is not de jure the standard of length, this
determination of the speed of light also requires measurement of the
wavelength of the methanc device relative to the krypton-86 length standard,
as is being done by Barger 1971 and by Giacomo 1971.
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accurate deterfnination of the spced of light, or--using a different language
of metrology--it will allow accurate length measurements to be referenced
to the cesium Eeam frequency standard as a prima.ry standard for length,
with the use of a defined nominal value for the speed of light--thisis the
fundamental concept of the unified st:zmda.rd.5 ‘This would reduce the
number of independent base units in the International System of Units (SI)

from four to only three (Fig. 2).

TIME ""second" cesium frequency standard
LENGTH "meter" krypton wavelength standard
TEMPERATURE “kelvin" water triple-point thermodynamic

temperature standard

MASS "kilogram' prototype hunk of metal

Figure 2. The present four independent base units. The krypton
) wavelength standard could be dropped (see text), and the
meter defined in terms of the second (just as the hertz is
already defined in terms of the second).

The main thrust of this paper is an attempt to give a quantitative
treatment of some of the frequency stability considerations which are
especially relevant to IR frequency synthesis design. The mathematics
appear in the following Section. Earlier in this Seminar, Harry Peters
and others made the point that good frequency stability will be important
for VR/IR/u) frequency synthesis and for the unified standard.

gL

ength metrology is not the only field where frequency metrology is having
a fundamental impact. At NBS in Boulder, Bob Kamper and associates
have done some absolute temperature measurements in terms of frequency
standards and involving frequency metrology [Kamper and Zimmerman 1971].
They measured the frequency noise of a Josephson junction oscillator which
was coupled to a resistor immersed in a cryogenic bath. The thermodynamic
temperature T is related to the frequency noise via fundamental physical
relations involving h, e, and k (Planck's constant, charge of an electrun,
and Boltzmann's constant, respectively). The best [i.e., most reproducible,
most stable, most transportable ] sccondary standard for DC potential
difference (electromotive force, EMF) at present is a Josephson junction -
refercnced to a standard {requency [Finnegan et al. 1971 ]. Barry Taylor
and associates in NBS Gaithersburg are using this method as a working
secondary standard for maintaining the USA legal volt. For some additional
discussion of the progress and feasibility for a unified standard see Halfovd
et al. 1972.
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Obviously I agree, and it is a crucial argument in my talk. In addition,

I make the point that, for a given frequency stability performance of the

signal sources, the optimum utilization of that stability performance will

be correspondingly important.
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III. THE FAST LINEWIDTH AND RELATED NOISE CONCEPTS

- I will discuss a few sirhple concepts that possibly will allow easy
and effective design of low-noise frequency synthesis systems. By keeping
down the quantity of perturbing noises, even viery weak signals from
inefficient non-linear elements (frequency multipliers) can be used for
successful frequency synthesis. Efficiency of harmonic generation is

desirable, and should be pursued, but low noise levels are also effective.

A. Sources of Noise

In many cases of practical interest, the noise limitations of the
VR/IR/u) frequency synthesis arise from the frequency instabilities of
the two signal sources between which we are trying to do frequency
synthesis (see Figure 3). The multiplication process, although sometimes
inefficient, often is relatively stable compared to the fluctuations of the
oscillators, that is, the multiplicative phase noise is often negligible.

It is important then to analyze the noise properties of the oscillators.

If the multiplication process is inefficient, other noise sources also will

‘be significant--the additive noises present in the output stages of the

frequency multiplier, in the mixer, and in the first stage of the
intermediate frequency (IF) amplifier which amplifies the beat frequency.
In the language of electronics, additive noises are those which arise
via a linear superposition of the desired signal and a noise signal.
Multiplicative noises are those that arise via a modulation of the desired
signal by a noise signal. Thermal (kT) noise and shot noise in a mixer are
common examples of additive noise signals. . A multiplicative phase noise
which is common to most electronic phase-processing devices has been

characterized by Halford et al. 1968,

Some discussions of the efficiency of infrared harmonic generation,
based on recent results with cryogenic Josephson junctions and with

room-temperature metal-metal point contacts, arc given in McDonald c¢i al.

