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ABSTRACT

A direct numerical simulation of many interacting ions in a Penning trap with a rotating wall is presented. The ion dynamics is modeled
classically. Both axial and planar Doppler laser cooling processes are modeled using stochastic momentum impulses based on two-level
atomic scattering rates. The plasmas being modeled are ultracold two-dimensional crystals made up of hundreds of ions. We compare
Doppler cooled results directly to a previous linear eigenmodes analysis. Agreement in both frequency and mode structure is obtained.
Additionally, when Doppler laser cooling is applied, the laser cooled steady state plasma axial temperature agrees with the Doppler cooling
limit. Numerical simulations using the approach described and benchmarked here will provide insights into the dynamics of large trapped-
ion crystals, improving their performance as a platform for quantum simulation and sensing.
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I. INTRODUCTION

A Penning trap with a rotating wall potential and Doppler laser
cooling can produce stable ultracold non-neutral ion plasma crystals
with temperatures of a fraction of a millikelvin.1–4 Such ultracold ion
crystals enable interesting research at the forefront of different areas of
physics including atomic physics,5–9 quantum optics and metrol-
ogy,10,11 quantum simulation,12–14 and basic plasma physics,15 includ-
ing studies of strongly coupled plasmas that model dense astrophysical
matter.16–18 For many applications, lower ion temperatures are desir-
able. For example, lower ion temperatures can improve the fidelity of
quantum simulations with trapped ions19 and enable the engineering
of stronger interactions by using shorter wavelength spin-dependent
forces.13 Colder temperatures also improve the stability of the ion crys-
tal, which advances the prospects for single site optical manipulation
and detection in multidimensional crystals, akin to what has been
achieved with linear ion crystal arrays20 and with an “atom micro-
scope” for neutral atoms.21 Single site optical manipulation and detec-
tion will enable the preparation of complicated entangled states
through the implementation of variational quantum simulation proto-
cols22 on large trapped ion crystals.

The study of the thermodynamics of ultracold ions in Penning
traps is not just a facilitator for certain experiments but also interesting
basic plasma physics research in its own right. The ions in these sys-
tems form a strongly coupled plasma with complex collective modes

of motion.15 The behavior of energy transfer by nonlinear mode cou-
pling and other heating and cooling mechanisms is subtle and
complex.23–25

The primary means of cooling the ions in a Penning trap are vari-
ous forms of laser cooling including Doppler cooling,26–29 sideband
cooling,9 and electromagnetically induced transparency (EIT) cool-
ing.1,30 The basic principles for laser cooling ultracold ions are similar
to those used for laser-cooling neutral atoms in traps, but there are
important differences that can make it more challenging to fully
understand the cooling limits and to optimize the laser cooling geome-
try and parameters such as laser intensity and detuning.28 A significant
difference from neutral atom experiments is that the ion motion is
subject to the trapping electric and magnetic fields. In the axial mag-
netic field of the Penning trap, the ion plasma rotates, resulting in a
change in the ion velocity relative to the cooling laser beam, which is
stationary in the laboratory frame. The typical velocity of the ions gives
rise to Doppler shifts that can be large relative to the natural atomic
linewidth of the ions.

A second major difference is the strong Coulomb interaction
between the ions. The Coulomb force couples the ions producing col-
lective modes of motion. In contrast to the cooling dynamics of neutral
atoms—which is largely a single particle phenomenon—it is necessary
to take the collective nature of the ion motion into account to fully
understand the cooling of the ion crystal. Even an analysis in terms of
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collective linear eigenmodes cannot fully account for the ion dynamics.
Nonlinear coupling between modes gives rise to frequency shifts31,32

and broadening of resonances, resulting in nontrivial frequency spectra.
In this paper, we present results from a first principles classical

