3 EVALUATION OF APPROXIMATIONS TO HARTREE-FOCK...

including one angular-momentum-dependent term.
However, the formulations are basically different,
and it is not surprising that there is no direct con-
nection between their higher-order terms and those
described here. In the Koelling-Freeman approach
the approximations are applied directly to the HF
operator rather than to the exchange energy density.
The exchange approximation including higher-
order inhomogeneity corrections is of interest in
that it does lead to angular-momentum-dependent
exchange operators in the variationally derived
single-particle approximation. In applications of
these exchange approximations to atomic and
crystalline systems, it should be realized that the
large inhomogeneity corrections which occur
particularly in regions of low electron density and
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near the nucleus may be a serious error and are
mathematical in their origin. Obviously, what is
needed is a better range parameter. In lieu of

this, the cutoff procedure of Herman et al.?

may be used. An alternative procedure applicable
to the low-density region can be obtained by general-
izing a scheme described recently by Liberman.!®
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Using a previously developed unified theory of spectral line broadening, the effects of
time ordering over the complete line profile are investigated. The results of calculations

for the Lyman-a line are presented.

In a recent paper, ' a theoretical treatment of
spectral line broadening in plasmas has been de-
veloped using classical-path methods. The expres-
sion for the line shape derived in this treatment
unifies certain aspects of the impact, 2 one-elec-
tron, 3 and relaxation theories, * and under certain

conditions is valid from the line center to the far
line wings. Line profile calculations on the basis
of this unified theory have been made for hydro-
gen.® The effects of time ordering were not in-
cluded in these calculations. In order to determine

the effects of time ordering on the Stark broadening
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of hydrogen profiles, numerical calculations have
recently been made within the framework of the
impact theory, yielding results valid near the line
center.® 7 The purpose of the present work is to
determine the effect of time ordering over the en-
tire profile by making classical-path calculations
with the unified theory and including time ordering.
Only an outline of the calculations and the main re-
sults will be presented; a detailed account of the
current work is given elsewhere. 8

The general expression for the line shape obtained
in the unified theory is given as

1@)=-1(m % @ Eow
xf” P(E)(a| [aw - £(aw)] |a'>dE> (1)
0

where we have explicitly indicated the average over
ion fields. P(E) is the distribution function for the
low -frequency component of the fluctuating micro-
fields in the plasma, ® Aw= w — w(E) [w(E) being the
Stark component shifted due to the static ion fields],
and p is the atomic density matrix. The £ operator
is defined within the impact approximation (not to
be confused with the impact theory which makes the
completed collision assumption) by the following
expression:

£(aw)= —idw [ e (U - 1) dtaw . (2)
0

U, is the time-development operator for a binary
collision and the bracket ( *** ),, denotes the ther-
mal average over perturber states. The usual col-
lision variables (pg, v, ;) were used in evaluating
the thermal average and the effects of incompleted
collisions were included.!® The time-development
operator may be given by the familiar time-ordered
exponential

. t+tg
Ult+ by, tg)= © exp( —%f V(ﬂ)dt’) . (3)
to

Differentiating with respect to ¢{,, we obtain, for
Lyman a,

ine '
-a—t—o-<2lm|U| 2U'm’)

=2 [(2tm| Vit +ty)| 2LM y(2LM| U| 20 m" )

LM

—(2tm|Ul2LmyLM| V()| 20'm")]. (4)

V(t) denotes the interaction between the radiator
and perturber and was approximated by a dipole po-
tential. A Debye cutoff [at p,= (kT,/4mn,e?)!’ ¥

and a strong collision cutoff (at X=%/m v) on the
radiator-perturber separation [»=(pZ +v2t)'/?|
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|

were included in the potential. For values of

po> 10 X, where p, is the impact parameter of the
collision, we find that the real parts of the matrix
elements in Eqs. (4) become equal to the un-time-
ordered values. This is merely a consequence of
the fact that a second-order expansion of the time-
development operator is valid in this region. An
approximation due to Berman and Lamb'! was used
for impact parameters smaller than pg=0. 3%,
where p; <p,, (p, =VZ*n®with n the principal quan-
tum number of the upper state). In this approxima-
tion a unitary operator is introduced which instan-
taneously diagonalizes the interaction potential.

The coupled differential equations, indicated in Eq.
(4) above, were numerically integrated in the region
0.3*% <py< 10X, Owing to the spherical symmetry
of the interaction potential, only the (200) and
(21m) matrix elements of the thermal average were
required. [Here we have used the notation (nlm)

to denote the quantum dependence of the hydrogen
levels.] For interaction times greater than 10/w,
(where w, is the plasma frequency) the time-devel-
opment operator converges to the S-matrix limit,
thus calculations in this region were made with the
time-ordered S matrix. Physically this corresponds
to times of interest large enough such that virtually
all collisions are completed.