1972. Their efficiency appears to vary as n-z, and additive noise becomues

important for the larger n values,
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/ SERVO CONTROL /l

HIGH FREQUENCY

FIRST FREQUENCY
IF r-)l‘MEASUREMENT
AMPLIFIER SYSTEM
FREQUENCY
MULTIPLICATION
CHAIN
LOW FREQUENCY
SIGNAL SOURCE
J .
-/ SERVO CONTROL

Figure 3. A schematic frequency multiplication/frequency synthesis
system. Each of the blocks may be complex, and several
servo loops are possible and in general desirable in order -
to minimize noise problems.
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B. Power Law Noise Spectral Densities

Let me take as a constraint that I am always going to ,Eonsider sighal
sourcces (oscillators) that are fairly well bechaved., They are the best
signal sources that I can buy, borr}ow, design, or build. I will not be
talking about lousy ones, I will be talking about good ones.6 What we find is |
that good signal sources will tend to be describable as having some sort of
a power law frequency instability over wide ranges of Fourier noise |
frequency. That means they will have a pbwer law phase instability. And
indeed, over the Fourier noise frequency ranges that are going tobe™ ~ ~
important in microwave, infrared, and Qisible radiation frequency
' synthesis--they usually do have these pleasing noise behaviors. For some
additional discussions of the us§ of power law spectral densities to

characterize high-quality signal sources, see Barnes et al. 1971 and

wre-Allan-1966.

The models I am going to discués will usually assume that linear

drift and bright line instabilities either are not present, or else are handled...—.-—--"

by some additional circuitry or by some additional mathematical treatment
s 'iidtwé‘xhélic‘;‘itly.cqnsidered in this paper. These non-random instabilities can

be very important and bothersome. They are not emphasized here because

their characterization and cure are generally well-understood and are -
considerably different in nature, as compared to the random noise aspects

which are the focus of this paper.

-

C. The Importance of the Fast Linewidth

When we design and build a frequency multiplication sysfem and

expcct that the output signal will be very weak, we realize that additive

noises will be significant. To minimize the deleterious effects of the
additive noises, under the constraint of having a weak signal, we try to
reducc the predetection effective noise bandwidth of the measuring system

as much as possible. The noisc bandwidth is generally set in the IF amptificr.

b For some state of-the-art examples, sce Brandenberger et al. 1971 for

a quartz crystal oscillator, Glaze 1970 for a multiplier chain with output
at X-band, Ashlcy and Searles 1968 for a two-cavity X-band klystron,
and Hellwig ct al, 1972 for an 88-THz methane device.

i '
| ' 441




How narrow can we make the noise bandwidth before we begin slicing off
significant amounts of the dcsi'red signal? If we do not make proper use of
various methods of servo control, of various tracking filters, and of
programmed filters, then we may have to use a relatively large noise
bandwidth to ensure that the desired beat signal is not itself filtered out by
the IF amplifier. The large bandwidth will pass a large amount of additive
noise, and, -if the bandwidth is too large, the desired signal may be
swamped by the additive noise.

But suppose we do make appropriate use of servos and dynamic
filters. Is there then a limit as to how narrow we can make the noise
bandwidth? The answer is yes, there is a limit, and it is greater than

zero. The limit is set by what I choose to call the fast linewidth of the

beat signal, which is a function of the fast linewidths of the two signal
sources which are being <.:ornpared.

The various properties of the fast linewidth will become apparent
later in this paper. Several definitions are possible. The most rigorous
treatment which I can offer at the moment, a formal mathematical one,

is given in Section III. D. 3.