model of the ion dynamics, analogous to a molecular dynamics simula-
tion, including the trapping fields with a rotating wall potential,
Coulomb interactions between ions, and Doppler laser cooling. We
focus on the experimentally relevant case of a single-plane crystal gener-
ated with trapping parameters similar to those used in recent quantum
simulation and sensing experiments.10–14 These simulations provide a
more complete picture of the Doppler cooling dynamics and cooling
limits in the complex Penning trap geometry and can help with optimiz-
ing the trap configuration and cooling parameters in current and future
experiments. The simulation presented in this paper goes beyond previ-
ous modeling work12,27,28 in that it captures the combined effects of
finite temperature, nonlinear coupling, and dynamics occurring at dis-
parate time scales in a single unified simulation code. The rest of this
article is organized as follows: Section II discusses the simulation model,
including the Penning trap Hamiltonian, Doppler laser cooling, the
time integration of the ion equations of motion, and numerical conver-
gence with respect to time step. We then compare the simulation results
with both the axial and the planar linear eigenmode analysis in Sec. III.
In Sec. IV, we show that Doppler cooled simulations run to a steady
state and compare with the results from equilibrium models.26–28 We
conclude with a summary and discuss future extensions of this work.

II. MODEL AND COMPUTATIONAL ALGORITHM

In this section, we describe our mathematical model and compu-
tational approach for the simulation of ultracold ions in a Penning
trap with a rotating wall. For a sketch of a Penning trap and a detailed
discussion of the confining fields, see Ref. 12.

A. Trap forces and Hamiltonian

We treat the ions as classical point particles with velocity vi and
position xi. Excluding the cooling laser for now, the motion of the ions
is governed by the Hamiltonian

H ¼ H0 þ
XN
i¼1

qiuðxi; tÞ; (1)

where the Hamiltonian for the motion in the strong axial B-field is

H0 ¼
XN
i¼1

1
2mi

�
pi � qiAðxiÞ

�2
; (2)

including the vector potential A for the homogeneous axial magnetic
field B ¼ ð0; 0;BzÞT in the Penning trap. To be noted, in the follow-
ing, we use the terms axial, out-of-plane, and parallel as directions par-
allel to the magnetic field and planar, in-plane, and perpendicular as
directions perpendicular to the magnetic field. We choose our coordi-
nate system such that the Penning trap magnetic field B ¼ r� A is
parallel to the z axis. With that choice of coordinate system, we may
choose A ¼ �yBz x̂ with x̂ ¼x=x the unit vector along x. In Eq. (2), N
is the number of ions in the trap andmi and qi are the mass and charge
of ion i. The electrostatic potential

uðxi; tÞ ¼ utrapðxiÞ þ uwallðxi; tÞ þ
X
j 6¼i

1
8pe0

qj
jxi � xjj

(3)

contains the potential utrap for the electrodes in the Penning trap, the
rotating wall potential uwall, and the Coulomb potential for the inter-
action between the ions. In the vicinity of the ion crystal, the trap
potentials are well approximated by harmonic potentials. We parame-
trize utrapðxÞ as

utrapðxÞ ¼
1
4
kz 2z2 � x2 � y2
� �

(4)

and the time-dependent rotating wall potential uwallðx; tÞ as

uwallðx; tÞ ¼
1
2
kzd x2 þ y2
� �

cos 2 hþ xRtð Þ½ �; (5)

where d is the dimensionless parameter that characterizes the strength
of the rotating wall potential to the trapping potential utrapðxÞ and h is
the azimuthal angle in cylindrical coordinates. Next, we transform to
the rotating frame,

xR
yR

" #
¼ cosðxRtÞ �sinðxRtÞ

sinðxRtÞ cosðxRtÞ

" #
x

y

" #
: (6)

Using the above transformation, Eq. (6), to the rotating frame, and
combining Eqs. (4) and (5), we obtain

utrap;RðxRÞ þ uwall;RðxRÞ ¼
1
2
kzz

2 � 1
2

kxx
2
R þ kyy

2
R

� �
; (7)

where

kx ¼ kz
1
2
� d

� �
; ky ¼ kz

1
2
þ d

� �
: (8)