For comparison, the un-time-ordered time-de-
velopment operator was also calculated and a dif-
ference function generated which represents the
effect of time ordering. This effect is illustrated
in Fig. 1 where we plot the ratio C(¢)/F(t) as a func-
tion of time for the required matrix elements of the
thermal average. Here C(¢) is the thermal average
of the difference function and F(¢) is the thermal
average of the time-ordered time-development op-
erator. The calculation is representative in that
the velocity average was performed with the elec-
tron velocity distribution f(v) = 6 (v = v,,), where
v,y is the thermal velocity [v,,=(3k7T,/m)'/?]. The
effect of time ordering on the thermal average was
found to increase monotonically with time. The
correction to the (200) matrix element approaches
a constant value of about — 14% for large values of
time, while for the (21m) matrix elements the cor-
rection approaches +11%. The direction in which
the correction occurs for these elements is in
agreement with the impact calculation of Bacon,
Shen, and Cooper.® The influence of time ordering
is still important at times of interest somewhat
smaller than 1/w,; however, it eventually drops
off to zero at values of #~1/Aw, (the Weisskopf fre-
quency for Lyman ¢ is Aw,=2kT,/3%). This be-
havior is reflected in the Fourier transform where
we find an inverse behavior in frequency space. ®

The influence on the profile was the greatest in
the line center where the intensity was found to de-
crease by about 12%. The half-width increases over
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the un-time-ordered result by about 14% which is
in agreement with a comparison between the impact
result® and the calculation of Shen and Cooper. 12
As one goes toward the wings of the profile the effeci
of time ordering causes an increase in the intensity
of the profile in the vicinity of the Stark component
which is shifted due to ion fields. Beyond about
10w,, time ordering ceases to be important.

In Fig. 2, we have plotted the ratio of the profile
to the Holtsmark AX™%/2 wing (resulting from con-
sidering only the ions). The un-time-ordered re-

sult is also plotted along with the result obtained
using a full thermal average (dotted line). As in-
dicated above, the influence of time ordering is to
lower the Lyman-a profile in the line center and to
increase it in the wings, which effectively reduces
the structure of the profile.

In comparing the results presented with various
experiments in the high-electron-density regime,
we observe the following facts: For the experiment
of Elton and Griem® (Lya, n,=3.6 x 10" cm™,

T, = 20400 K) the correction from time ordering

28 T T S
2.6+ .
24 TIME-ORDERED (GI) _|
IN-TIME-ORDERED (GI)
221
20
. FIG. 2. Final Lyman-c«
18~ A:;;Agfﬂ(m" profile normalized with re-
T 16 . spect to the asymptotic Holts-
R 1a mark AA"5/2 wing (ions only)
’ 7 for the time-ordered and un-
1.2 ] time-ordered (including the
case where a full thermal
10 LYMAN-a - . :
= 107em3 average is made) time-devel-
L Ty 220000 K A N
0.8 4 opment operators (AA,=137 A).
08|~ o
0.4:/ .
0.2 .
Il 1
i 10 16 100




1546

improves agreement between the theoretical profile
and the experimental data, while in the case of the
measurements of Boldt and Cooper!* (Lya, =,
=8.4x10' cm=, T,=12200 K) the agreement be-
comes worse.

The main effect of time ordering, as discussed
above, appears to be a decrease in intensity at the
line center with a corresponding increase in the
wings. This behavior was obtained in the S-matrix

GODFREY, VIDAL, SMITH, AND COOPER 3

limit® 7 for both Ly and Hae. One may therefore
expect a similar behavior for other hydrogen lines
(in the case of the recent measurements by Wiese,
Kelleher, and Paquette!® the correction from time
ordering improves agreement between the theoretical
and experimental profiles).
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The radial wave functions of hydrogen are put into such a form that they form bases for
irreducible unitary representations of an algebra isomorphic to that of O(2, 1). Operators
proportional to »* are found which form bases for the adjoint representations of this algebra.
Matrix elements of these operators are evaluated, and selection rules are determined by

considering Kronecker products of representations of 0(2, 1).

Differences between this

approach and one previously suggested are discussed.

I. INTRODUCTION

Following Racah,! the angular portion of the
atomic wave function has been analyzed using the
powerful techniques of group theory. The radial
atomic function has, on the other hand, been con-
sidered simply to be a solution to a differential
equation., As a result, calculations involving the
radial function lack, in general, the elegance and
essential simplicity of calculations involving the
angular functions.

The possibility has recently been raised of ex-
tending the use of group theory to studies of the
radial wave function. Because the techniques nec-
essary for such studies are largely unknown (or un-
recognized), work has been centered on the sim-
pler quantum-mechanical systems—the hydrogen-
atom (both nonrelativistic?® and relativistic?), the
harmonic-oscillator,® and the generalized Kepler
problem.? The radial functions of these systems
must certainly be completely understood before
any significant progress can be made in more com-