D.  Linewidth Calculations

Some of the noise-linewidth results which I wish to derive and
discuss are shown in Fig. 4. A glossary of symbols is given in the Appendix.
In general, I have chosen the symbols, noise measures, and language to be

similar to the choice used by Barnes et al. 1971,

In this manuscript I do not explicitly treat the cases of power law
spectral densities éorres'ponding to white phase noise (& = +2) and {licker
phase noise (o = +lj. They have anomalous behavior as compared to the
behavior of the cases for @ <+1. Strictly speaking, their fast linewidths
are either zero for zero noise level or are infinite for a non-zero noise
level. If a high frequency cut-off is introduced, then a finite fast linewidth

can exist. I will treat this important problem elsewhere,
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Dependence of fast linewidth

Name of noise Defining cquation upon multiplication factor

i S (f)“Hfo W_ varies a 2
White FM s/ = Hy ¢ vari s n
Flicker FM s () =H £ W, varies as n'

icker | s/ 5 H, £

-2 . 2/3

Random Walk FM Sﬁv(f) = H_Zf Wf varies as n

Figure 4. Frequency modulation (FM) noises of different power law
- spectral densities, SG y» have different dependences of the fast
linewidth W, upon multiplication factor n. The n-squared
dependence for white frequency noise is a classical result.
Equations for the fast linewidth are derived in Section III and
are listed in Figure 5,

There are several different, but related, ways of reasoning which

lead to estimates of the fast linewidth which are sufficiently good for most

engineering purposes. I believe it is instructive to illustrate three of

these approaches in turn.

1. One radian rms in the time domain. Consider the Allan variance

[Allan 1966; Barnes et al, 1971] of the frequency fluctuations of the signal

source for

N = 2,
T=r,
T =
B =
Note that
® = 27TV,
g-% = 27T .

variable sample time interval, and

bandwidth of the measuring system.

A measurc of mean square phase divergence can be written as

(6%)°

(

(1)
(2)
do 2 2
d—1;> 06,,‘N= 2, T-71,71,B). (3)
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If we identify 7% as that value of T for which §& rms is one radian,

then

2 .
(27T%) 0‘§u (N=2,T=7%7%B) =1 rad’ . (4)

Define a linewidth W= such that

=
*
|

Tl (5)

then
Wik = N=2, T = 1% 7%, .
’ 06!/( T%, B) (6)

I claim (and to me it is intuitively obvious7) that W* is a reasonable

approximation to the fast linewidth of a signal at the 3 dB down points, i.e.,

w

£,_3ap ~ "*. (7)

We will see later that indeed this is a good approximation for
spectral densities which have the power law form

_ o
de(f) = Hozf (8a)

7We may regard T%* as being a time-domain measure of coherence time of
the noisy signal, that is, the time interval required for the signal to
become, statistically speaking, about one radian rms out of phase with
itself. In length metrology, the corresponding spatial-domain concept is
the coherence length, that is, the spatial distance over which the
propagated signal becomes about one radian rms out of phasc with itself.
We may regard &% = c¢T* as being a measure of coherence length. In a
third case--the frequency domain--we can consider the coherence rate of
the signal, that is, the rate at which the signal, statistically speaking,
becomes about one radian rms out of phase with itself. We may regard
Wi = 1/(27T%) as being a measure of coherence rate. (Later I will
introduce W! which may be regarded as being another possible measure
of coherence rate.) The fact that the spectral line is 3 dB down at a
certain separation from the center of the line (i.e., at %W__3 dB separation)
and is even further down at greater separations, may be regarded as a
manifestation of destructive self-interfcrence of those modulation sidebands.
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for

a S +0.5. "~ (8b)

From equations (5) - (7), we can say: An approximate value for the

fast linewidth Wf 3dB of a signal with a power law noise spectral density
is
W 1
£f,-3dB = 2w+ )

where 7% is thc solution of the implicit equation

1
2T °

oév(N =2, T= 7% 7% B) = (10)

Barnes et al. 1971 tabulates8 some useful relations for converting

between frequency domain performance measures and time domain per-

formance measures. For white frequency noise (i.e., ¢ = 0)
2
05, N=2,T= 715 m4B) = 3= . (11)

Combining (11) and (10),

(12)

oy s>
qlc
t
NN
()
ﬂt--
—‘
Ed
~——
[\
i
P S
[y %]
fi.-
\‘./
£l

(13)