Note that in the rotating frame, the applied potential is time indepen-
dent, Eq. (7). Due to the rotating wall potential, Eq. (5), the externally
applied trapping fields produce a Hamiltonian that is time dependent
in the laboratory frame. However, the applied potential is time inde-
pendent in the rotating frame [Eq. (7)], resulting in energy conserva-
tion in this frame.15 This is a useful check for the validity of the model
in the absence of laser cooling. The trap Hamiltonian in the rotating
frame,HR, is

HR ¼
XN
i¼1

1
2mi

pRi � qiAðxRiÞ
� �2 þXN

i¼1
qi uRðxRiÞ þ /wall;RðxRiÞ
� �

þ
XN
i¼1

1
2

qiBzxR �mix
2
R

� �
r2Ri þ

XN
i¼1

qi
X
j 6¼i

1
8pe0

qj
jxRi � xRjj

;

(9)

where all “R” subscripts indicate the rotating frame and r2Ri ¼ x2Ri
þy2Ri. The third term is new and is due to the Lorentz and centrifugal
forces. The Coulomb interaction energy term only involves the differ-
ence between the coordinates of the ions. The transformation to the
rotating frame conserves the length of vectors, so the expression is the
same in the rotating or lab frame.15 After the system reaches equilib-
rium, all the particles nearly rigidly rotate as a crystal with the constant
frequency xR. In Sec. IV, the measurement of temperature via kinetic
energy is made in the rotating frame so as not to include the energy
associated with the rigid rotation of the ion crystal.
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B. Doppler cooling

In addition to the conservative dynamics described by the
Hamiltonian, the ions are subject to radiation pressure forces due to
cooling lasers. Our model of laser cooling is based on resonance fluo-
rescence for a driven two-level atom. We begin by discussing our
approach for a single cooling laser. The photon scattering rate for a
driven two-level atom is given by27

_nðx; vÞ ¼ SðxÞc0
ðc0=2Þ2

ðc0=2Þ2ð1þ 2SðxÞÞ þ D2ðvÞ
; (10)

where c0 is the natural linewidth of the atom transition (in radians per
second), SðxÞ is the saturation parameter, and DðvÞ ¼ D0 � k � v is
the detuning of the atomic transition from the laser frequency includ-
ing the first order Doppler shift with D0 the detuning at rest. The vec-
tor k is the wave vector of the cooling laser. We assume that the atoms
scatter photons with this rate with Poissonian number statistics. The
saturation parameter is spatially dependent due to the intensity varia-
tions of the cooling laser beam. For a Gaussian beam, we have

SðxÞ ¼ S0e
�q2=W2

y ; (11)

where q is the distance of the atom from the axis of the beam andWy

is the 1/e radius of the intensity of the beam.
To incorporate laser cooling into our numerical simulations, we

proceed as follows: first, we compute the mean number of photons
scattered by ion i in time interval Dt,

�ni ¼ _niDt: (12)

The velocities and positions needed for computing _ni are evaluated at
the center of the time step in accordance with the integration scheme
discussed below in Sec. IIC. We then compute the actual number of
photons scattered by each ion, ni, as a Poisson random number with
mean �ni. Each ion receives a total momentum kick of

DpLaseri ¼ Dpi;absorb þ Dpi;emit; (13)

where Dpi;absorb ¼ ni�hk and Dpi;emit is the recoil corresponding to ni
photons scattered in random directions with an isotropic probability
distribution. To compute Dpi;emit, we generate ni vectors of length �hk
pointing in random directions. The recoil momentum Dpi;emit is then
obtained by adding up these vectors. The resulting velocity change in
one time step is much smaller than the ion thermal velocity.

