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Abstract—In this work we show that powers of two multiples
of the sampling period are the optimal set of averaging period
Allan variance (AVAR) calculations for determining power law
noise types present in recorded data. The primary merit of
AVAR is that it indicates the slopes associated with each of
the power law noise types as well as the level of each type
included, even for a mixture of noise types. We show that unlike
other arbitrary series, the powers-of-two values are spectrally
the closest-to-independent set of AVAR values possible, and thus
optimally decompose frequencies in such a way as to have the
least uncertainty in estimating slopes. We further demonstrate
the unique property of this choice of averaging period series by
proving the equivalence between the sums of the powers-of-two
values of the non-overlapping Allan variance and twice the value
of the standard variance.
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I. INTRODUCTION

The Allan variance, σ2
y(τ) ≡ 1/2〈(y(t)−y(t−τ))2〉, where

y(t) is a τ -average fractional-frequency oscillator error, was
the first time-domain characterization that delineated power-
law spectral noises, i.e. fα [1]. The notation AVAR and
ADEV for the Allan variance and deviation have persisted
from the names for statistical estimators of σ2

y(τ) from original
1969 FORTRAN programs in NIST's time scale. When α = 0,
-1, -2, for white, flicker, and random walk noise, respectively,
AVAR responds with power-law of -1, 0, and +1 in terms of
τ -averages. For any data run, the square root of AVAR, or
ADEV, is convenient for accurately determining the level of
these three noise types. Statistics such as the discrete Fourier
transform (DFT) are not used to delineate power-law noises
because DFT calculates the power spectral density (PSD) using
a 1 Hz (constant) band pass filter, whereas ADEV has a
proportional-to-f response that readily delineates these noises.
On the other hand, the PSD efficiently detects spectral lines.
Certainly, a regression analysis can estimate power law noises
∼ fα. However, for long-term periodicity near the data-run
length, the DFT will contain Fourier-frequency components
that are subject to windowing errors, and sampling-Nyquist
biases [2], where spectral cycles per-day, per-month, or per-
year are important in clocks. Such PSDs can be hard to
interpret and relate to in clock applications. Here is where
the tunable one-octave mean-square measurement inherent

in AVAR's tunable-by-varying τ is a powerful property for
characterizing clock stability. Spectral noise identified in a
measurement has specific cause and so aids in development of
clocks and oscillators at both short and long averaging periods
[3].

This variable-averaging-period feature introduces a choice
for which values to calculate. It is standard practice to use
values of ADEV with averaging periods that are powers of
two of the sampling period. Ostensibly, this allows equi-
spaced levels vs. τ -averages to span substantial range using
logarithmic scaling. However, there are many additional rich
features of this choice of averaging periods that we reveal for
the first time in this paper.

II. DEFINITIONS OF AVAR ESTIMATORS

For any data set {y1, y2, , yNy
} where the number of points

Ny is a power of 2 (i.e. Ny = 2J for an integer J), the
Allan variance, non-overlapping Allan varianc (AVARnono),
and maximally overlapping Allan variance (AVARmaxo) are
defined [4] as follows:

AVAR(2j) ≡ 1
2J−j+1

2J−j∑
k=2

(
ȳ2jk(2j)− ȳ2j(k−1)(2j)

)2
AVARnono(2j) ≡ 1

2J−j

2J−j−1∑
k=1

(
ȳ2j+1k(2j)− ȳ2j(2k−1)(2j)

)2
AVARmaxo(2j) ≡ 1

2J−2j+1+1

2J∑
2j+1

(
ȳk(2j)− ȳk−2j (2j)

)2
(1)

where the bar indicates averaging: ȳn(2j) is the average of the
last 2j points at location n

ȳn(2j) ≡ 1

2j

2j−1∑
l=0

yn−l. (2)

III. RELATIONSHIP BETWEEN NON-OVERLAPPING ALLAN
VARIANCE (AVAR) AND STANDARD VARIANCE (SVAR)

One way that powers-of-two series of Allan variances is
unique is that it is known [4], [5] that there exists a relationship
between the sum of powers-of-two terms AVAR and the
standard variance (when we refer to the standard variance in
this paper we do not mean the unbiased standard variance).
Both a simulation-based qualitative comparison and a proof-
based exact result about this relationship follow.
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We can characterize the disagreement between the sum over
powers of two values of an Allan variance estimator and twice
the standard variance with a fractional difference

Eavar ≡

J−1∑
j=0

AVAR(2j)

2 · SVAR
− 1. (3)

In frequency data for oscillators, we are subject to three types
of noise: white noise, flicker, and random walk. Thus, a signal
is generally characterized by a linear combination of the three
types of noise. We can write for any noise data set Y

Y = C−2{Rw}+ C−1{Fl}+ C0{Wh}, (4)

where {Rw} is a data set of random walk noise, {Fl} one
of flicker noise, and {Wh} one of white noise. Here, we use
Cα to be the amplitudes of these noise types present in the
data (with α being the power of the noise type). Generally,
the fractional error Eavar will then be a function of the noise
amplitudes

Eavar = Eavar(C−2, C−1, C0).

