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Abstract: Si3N4 waveguides, pumped at 1550 nm, can provide spectrally smooth, broadband 
light for gas spectroscopy in the important 2 μm to 2.5 μm atmospheric water window, which 
is only partially accessible with silica-fiber based systems. By combining Er+ fiber frequency 
combs and supercontinuum generation in tailored Si3N4 waveguides, high signal-to-noise 
dual-comb spectroscopy spanning 2 μm to 2.5 μm is demonstrated. Acquired broadband dual-
comb spectra of CO and CO2 agree well with database line shape models and have a spectral-
signal-to-noise as high as 48/√s, showing that the high coherence between the two combs is 
retained in the Si3N4 supercontinuum generation. The dual-comb spectroscopy figure of merit 
is 6 × 106/√s, equivalent to that of all-fiber dual-comb spectroscopy systems in the 1.6 μm 
band. based on these results, future dual-comb spectroscopy can combine fiber comb 
technology with Si3N4 waveguides to access new spectral windows in a robust non-laboratory 
platform. 

1. Introduction 

Frequency-comb spectroscopy can rival and exceed the signal-to-noise, speed, resolution and 
precision of traditional broadband spectroscopy [1–5]. Although comb spectroscopy has been 
shown with bandwidths over ~4700 cm−1 (~140 THz) in several spectral regions [6–8], 
frequency-comb sources still lag behind traditional broadband thermal sources in spectral 
coverage. Spectral smoothness for comb systems is also a challenge as strong spectral 
variations can be difficult to remove from the final spectrum and may result in unusable 
spectral regions. While it is unlikely that any laser-based source will ever be as spectrally 
broad and smooth as traditional black-body sources, which include the sun, widespread 
adoption of comb-based spectroscopy may require the ability to generate spectrally smooth 
reasonably broadband light easily and flexibly across the spectrum. Moreover, to exploit 
coherent techniques, such as dual-comb spectroscopy, this light must maintain its coherence 
in both the temporal and spatial domains. 

One attractive solution for generating broadband light in many spectral regions is spectral 
broadening in nanophotonic waveguides [9–19]. Nanophotonic waveguides have many 
advantages relative to traditional non-linear fibers, including compactness, high nonlinearity, 
control of the waveguide dispersion, broad transparency windows, and a small Raman 
coefficient providing high coherence [20]. One particularly promising material is silicon 
nitride (Si3N4, or written here as SiN), which has enabled spectral broadening in the visible, 
near-infrared, and mid-infrared [14–19]. SiN offers a high nonlinear index of 2.5 × 10−19 m2/W in 
addition to a wide bandgap that eliminates two-photon absorption when pumped at 
telecommunications wavelengths [21]. Other nonlinear waveguide materials are also 
attractive but currently many lack the maturity of SiN, which can be fabricated into high 
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confinement waveguides at a very high yield [22], can also be obtained from commercial 
vendors and has long been an enabling material in the field of micro combs [23,24]. 

While, recently, much of the spectral broadening in nanophotonic waveguides has been 
performed with an eye towards molecular spectroscopy [11–14,16,18,19] and dual-comb 
spectroscopy in particular, there has only been one partial waveguide based dual-comb 
spectroscopy demonstration [25]. This demonstration employed spectral broadening in a 
silicon waveguide but for only one of the two combs and with low system coherence. 

Here we demonstrate fully coherent, high-resolution dual-comb spectroscopy with SiN 
waveguides. We show that dual-comb spectroscopy spectra with quality factors rivaling the 
state-of-the-art [3] can indeed be obtained. We also demonstrate an important caveat, which is 
that single spatial mode operation must be ensured. With imperfect coupler design, higher 
order spatial modes, which are easily generated in these devices, will lead to strong and 
varying structure in the spectra, crippling the overall dual-comb spectroscopy performance. In 
this work we target the entire 2 μm to 2.5 μm atmospheric transmission window, which is of 
interest for space-based measurements of atmospheric gases including CO, CO2, CH4, NH3, 
and N2O [26,27]. This same atmospheric window is appropriate for detection of chemicals of 
interest to agricultural and industrial process monitoring including HF, HCN, NH3, and 
acetylene. However, since this window extends beyond the transparency edge of silica, it 
cannot be fully accessed by broadening in nonlinear fiber optics. Previous dual-comb 
spectroscopy results using chromium-based solid-state lasers and thulium fiber based combs 
partially accessed this region but at the cost of complexity relative to mature erbium 
technology as well as a narrower spectral coverage [28–30]. Accessing this spectral region 
through the combination of highly reliable Er+:fiber combs [31–33] and SiN waveguides is an 
attractive option. 

2. Experimental setup 

Figure 1(a) shows a sketch of the experimental setup. Two compact fiber frequency combs 
with 160 MHz repetition rates (differing by 133 Hz) are phase stabilized and amplified to 
generate 50 fs, 1.9 nJ pulses centered at 1560 nm, with an average power of 300 mW. This 
amplified output is collimated and focused with two aspheric lenses onto a SiN waveguide. 

The SiN waveguides were fabricated at Ligentec [40], using deep-UV lithography and 
chemical etching. The waveguides have a rectangular cross-section, and inverse tapers at both 
edge facets, which expand the mode field diameter to ~3 μm, improving input coupling 
efficiency of the 1560 nm Er+ comb light. The SiN core is surrounded by a SiO2 cladding 
layer as shown in the cross-section in Fig. 1(b). The output spectrum is tuned by choosing the 
waveguide dimensions and launched power appropriately [17]. To cover the 2˗2.5 μm water 
window with high power and low spectral ripple, waveguides with a height of 770 nm, widths 
of 1516 nm and 2020 nm and a length of 2.8 mm are chosen. Also, we tested waveguides 
with intermediate widths and they all offered very similar coverage in the targeted spectral 
band. All waveguides exhibit strong anomalous dispersion at the 1560 nm pump wavelength 
(D = 75 ps/nm/km, see Fig. 1(c)). When seeded with 1.9 nJ, these waveguides produce a 
supercontinuum spanning more than 120 THz while crucially providing very smooth 
continuous coverage throughout the desired spectral band. The total power in the generated 
spectra is 65 mW with 8.8 mW between 120 THz and 155 THz as measured with a thermal 
detector head after the collimating off-axis parabolic mirror. 

After spectral broadening in the waveguide, the light is collimated with an off-axis 
parabolic mirror. The output spectra are spectrally filtered by a 1.8 μm optical long-pass filter 
to avoid spectral aliasing and detector saturation and directed to a gas cell. The dual-comb 
spectroscopy signal is detected with an extended InGaAs photodiode followed by a 100 MHz 
transimpedance amplifier and a digitizer. The digitized time-domain interferograms are then 
phase corrected and co-added in real-time in a field programmable gate array (FPGA) [34]. 
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