For simulating multiple cooling lasers, we find the momentum
kick Eq. (13) for each laser individually, and then, we add up the
results. This approach captures the salient features of laser cooling
with the following approximations: first, in the case of strong satura-
tion, S� 1, the momentum kicks frommultiple beams are not additive
but are correlated in a more complicated way. We neglect these corre-
lations. The other approximation in our model is that we assume that
the ion motion is uniform during an excited state lifetime. Specifically,
in treating the laser scattering, we neglect the change in an ion’s veloc-
ity between absorption and re-emission. For the motion of ions in the
Penning trap, the most rapid change of the ion velocity is due to the
magnetic field. We can characterize the validity of the assumption of
uniformity of motion by the dimensionless parameter g ¼ xB=2pc0
being much small compared to 1. The parameter xB ¼ Bzq=m is
the Larmor precession frequency. For the trap and ion parameters

considered in this paper, we have g � 0:05. We also assume that the
cooling laser intensity is approximately constant during an excited
state lifetime. For the typical parameters considered in this publication,
this approximation holds to a higher degree of accuracy than the
assumption of a constant ion velocity during an excited state lifetime.

C. Time integration of the equations of motion

The numerical integration of the ion motion is performed in the
lab frame of reference. A time splitting technique is used to numeri-
cally integrate the equations of motion for the ions. This is analogous
to the Buneman and Boris algorithms33–35 with an exact matrix rota-
tion for the v � B force term. To advance the positions and velocities
of the ions, fxi; vig, from time t to tþ Dt, we apply the following time
evolution operator:

fxiðt þ DtÞ; viðt þ DtÞg ¼ UðDtÞfxiðtÞ; viðtÞg; (14)

where U(Dt) is given by

UðDtÞ ¼ U0ðDt=2ÞUkickðt þ Dt=2; DtÞU0ðDt=2Þ: (15)

U0ðDt=2Þ is the time evolution operator corresponding to H0 [see Eq.
(2)] which advances the state of the ions for a time interval of duration
Dt/2. Since H0 contains just the kinetic energy of the ions and the
Lorentz force due to the axial magnetic field, the motion generated by
U0 is given by the Larmor precession

xiðt þ Dt=2Þ ¼ xiðtÞ þ
s c� 1 0

�ðc� 1Þ s 0

0 0 xBDt=2

2
64

3
75 viðtÞ

xB
;

viðt þ Dt=2Þ ¼
c �s 0

s c 0

0 0 0

2
64

3
75viðtÞ; (16)

where

s ¼ sinðxBDt=2Þ and c ¼ cosðxBDt=2Þ: (17)

The time evolution operator Ukickðt þ Dt=2; DtÞ captures the
forces due to the electrostatic potential [see Eq. (3)] and the radiation
pressure forces due to laser cooling (Sec. II B). This operator is
time dependent. We evaluate it at the midpoint of the time interval,
tþ Dt/2. The operator Ukick changes the velocities of the particles only

viðt þ DtÞ ¼ viðtÞ þ Dtðqi=miÞEðt þ Dt=2; xiðt þ Dt=2ÞÞ
þ DpLaseri =mi;

where

E
�
t þ Dt=2; xiðt þ Dt=2Þ

�
¼ ruðxi

�
t þ Dt=2Þ

�
:

D. Convergence with respect to the time step

To verify the precision of our numerical integration procedure,
we check that the simulations converge with the expected quadratic
rate as the time step size is reduced. To evaluate the convergence, we
initialize our simulation with an equilibrium configuration for 127
ions shown in Fig. 1. This is the lowest energy state equilibrium (zero
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temperature 2D crystal) in the rotating frame generated using the pro-
cedure previously discussed by Wang et al.12 The simulation is in the
laboratory frame and so tracks the full dynamics, including the cyclotron
and magnetron motion, and so, maintaining the 2D crystal equilibrium
is a good test of the numerics. We study the numerical convergence
without Doppler laser cooling. Here and in the rest of the paper, unless
indicated otherwise, we use typical parameters for the Penning trap at
the National Institute of Standards and Technology (NIST)10,13,36 with a
strong homogeneous magnetic field of Bz¼ 4.4588T, a trap rotation fre-
quency of xtrap ¼ 2p� 180kHz, end cap voltages yielding a confining
potential of kz¼ 9.21MV/m2, and a 1V rotating wall potential yielding
d¼ 3.5� 10�4. For 9Beþ ions, which is assumed throughout this paper,
the cyclotron frequency is qB=m ¼ 2p� 7:596MHz and the axial con-
fining frequency parallel to the magnetic field is 2p� 1.58MHz.