However, Eavar is a normalized function of the data set, so it
is invariant under scaling the magnitude of the data set, which
is equivalent to scaling all noise type coefficients

Eavar(ζC−2, ζC−1, ζC0) = Eavar(C−2, C−1, C0) ∀ζ 6= 0.

Because of this, we have the freedom to set one of our
coefficients to unity and look at Eavar as a function of the
other two coefficients, i.e.,

C−1 = 1, Eavar = Eavar(C−2, C0).

This is an equivalent description of Eavar for all linear
combinations of noise types as long as C−1 6= 0, which would
prevent the system from being arbitrarily normalizable. How-
ever, most physical systems (for example, all active electronics
and passive electronics with DC current flow [6]) exhibit
flicker noise, meaning C−1 is never zero in most realizable
systems. Because of this, the choice of normalizing to C−1 is
justified and Eavar(C−2, C0) is a valid description.

We can define similar characterization error functions for
the non-overlapping and maximally overlapping variants of
the statistic (Enono, Emaxo). We plot all of these error char-
acterizations for a simulated noise data set of length 512 as a
contour plot over C−2 and C0 in Fig. 1.

The features of the contour plots tell us qualitative properties
of the statistics. Near the origin, Eavar and Emaxo are large
and positive. Because the origin represents only flicker noise,
this means that flicker noise causes sums of the regular and
maximally overlapping Allan variance to overestimate the
standard variance. Along the axes, Emaxo converges to small
negative values, meaning random walk and white noise lead to
small underestimation. There is also an interesting property of
the dip in the corner, indicating that the combination of white
noise and random walk leads to more severe underestimation
than either on its own. Meanwhile, for Eavar, random walk

a)

b)

c)

Fig. 1. The error in the estimation of SVAR by the sums over powers of two of
(a) the Allan variance, (b) the maximally overlapping Allan variance, and (c)
the non-overlapping Allan variance as functions of the ratio of white noise C0

and random walk noise C−2 to flicker. Simulated power law noise samples
were obtained from Neil Ashby and were generated using the techniques
outlined in [7].

leads to significant underestimation and white noise leads to
slight overestimation.

The non-overlapping Allan variance has a flat estimation
error curve centered at zero. This is because AVARnono is an
exact analysis of the standard variance. That is,

J−1∑
j=0

AVARnono(2j) = 2 · SVAR. (5)

As an informative demonstration of this property, let us
observe that this is the case for a trivially short data set
containing two values, i.e.

Y = {y1, y2}.

Then the power of two of the size of the data set is J = 1.



Twice the standard variance is given by

2·SVAR = 2· 12
((

y1+y2
2 − y1

)2
+
(
y1+y2

2 − y2
)2)

=
(
y2−y1

2

)2
+
(
y1−y2

2

)2
=

y21+y
2
2−2y1y2
2 .

The sum over the powers of two of AVARnono is simply one
term because the sum is defined from 0 up to J−1 = 0. Thus

J−1∑
j=0

AVARnono(2j) =AVARnono(1)

= 1
21−0

21−0−1∑
k=1

(
ȳ2k(1)− ȳ2(2k−1)(1)

)2
= (y1−y2)2

2

=
y21+y

2
2−2y1y2
2 ,

and we can observe that for a trivially small data set the two
expressions are exactly the same.

This relation holds for arbitrarily large data sets. An exact,
semi-formal derivation of this property is given in Appendix
A.

IV. POWERS OF TWO SERIES OF ADEV AS A MAXIMALLY
INDEPENDENT STATISTIC

The standard method for characterizing the stability of
clocks (and signal sources in general) is to present the Allan
deviation as a function of averaging period, particularly those
which are powers of two of the sampling period. So far, this
decision has not yet been fully motivated.

The reason these powers-of-two values make a powerful
basis for describing the noise spectrum of a data set is that
they are “near” independent. That is, they are not completely
independent, but they are the most independent set of ADEV
values that can be chosen. This can be seen by looking at the
spectral response of each ADEV to the data being analyzed.