It is a wcll-known result for a signal with white frequency noise
that the shape of the RF power spectral density curve is a Lorentzian, and
it is a well-known classical result that the width at the 3 dB down points is

equal to 17H0, i.c.,

erm— e

871 tables in the NBS Technical Note 394 version of Barnes ct al. 1971
are more lepible than they are in the IEEE Transactions on Instrumeceniation

and Mcasurciment, duc to poor typesetting in the latter. Copies of the
Technical Note 394 and of a legible conversion table are available upon
requaoest,
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= = . 14
Wi orentziam, -3dB - "Ho = TS, (14)

" In the case of white {requency noise, my concept of the fast linewidth and

the classical (i.e., traditional) concept of linewidth are identical.

The approximate solution for the fast linewidth given by equations (9)
and {10) turns out to be exact for the special case of white frequency noise,
but it is not quite exact for other power law spectral densities. Sections
IOI.D.3 and III.D. 6 give the more carefully derived results and their
comparison with these approximations.

2. One radian rms in the frequency domain. Consider the spectral

density of the frequency fluctuations of the signal source. The spectral
density of the phase fluctuations is related exactly by the factor f-z square
radians, i.e.,
S, () = (1radd)=s_ (5. (15)
69 £ v
Define a linewidth W1 such that the integral of the phase noise spectral

density for all Fouricr noise frequencies grecater than %WT amounts to

one radian mean square, i.e.,

0o

[ Sé¢(f)df = 1 radz . (16)
iwt

I claim (and to me it is intuitively obvious7) that wT is a reasonable

approximation to thc fast linewidth of a signal at the 3 dB down points, ‘i.c.,

3

w wt . (17)

Yt,-3aB ~

We will see later that indecd this is a good approximation for power law

spectral densities given by equations (8a) and (8b).
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The approximate solution given by equations (16) and (17) is not
exact for the case of white frequency noise, but it would be exact if in
equation (16) we were to ‘require that the integral be set equal to 2/ square
radians instead of being set equal to 1 square radian.

3. Modified Lorentzians of various orders: The width and shape

of the complete fast RF power spectral line. In this third, more

detailed derivation, I will make a plausible assumption about the shape of
the complete fast RF power spectral line. I will provide some justification
for the assumption, and then I will make some calculations of fast linewidths
that are exact relative to the assumption.

As already mentioned, for the case of a signal having white frequency

noise, its RF power spectral line has a Lorentzian shape,” i.e.,

|
|
|

1
SVRF Power (V) = 2(@=0) SO TR SR
0
1+ 5T
éw-3dB

where, for the narrowband approximation (i.e., that v  is much greater

0
than W-SdB)’
1 2
alg =0) = + [—2—\p, (19)
4 <w—3dB> -
[ 0]
p sf S SaFBower V)| v - 20)

0

By studying thc behavior of Bessel functions, and applying that knowledge
to the problem of relating phase modulation to sideband power, we can

easily decide some simple relations. We find for those sideband components

9 In keeping with the constraint that I am considering only good quality signal
sources, I cxplicitly am assuming that there are no amplitude modulation

(AM) sidebands.
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10

for which | V-vy is much greater than the fast *linewidth, i.e.,

0

lv - %|>>\N (21)

f,-3dB "’

that the sideband power is proportional to the square of the modulation
index,. that is, it is proportional to the square of the phase modulation
intensity. In a language which is more suitable for discussing random
noise, we find under the condition expressed by equation (21) that the fast
RF power spectral density11 at |v - v0| from the center of the fast line

11

is proportional to the spectral density of the phase noise at the Fourier

noise frequency f, with f equalto |v - Yy |-

S‘/m (Voﬂ:f) = bPSG¢(f), (22)
f= |v- vo[ , (23)
4
£>> W 348" (24)
and 1 2
b = constant = —Z-rad- . _ (25)

That the coefficient b is equal to %rad-2 can be derived using Bessel
functions, but it can also be derived from even simpler trigonometric
identities.