Starting from this initial 2D crystal configuration, we integrate the
equations of motion for a total duration, s, using different time step
sizes, Dt, to find the final positions xiðs; DtÞ. For each time step size, we
compare the final solution with a reference solution, xrefi ðsÞ ¼ xiðs; 2
�10�10 sÞ, computed using a time step size of Dt¼ 2� 10�10 s. We
compute the error Dxðs; DtÞ as the average Euclidean distance of the
positions from the reference solution

Dxðs; DtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�1

XN
i¼1

xiðs; DtÞ � xrefi ðsÞ
� �2vuut : (18)

Figure 2 shows the integration errors for an integration time of
s¼ 10 ls. The error decreases quadratically for time step sizes below
approximately 1:0� 10�7 s. At a time step size of Dt¼ 1 ns, the mean
position error of the ions is Dxð1 nsÞ � 1 nm. During this time inter-
val, the ions move on the order of 1mm, i.e., the ion motion is inte-
grated with a relative error on the order of 1.0� 10�6. For time
step sizes greater than Dt � 1:0� 10�7 s, resonances occur where the
integrator step size matches the period of one of the vibrational

eigenmodes of the system. At these resonances, the time integration
errors can grow large. The results presented in this paper were
obtained with Dt¼ 1ns.

III. COMPARISON WITH LINEAR THEORY NEAR ZERO
TEMPERATURE

We now turn to an analysis of the vibrational eigenmodes of the
2D ion crystal. To find the eigenmodes, we initialize the ions in a low
energy spatial configuration found by minimizing the potential energy
in the rotating frame. We subject the ions to cooling lasers with a geom-
etry typical for the NIST experiment.10,13,28,36 The details of the setup of
the cooling lasers are described in Sec. IV. The cooling time for both in-
plane and out-of-plane degrees of freedom is on the order of 1ms. After
5ms of laser cooling, the ions have settled into an equilibrium state. We
then turn off the cooling lasers and record the trajectories of the ions
xiðtjÞ at discrete times tj ¼ jDt for j ¼ 0; 1;…;Nsample � 1.

From the trajectories, we compute power spectra of the ion
motion by means of

PzðxÞ ¼
XN
i¼1
j~ziðxÞj2 þ

XN
i¼1
j~zið�xÞj2: (19)

In this equation, ~zi is the Fourier transform of the z coordinate of ion i

~ziðxÞ ¼
1
s

ðs

0
e�ixtziðtÞ dt; (20)

with s ¼ Nsample � Dt the total integration time of the simulation. In
terms of the discretely sampled trajectories, the Fourier transform can
be approximated by a discrete Fourier transform, which we evaluate
with the aid of a Fast Fourier Transform numerically

~zðlDxÞ ¼ 1
s

ðs

0
e�ilDxtzðtÞ dt; (21)

� 1
Ns

XNs

n

e�i2pln=NszðnDtÞ: (22)

Here, we have introduced the frequency resolution Dx ¼ 2p=s and
l ¼ 0; 1;…;Nsample � 1. Frequencies exceeding the Nyquist frequency,
lDx > p=Dt, wrap to negative frequencies.

FIG. 1. Top view of the steady state configuration of 127 ions in a Penning trap
used for the convergence study.

FIG. 2. Time integration errors as a function of time step size for a total integration
time of s¼ 10 ls for a typical Penning trap simulation. The dashed orange line is
quadratic for the orientation. See text for details.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 26, 073504 (2019); doi: 10.1063/1.5099256 26, 073504-4

Published under license by AIP Publishing

https://scitation.org/journal/php


We compute spectra Px and Py for the in-plane degrees of free-
dom similarly with a minor caveat: to eliminate the large coherent
component due to the uniform rotation in the trap, we use the coordi-
nates in the rotating frame, xR and yR.