We can re-express the Allan variance as defined in Eq. (1)
using a sampling function js, which looks like 2j terms of
value 1 followed by 2j terms of value -1 followed by zeros to
fill in the resulting entries (such a sampling function is shown
in Fig. 2). Then we can write

AVAR(2j) ∝
∑
m

∣∣∣∣∣∑
n

yn
jsm+n

∣∣∣∣∣
2

(6)

because
∑
n yn

jsm+n is exactly ȳ2jm(2j) − ȳ2j(m−1)(2
j).

The sum over n can be recognized as a discrete convolution

AVAR(2j) ∝
∑
m

∣∣(y ∗ js)m∣∣2 .
We can then apply Parseval's theorem:

AVAR(2j) ∝
∑
m′

∣∣F(y ∗ js)m′
∣∣2 ,
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Fig. 2. The frequency response jS and the sampling function js for an
ADEV measurement on a system of size 512 with j = 6.

where the operation F represents the discrete Fourier trans-
form (DFT) and the prime on m′ indicates a summation over
the discrete frequencies over the DFT. Applying the transform,

AVAR(2j) ∝
∑
m′

∣∣(Fy · jS)m′
∣∣2 , (7)

where Fy is the DFT of the data set y and jS is the DFT of
the filter js. As such, we can interpret ADEV(2j) as square
root of the power contained in the product of the spectrum
of the data and the response of the sampling function, so jS
represents the frequency response of ADEV(2j).

The sampling function js and the corresponding spectral
response functionjS are shown for j = 6 on a system of length
512 points is shown in Fig. 2. Note that the transform of the
sampling function has a zero at the frequency corresponding to
the inverse of averaging period over which the ADEV is being
taken because of aliasing effects at the sampling frequency.
There are also zeros at each integer multiple of this frequency
above this point, as the aliasing occurs periodically. These
evenly spaced zeros and the occurrence of a single large peak
are the features that make the powers of two avering periods
nearly independent.

With each successive power-of-two in averaging period, the
sampling frequency decreases by a factor of two, the first zero
in the spectral response decreases by a factor of two. Similarly,
the maximum of the response function also is scaled down by
a factor of two. The result is that the maximum of the response
function (up to a bias shift) for a given j value j0 occurs at
a frequency such that the response functions for all j > j0
are zero at that frequency. The response maximum for j = j0
lies on the quickly dying tail of the first peak of the response
functions for j < j0. Further, the same is true for all successive
local maxima.

Because of this, if we consider a given frequency component
in the data, the frequency will lie near the maximum of a



Fig. 3. The spectral response jS of the ADEV of all defined octaves j of
averaging period for a system of length 512

single jS. Meanwhile, it will be either near a zero or on a
quickly dying tail for all other jS. As such, the power in
this noise frequency will nearly exclusively be picked up by a
single ADEV measurement. This effect is demonstrated in Fig.
3, in which all the defined powers-of-two spectral responses
for a system of length 512 are displayed in a layered log-log
plot. The plot demonstrates the property of the maxima falling
on zeros of higher order responses and tails of lower order
responses, allowing near-independent spectral decomposition
of the data in the different ADEV measurements.

This feature of overlapping zeros occurs when the sampling
function is scaled by Ij where I is an integer and j represents
successive terms (in practice I = 2 is the most useful
because it gives the most ADEV values given a finite set of
data). To see why this is, first recognize that jS and js are
discrete samplings of continuous functions j

cS and j
cs, where

the leading subscript c denotes continuity. Next, scaling the
sampling function by a factor of Ij takes

j
cs → j

cs

(
t

Ij

)
.

Then by the scaling theorem, taking the Fourier transform
gives

F
{
j
cs

(
t

Ij

)}
= Ij · jcS(ωIj), (8)

so the zeros become a factor of Ij closer together. If the zeros
of the sampling function are evenly spaced, then the zeros for
j will lie on the zeros for j + 1 and j + 2 and so on.

This is generally true for any similar statistic where the
frequency response of the sampling function has evenly spaced
zeros. For example, the Hadamard variance exhibits this prop-
erty and is commonly used with powers-of-three averaging
periods. [8], [9], which also exhibit this property.

V. CONCLUSION

We have shown that the set of AVAR/ADEV statistics have
useful properties when taken in series where the averaging

periods are consecutive powers of two. The near independence
of these measurements in terms of frequency domain power
sampling makes them a powerful tool in determining power
law noise types that exist in data sets. While all powers-
of-integer series exhibit this near-independence, powers of
two sampling periods allow for the most information to be
squeezed out of a finite data set because it produces the most
statistical measurements per data point, making it the most
useful of these series. This is especially the case when we
wish to extract long-term behavior from shorter data sets.