Combining equations (22) and (15) we see for
S.{f) = H * 2
: 6v( ) o (26)

10 This is equivalent to the condition that the modulation index be much
smaller than unity, i.e., that the phase modulation is much less than

one radian--for the components under consideration,

1 Please note that as in Barnes et al. 1971, I usc one-sided spectral
densities. In cquation (22) I write the argument of the fast RF power
spectral density as (y, £{) to indicate and to remind us that, in the
concept of the fast RF spectral line, the center of the fast line,
is changing with time in the gencral case,

VO.
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that

_lpy @m2
S /RF Power (Yo £} = 3P Ha! , (27
“for S
£ > wf’_3dB . (28)

We note that this is fﬁl‘ly' in agreement with equations (18) and (19).

I now make an assumption about the shape of the fast RF power
spectral lines for power law spectral densities of frequency noise for cases
other than white frequency noise. Based on the insight gained in the pre-

vious discussion, 1 assume that for all

a < +1., | (29)
that |
x )|
S /RF Bower (W00 = 2@ Z=a e GO
V- Vo
1 + 1
2 W _34B

The shape function in equation (30) is a Lorentzian for &« equal to zero.
We may call it a "modified Lorentzian of order (1 - 3 @)" for the general
case.

I do not know whether or not equation (30) is in detail the correct
expression for the fast RF power spectral line. From the insight given by
equations (18) through (27), equation (30) is a plausible guess, and, even if
incorrect, surely it cannot be very far from being correct. From
cqt;ations (27) and (25) we see that equation (30) is correct for the wings of
the fast line, and the only possible discrepancy would be in the shape at and
ncar the top of the [ast line. For the power law spectral density of frequency
noisc cases which are under consideration, I do not expect any '*structurc!

[othcre than the smooth form of equation (30)] would exist in the shape at

and necar the top of the fast line,
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Hopefully, someone soon will devise a proper derivation of
equation (30). In the meantime, I assume it is correct, and I use it to
calculate the f{ast linewidth for general a < +1,

It is convenient to consider the normalized fast RF power spectral
density associated with phase fluctuations, and I use the symbol script Z(T)

for that quantity [Glaze 1970; Meyer 1970a; Meyer 1970b].

S\/ RF Power (VO *1)
L(f) = I

(31)
From eqﬁa.tions (22)-(26), (15), and (31) we see that we may write
1 -2
CL(f) = (3 rad )Sw(ﬂ’ (32)
1 1
) = 2 (—-) S, (©, (33)
2 fZ ov
2(5) = %Hmf‘"'2 o (34)
for
f > Wf,-3dB . _ (24)

Combining equations (30) and (20),

.
| -1
V- oy, 2-a
P = a(a) 1 + |T0—— dv . (35)
- f,-3dB
o

With use of the narrowband approximation, we find that the integral in

[
g

equation (31) may be evaluated, for all « < +1, to give

P o= ["‘(a)](z ?a) [Sin ZYa]—lwf,JdB : (36)
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Combining equations (36), (31), and (30), and under the constraint of
equation (24)

we may write

£(6) = —;—(—2—"—&)1 (sin 373) (%Wf'_3d3)1-éfa-z. (37)

We now combine equations (37) and (34) and solve for the fast linewidth,

m
(Z-a)H“
kid

sin

1

————

1.

. (38)

2 -«

See Figure 5 for some solutions of equation (38) for some special cases.

4. Some properties of the fast linewidth. Frequency multiplication

can also be described as being phase angle multiplication or phase angle

a.mpliﬁ.ca.tion.12 We may write

¢ = nso , (39)
§V = nov , (40)

2
SG¢(f) = n SG¢ ) , : (41)

2
Sgp® = n S @, (42)

and

o2(T) = o7 , (43)