A. Out-of-plane eigenmodes

Figure 3(a) shows Pz for 7 ions with a sampling period of
Dt¼ 0.25 ls and a total integration time of s¼ 50 ls corresponding to
a frequency resolution of Dx=ð2pÞ ¼ 20Hz. We superimpose the
mode frequencies found by linearizing the equations of motion around
the ground state as gray vertical lines. For the linear analysis (gray
lines), we use a code developed by Wang et al.12 with minor modifica-
tions. We observed that the resonance frequencies obtained with our
molecular dynamics simulations agree well with the modes from the
linear theory. Several pairs of modes are nearly degenerate. For exam-
ple, the degeneracy of the two tilt modes around 1.55MHz is lifted
only by the weak perturbation of the rotating wall potential. The out-
of-plane eigenmodes are frequently referred to as drumhead modes
because they resemble the vibrations of a membrane with open bound-
ary conditions on the edge of the membrane.

Figure 3(b) shows Pz for 127 ions with otherwise identical param-
eters. Again, the frequencies of the highest frequency modes agree well
with the zero temperature linear mode analysis. However, the frequen-
cies of several of the lower frequency, shorter wavelength modes devi-
ate from the linear frequencies. The reason for these shifts is that, at
finite temperature, defects form in the ion crystal, especially for larger
numbers of ions. Due to their shorter wavelength, the lower frequency
modes more sensitively depend on the local crystal structure and
therefore are perturbed by the crystal defects. In Sec. IV, we will dis-
cuss how the power spectrum in Fig. 3(b) can be used to estimate the
temperature of the drumhead modes.

In addition to frequency spectra, the axial vibrational mode pat-
terns can be analyzed.12 We obtain the eigenfunction shapes using a
notch filter of width Dx about the mode frequency of interest. We
then inverse the Fourier transform ~ziðxÞ and plot the normalized dis-
placement as a function of time. Figure 4 shows a snapshot of the first
four (starting from the highest frequency) vibrational modes for 127
ions. Figure 4(i) shows the center-of-mass mode where all ions move
together in the z-direction. Figures 4(ii) and 4(iii) show the next two
highest frequency modes that are tilt modes that would be degenerate

except for the weak structural anisotropy produced by the rotating
wall potential. The fourth mode, shown in Fig. 4(iv), has two linear
nodes. Figure 4 shows similar results as obtained in the eigenfunction
plots presented in Ref. 12 (Fig. 11).

B. In-plane spectrum

The spectrum of in-plane modes can be decomposed into two
qualitatively different types of modes. There is a high frequency
branch of modes near the cyclotron frequency and a low frequency
branch near zero frequency. The high frequency modes are commonly
referred to as cyclotron modes, and the low frequency modes are
referred to as E�B modes. The spectra Px and Py are very similar.
Therefore, we consider just Px for simplicity.

Figure 5(a) shows the two narrow bands of modes for 7 ions
together on the same plot. The mode frequencies predicted by the lin-
ear theory are again superimposed as gray vertical lines. Figures 5(b)
and 5(c) show the cyclotron and E�B modes separately in more
detail. The left most peak near zero frequency shown in Fig. 5(c),
which is relatively higher than the other peaks, is associated with the
slow periodic deformation of the elliptical ion crystal due to the con-
fining potential of the rotating wall. This mode, sometimes called a
rocking mode, is a zero frequency mode in the absence of a rotating
wall. The presence of a wall potential leads to a small nonzero fre-
quency for this mode. Figures 6(a) and 6(b) show the two branches of
in-plane modes for the 127 ion crystal. Again, we observe good agree-
ment between the zero-temperature linear analysis and the finite tem-
perature direct numerical simulations.