Furthermore, we have proved that the powers-of-two
averaging period series exhibit the interesting property that
for the non-overlapping variant of the statistic, all the defined
powers-of-two measurements sum up to exactly twice the
standard variance. In some cases, this can be a useful property
in the reduction of error estimates on AVAR and its slope,
since the standard variance itself generally has very low
fractional uncertainty compared to AVAR measurements.
These properties combined help motivate the standard practice
in the field and lead to a compelling justification for the
use of the power-of-two series when using Allan variance to
analyze data.

APPENDIX A.

Here we will prove the relation given by Eq. (5):

J−1∑
j=0

AVARnono(2j) = 2 · SVAR

Let N = 2J be the number of items in the data set. The
definition of the standard variance tells us

2 · SVAR =
2

N

[(
y1 −

1

N
(y1 + y2 + ...+ yN )

)2

+

(
y2 −

1

N
(y1 + y2 + ...+ yN )

)2

+ ...

+

(
yN −

1

N
(y1 + y2 + ...+ yN )

)2
]
.

Pulling out a factor of 1
N2 and combining like terms,

2 · SVAR =
2

N3

[
(y1(N − 1)− y2 − ...− yN )

2

+ (−y1 + y2(N − 1)− ...− yN )
2

+ ...

+ (−y1 − y2 − ...+ yN (N − 1))
2

]
. (A.1)

Since we only have differences of terms squared in the
expression, the result will be a sum over multiples of two



terms of the data set. We can write such a sum generally with
undetermined coefficients

2 · SVAR =
∑
i

Aiy
2
i +

∑
i

∑
l<i

Bilyiyl. (A.2)

First consider Ai. We can see in Eq. (A.1) that for a given
y2i , in the sum over squared terms it will appear once in the
squared term including yi(N − 1) and N − 1 more times in
the rest of the squared terms. Thus we have

Ai =
2

N3

(
(N − 1)2 + (N − 1)(−1)2

)
=

2

N2
(N − 1).

(A.3)
Next consider the cross term coefficients Bil. A given yiyl
will occur once in the squared term with yi(N − 1), once in
the squared term with yl(N −1) and N −2 more times in the
other squared terms. Thus we have

Bil =
2

N3
(2(N − 1)(−1) + (N − 2)(−1)2) =

−2

N2
. (A.4)

Next, let us do the same for AVARnono. Recall the definition
of AVARnono(2j) as given in Eq. (1):

AVARnono(2j) ≡
1

2J−j

2J−j−1∑
k=1

(
ȳ2j+1k(2j)− ȳ2j(2k−1)(2j)

)2
.

We aim to analyze the sum over all defined powers of two
averaging periods

J−1∑
j=0

AVARnono(2j).

Once again, the difference inside the square is a linear combi-
nation of terms, so the sum over these squares will be another
sum of multiples of two terms of the data set. We can then
write in the same form as Eq. (A.2):

J−1∑
j=0

AVARnono(2j) =
∑
i

A′iy
2
i +

∑
i

∑
l<i

B′ilyiyl. (A.5)

First consider the A′i. For a given AVARnono(2j), the term
yi will appear in a single ȳ(2j) of the sum over k (since the
ȳ(2j) are non-overlapping by definition), which is normalized
by 1

2j , so when squared we get a factor of 1
22j y

2
i . Including

the outer normalization of 1
2J−j , we get a total contribution

over the entire sum

A′i =

J−1∑
j=0

1

2J−j
1

22j
= 2−2J+1(2J−1) =

2

N2
(N−1). (A.6)

Finally, consider B′il. Since we only care about i 6= l, there
will always be a minimum l such that yi and yl both occur
in a single

(
ȳ2j+1k(2j)− ȳ2j(2k−1)(2j)

)2
, which we will call

l = m. When l = m, one of yi and yl will be in one
each of ȳ2j+1k(2j) and ȳ2j(2k−1)(2j). Therefore the term yiyl
will appear as a negative cross term, so the contribution from
AVARnono(2m) is − 1

22m . Then for j > m, both yi and yl will
occur in the same average term ȳ(2j), so the cross term will
be positive, and the contribution is then + 1

22j . Including each

outer normalization of 1
2J−j , we get a total contribution over

the entire sum

B′il =
1

2J−m

(
− 1

22m

)
+

J−1∑
j=m+1

1

2J−j

(
+

1

22j

)
= −2−J−m + 2−2J−m(2J − 2m+1)

= −21−2J

= − 2

N2
. (A.7)

Thus we can see from Eq. (A.3) and Eq. (A.6) and from Eq.
(A.4) and Eq. (A.7) that{

Ai = A′i
Bil = B′il

(A.8)

so
J−1∑
j=0

AVARnono(2j) = 2 · SVAR. (A.9)
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