y y

12 Indeced, thc enginecring design of a multiplier chain for good noise
performance is in many ways analogous to the design of a low-noisc
amplificr. In an optimmum design, the phase noise of a phase amplificr
(frequency multiplicr) is set by the input stage and the input stage is
carefully designed to maximize its performance. Later stages tend to
not contribute significant quantitics of phase noise relatively speaking,
because their noisc tends to be swamped by the amplified phase noisc
of the prcceding stages, This design aspect is fully valid at the lowcer
{requencics [e.g., see Glaze 1970 and Meyer 1970a], and it may be
expected to becomce more and more valid at the higher (IR/VR)
frequencics,
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o de(f) = Haf Fast Linewidth, Wf’ _3dB
10
10 10
0.9 T ) _ 10 [ ] ,
+0.9 Hy of 2 (——— (Ho.g = 2.2x107 [S (1)
1.1 sin ——
1.1 :
2 2
0.5 32 2 _ 1 [ ]
+0.5 HO.Sf 27 14 (HO.S) = 1.2 X 10 de(l)
0 H_° T H = 3.14 [s (1)]
0 : 0 - ’ v
1 8 : : :
- ”
-1 H f (3 3) (Hl) = 2.20 [Sﬁu(l)]
1 = :
. () = nonlsy )
-2 H,f @z (H_Z = 2.08{s, ()
1
, ‘ t $
-3 H 3 1L A (H ) = 2.04 [s (1)]
-3 .o - Sv
5 sin —
5
Figure 5. A tabulation of fast linewidths given by equation (38) for some

power law spectral densities of common interest.

Note for

«a << 0 that the fast half-linewidth is approaching the (1 - o)th
root of the spectral density of the frequency fluctuations

evaluated at unity frequency.

Equation (38) is not valid for

a 2 1. Equation (38) and Figure 5 are valid in any
self-consistent set of units. Note that Hcr = SGV(I).
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~

.where ¢, v, y are the output phase, output frequency, and output
fractional frequency fluctuations, respectively, of a multiplier chain
characterized by a multiplication factor (phase amplification factor) of n.
The same symbols without carets (~) are_the respective input quantities.

From equations (42) and (8a), we may write

2 .
= n"Hy . (44)

Hd
Combining equations (44) and (33) we obtain the dependence of the fast
linewidth of a signal as the signal is frequency-multiplied in a frequency

multiplier. The frequency multiplier is assumed to be noiseless in the

present discussion.

1 ,
R ~11-a
Wf -3dB = . [Ha] ’ (45)
_2_ 1
~ . l-a 1-&
W _3dB n [Ha] . (46)

This dependence of the fast linewidth upon n is shown in Figure ‘4- for three

common values of o, .
It is amusing to note that the fast linewidth of a flicker frequency

noise signal does not blow up with multiplication factor as strongly as

does the linewidth of a white frequency noise signal. The dependences are

as n and nz, respectively. In multiplying from the frequency of a cesium

beam (10lo Hz) to the frequency of a carbon dioxide laser (3 X 101~3 Hz),

[y

the factor by which the white noise signal would broaden would be three

thousand times greater than the factor for the flicker noise signal.

13 This does not mecan we should hope for flicker noise rather than for
white noise--therc are other considerations!
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Another point of interest is that the {ast linewidth of a flicker
frequency noise signal is proportional to the multiplication factor. This
behavior is unique to the flicker noise case.14 Of the various power law
noises, only for flicker of frequency noise is the fractional linewidth of the
frequency-multiplied signal independent of the multiplication factor.

5. A graphical fast linewidth construction. It is possible to make a

graphical construction which gives a solution for the fast linewidth. See
Figure 6. Although only approximate, this graphical solution shows in a

revealing fashion the dependence of W_ upon the random noise level of the

f

signal source (e. g., a microwave oscillator), the dependence of W_ upon

f

the multiplication factor n, and the general way in which different power

laws for the phase noise spectral density affect W In Figure 6 the

£ -
"W locus'" is drawn so that it passes through the point

f = 1Hz; SG¢(f) = -7 dB relative to 1 rad2 Hz"1 ,

and so that it has a slope corresponding to f_ 1,. The phase noise spectral
density, SG¢(f)' of the output of the oscillator is multiplied by n‘2 (to give
the random phase noise at the n-th harmonic) and plotted. At some highest
frequency, fx, the random noise plot will cross the W locus and be below it
for all higher f. Simply identify fx as Wf and for typical random noises
encountered in good oscillators, this approximate value for Wf will be
correct within a factor of two or thereabouts. This is probably adequate
for preliminary engineering design of the frequency synthesis systems of

- present interest, .