IV. DOPPLER COOLING GEOMETRY AND SIMULATION
RESULTS

We now turn to an analysis of Doppler cooling of the ion motion.
The numerical implementation of Doppler laser cooling was discussed
in Sec. II B. Doppler laser cooling with a rotating wall is discussed in
detail in Ref. 28. There, it was shown in a fluid model that assumed
thermal equilibrium that low ion temperatures close to the Doppler
laser cooling limit were possible over a range of experimental condi-
tions. This is in contrast to a Doppler laser cooling model without a
rotating wall,27 where the equilibrium temperature depended sensi-
tively on the details of the setup. Here, we discuss in more detail the
geometry of the laser beams and the achievement of a Doppler cooled
ultracold steady-state 2D crystal of 127 ions using direct numerical

FIG. 3. Spectra PzðxÞ of out-of-plane motion for 7 ions (a) and 127 ions (b). Some modes are nearly degenerate, and individual peaks are not discernible.
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simulation. Measurements of the average temperatures of the ion
motion in the planar (perpendicular to the B-field) and axial (parallel
to the B-field) directions are presented. In addition, mode resolved
temperatures in the axial direction are investigated.

A. Doppler cooling in a rotating wall Penning trap

We consider a cooling laser configuration similar to that
employed in a typical NIST Penning trap experimental setup.10,13,28,36

We assume that the out-of-plane motion is cooled by two counter-
propagating cooling beams along the positive and negative z direc-
tions, i.e., parallel and antiparallel to the trap magnetic field. These two
beams have equal intensity, and they are detuned by Dk ¼ �c0=2 rela-
tive to the atomic transition. The waist of the beams is assumed to be
larger than the size of the ion crystal so that the spatial variation of the
laser intensity can be neglected.

The in-plane motion is cooled by an additional laser directed
along the x axis, i.e., perpendicular to the trap magnetic field. The
arrangement of the planar cooling beam is illustrated in Fig. 7. This
beam has a widthWy and is displaced by a distance d from the center
of the trap. To adjust for the rotational motion of the ions at the planar
beam location, the beam is detuned by D? ¼ �c0=2þ kxRd from the
atomic transition.

The in-plane and out-of-plane degrees of freedom are only
weakly coupled to one another. Therefore, they are not typically in
thermal equilibrium. To study the temperature anisotropy, we intro-
duce parallel and perpendicular temperatures

Tk ¼
mBe

NkB

XN
i¼1

v2z;i; (23)

T? ¼
mBe

2NkB

XN
i¼1

v2x;i þ v2y;i
� �

: (24)

To simulate the Doppler cooling process, we initialize the ions in
a finite temperature state by setting their positions to the 2D crystal
equilibrium, with random velocities drawn from a Maxwellian
(Gaussian) distribution at a given starting temperature. We use a per-
pendicular cooling beam with a peak saturation intensity of S0¼ 1 and
a width ofWy¼ 5lm displaced by d¼ 5lm from the trap center. The
axial cooling beams have a uniform saturation intensity of S0¼ 0.005.
We deliberately choose a much smaller axial cooling beam intensity
because cooling of the out-of-plane motion is very efficient since all
ions interact continuously with the parallel beams. Larger axial cooling
beam intensities would heat the in-plane degrees of freedom due to
the recoil of the scattered photons, overpowering the planar cooling.

FIG. 4. Vibrational mode patterns (eigen-
functions) for the first 4 out-of-plane
modes using 127 ions. Each dot repre-
sents the ion position, zi. The color repre-
sents the scale value of the normalized
out-of-plane motion of the particular ion,
as described in Sec. III A.
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With all the cooling beams on, the system is left to evolve for
10ms. The time histories of the in-plane and out-of-plane tempera-
tures during the simulation are shown in Fig. 8. For these simulation
parameters, both in-plane and out-of-plane temperatures relax to a
steady state on a time scale on the order of 1ms.