The intercept of -7 dB is chosen to be correct for flicker of frequency
noise (o = -1), and it is a good approximation for the other commonly-
encountcred noisc laws. For example, to be exact the W locus intercept
would be only 2 dB higher for white FM (& = 0) and would be only 2.5 dB

lower for random walk FM noise.

14 The case of flicker frecquency noise (@ = -1) is common, and its simplc
behavior under frequency multiplication allows some of the usual calcu-
' lation_s concerning noisc to be done easily in one's head.
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Figure 6. Graphical construction for solving and understanding fast
: lincwidth problems. Examples given are hypothetical
(sce text).
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In Figure 6 I consider the hypothetical case of an X-band klystron
signal multiplied by a factor n of 104 up to the frequency of the methane
device. I assume that the klystron signal has a flicker of frequency noise
‘ of one part in 10“. That is, the Allan variance for N=2, T =T, T, and

B is

2
2 -11 0
cy('r) = (1 x 10 ) T . (47)

If multiplied to 88 THz, the phase noise would be

2
(1)
- _ 2..~2 | © -3
S = (1rad”) (P [ —1—2 = ] £°, (48)
§5¢(f) = (5.7 X 105 ra.dz sz) f—3 R (49)
and _
n ~ 10% . | (50)

I also consider the hypothctical case of a methane device with direct
output at 88 THz. I assume the methane device has a white frequency noise
with a one-second stability of one part in 1013. That is, the Allan variance

for N=2, T=171, T, and B is

1\2

o - (1 x 10713 s‘) 1. (51)
y
The phase noise of this mcthane signal is-
& 2, ,~ 2 2 -2
S_[(f) =
so@ = (1 rad®) (i) K oy(r)] 2, (52)
S (f) = (1.6 X 102 rad2 Hz) I-Z , (53)
6¢
and :
n = 1, » (54)
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Equations (49) and (52) are plotted in Figure 6. F.rom their intersecfion
with the W locus we obtain the fast linewidths for the methane signal and
the multiplied klystron signal to be 680 Hz and 1700 Hz, respectively.
Using equation (3I8) [or Figure 5] the fast linewidths are calculated to be
500 Hz and 1700 Hz, respectively, V

Since multiplication by a factor of ten, for example, would correspond
to a shift of 20 dB on Figure 6, one can look at Figure 6 and guickly com-
prehend how the various fast linewidths would change if the multiplication
factor were changed..

Although the discussion so far has been for pure power law spectral
densities, the graphical construction of Figure 6 can be used to estimate
the fast linewidth of signals whose spectral behavior is not as simple as a
pure power law. |

6. Utility of W* and of WT as approximations to the fast linewidth

W:. The methods of calculation of W% and w1 involve the usual
frequency/time stability measures, .and do not involve any measures of
radio frequency power. This simplification makes them éasy to use in
noise calculations. If Wi and Wf are adequate approximations to the fast
linewidth Wf, then we have an easy way to introduce the (approximate) fast
linewidth in noise calculations without being required to use explicitly RF
power spectral density mathematics. In Figure 7, I show a comparison of
W, WT, and Wf for three common random frequency noise power law

spectral densities., We can see that the approximation is sufficiently good

for many engineering purposes.
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IV. DISCUSSION

If the instabilities of all signal sources were merely white frequency
noise, then the mathematics of Section III would not be very relévant to
infrared-microwave frequency synthesis. There would be no need for the
concept of the fast linewidth, for the linewidth of the signal would be -
independent of the time interval we use to look at the signal.

Conversely, if the spectral density of the frequency flﬁc':tuations is
low-frequency divergent, then the longer the time interval T we use to

-3dB(T)' the

broader that linewidth will be. This is the result of the moving around in

observe the radio-frequency power spectral linewidths W

frequency of the fast line. In principle, and in practice, it is

possible to build a servo to tune a superheterodyne receiver having a
narrowband IF amplifier to track such a moving signal. The bandwidth of
the IF amplifier must be larger than the fast linewidth of the signal, but it
can be narrowed down toward that bandwidth as a limit.

The stabilities of available X-band signal sources and 88-THz methane
devices are sufficiently good that we can conceive of frequency synthesis
designs to connect X-band with 88 THz which could have IF amplifier noise
bandwidths in the 103 Hz range. See Figure 3. With the improvements
which are occurring in the stability of these signal sources, we can conceive
of optimum designs for the {future in which the required noise bandwidth
might get down to the 102 Hz range.

In order to successfully utilize such a narrowband system, several
control systems will generally be needed, and special auxiliary filters will
be necdced. For example, it usually will be necessary to use passive filters
on the output of an X-band oscillator to filter off noise sidebands and
spurious signals which are hundreds of kilohertz from the center frequency
('carrier'). The second-to-second instability of the X-band oscillator
probably must be reduced by servoing it to the output of a multiplier chain

driven by a state-of-the-art quartz crystal oscillator. The hour-to-hour
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(and lor;ée'r) inétability probaibly must be reduced by servoing this X-band
system to a Fmicrowave atomic frequency standard, e.g., a commercial
»ruvbidium g;s :‘cell devi;:e.
’ Instead of actually servoing the frequency of the X-band oscillator,
it mightu bé éé‘sier’ and more effcctive to servo the center {requency of one
of the IF amplifiers, as indicated in Figure 3.

' If an idler oscillator is used in the frequency multiplication chain,
e. g.‘. at 10 THz, its relatively large instabilities will require careful
application of either or both of the techniques just mentioned. If it is
~difficult to servo the frequency of the idler oscillator due to poor
tuneability, ithe alternate procedure of controlling the center frequency of
an IF amplifier becomes very attractive, I.n principle, this would allow
the idler oscillatorito be free-running and ;}et not contribute to the noise
of thé measurement. In such a scheme the role of the idler oscillator
would be purely to supply the high power needed for good efficiency at an
inf:ermec?iate stage of the frequency multiplication chairi.

The point of this filtering and servoing is to reduce the total quantity
of additive noise by minimizing the noise bandwidth of the IF amplifier.
If the beat signal power is sufficiently greater than the noise power in the
narrowband II" bandwidth, it will be possible to do cycie counting by using
the zero-crossings of the beat signal. If this can be done, we will be able
to achieve very high accuracy in the frequency synthesis, for the uncertainty
will tend to be of the #]l-count type. 4
I cycle counting cannot be done, then we will have to acquire a

certain amount of patience and use power spectral density detection
techx;)iques, as opposed to zero-crossing techniques, and we will have to
average for times long compared to the (linewidth)-l in order to make
useful measurcments of the beat signal. The accuracy as well as the
precision of the frequency comparison will not be as good as for cycle

counting, but il can still be very good.
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There are many other signal processing tricks which can be
employed in the '"frequency measurement system!'' block and in the
various servo control systems. If we can achieve greater efficiency of -
frequency multiplication, then we can reduce the complexity' of the
apparatus. Conversely, if we are willing to increase the complexity of
the apparatus,’ then we will be able to successfully use non-linear ele‘m?ents
of relatively low efficicncy. An understanding of the fast linewidth allows us
to see more clearly how the trade-off should go.‘ 7 _ |

The behavior of the fast linewidth under multiplication su ggest’s: that
we should be seriously searching for methods of IR/ VR freque_n(:y division
as a superior alternative to frequency multiplication. If dividé-by-tw“o, '_or )
divide-by-n, flip-flop circuits (or any other type of frequency diviéi.c;n
elements) could be achieved at the 88_'I_‘Hz frequency, the beat signé.i uééd
in Figure 3 could be taken at a lower frequency. The fast linewidth of the
beat signal would be narrower than if the beat signalk_were taken at 88 THz,
and the IF bandﬁdth could be narrower. ‘ ‘

The ultimate extension of course would be, if possible, to r_epéatedly
divide all the way down to the lower frequency. I sirongly suggest that
possibilities for partial or complete IR/VR frequénéy division be sought,

studied, and exploited.
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