B. Measured steady-state axial and planar
temperatures

We now present steady-state temperature results. The axial tem-
perature Tk can be well diagnosed in the experiments.1 Also, the theo-
retical Doppler cooling limit27,28 gives an estimate for Tk, which agrees

FIG. 5. Spectra of the in-plane motion of a 7 ion crystal, PxðxÞ. The top figure (a) shows the entire frequency range with the E� B modes near zero frequency and the cyclo-
tron modes near xB ¼ eB=m ¼ ð2pÞ � 7:596 MHz. (b) and (c) Closeups of the cyclotron (upper branch) and E� B (lower branch) modes, respectively. For this 7 ion case,
we use a different trap axial frequency, to better display the cyclotron modes.

FIG. 6. Two branches of the in-plane motion spectrum for a 127 ion crystal. (a) and (b) Closeups of the E�B (lower branch) and cyclotron (upper branch) modes,
respectively.
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fairly well with temperatures achieved in the NIST experiment.10,13,36

The theoretical Doppler cooling limit for motion parallel to the mag-
netic field is

Tk;Doppler ¼
1
3

�hc0
kB
¼ 0:29mK; (25)

where c0 ¼ 2p � 18MHz is the atomic transition linewidth for 9Beþ.
This is the cooling limit predicted for laser cooling along one axis (in
this case parallel to the magnetic field) with minimal recoil heating
from the perpendicular laser beam.26 This limit assumes isotropic scat-
tering, which was also assumed in the numerical simulation of
Doppler laser cooling. We estimate the steady-state Tk by averaging
the results with the lasers on continuously over the final millisecond,
the time interval shown in the insets of Fig. 8. We find steady state
temperatures in Fig. 8 of Tk � 0:37mK and T? � 0:92mK. The low-
est Tk was obtained in a different simulation with d¼ 0 (no planar
beam offset) and was measured to be 0:28mK60:04mK, in good
agreement with the Doppler cooling limit in Eq. (25). Also, it is impor-
tant to note that the simulation shows fluctuations at the axial temper-
ature to be approximately 615%, which are produced by the
interaction with the cooling laser beams and the dynamic exchange
between potential and kinetic energies.

We can use the simulation to measure the thermal energy in each
axial mode and investigate if an equipartition assumption is valid.
Because the system is at very low temperature, nonlinear couplings are
very weak. Additionally, the simulations are for a finite time.
Therefore, one might not expect the system to be in equipartition. For
an axial mode with frequency xm, we can obtain the mode tempera-
ture TkðxmÞ from the spectrum

TkðxmÞ ¼
mx2

ms
p

ð
res:

dxPzðxÞ; (26)

where the integral is over a single resonance, and we evaluate the inte-
gral using the trapezoidal rule. Doppler cooling is turned off during
the mode temperature recording time s.

Table I shows the axial mode temperatures, relative to the theo-
retical parallel Doppler laser cooling limit, for the eight highest fre-
quency axial modes for 127 ions. The axial mode temperatures shown
in Table I are also obtained again with d¼ 0, which gives the lowest
parallel temperature steady state. The values are in the range of the
Doppler cooling limit given the 615% fluctuation, except for the two
tilt modes (mode 1 and 2). More simulations and further analysis are
required to determine the uncertainty of mode-resolved temperatures.
Because this may be larger than the 615% global temperature mea-
surement uncertainty, it is premature to conclude that the tilt modes
are colder than the Doppler laser cooling limit. However, Table I indi-
cates the type of detailed information that should be possible with the

FIG. 7. Schematic of the perpendicular laser cooling geometry. The black circle
represents the approximate area occupied by 127 ions, which have a collective
rotating motion at frequency xR. Two parallel beams (not displayed here) are per-
pendicular to the X-Y plane. The perpendicular laser shown in red has a Gaussian
intensity profile with a width of Wy and a displacement of d from the trap center,
and it is directed along the x axis.

FIG. 8. A simulation of Doppler cooling starting with an initial temperature T¼ 20
mK. The blue line represents the axial motion, and the green line represents the
planar motion. The ion crystal achieves a steady-state temperature in qualitative
agreement with the experiment. The two insets show a zoom-in of the axial and pla-
nar temperatures during the last millisecond of cooling. For these parameters (see
the text), the steady state axial temperature is Tk ¼ 0:37 mK, and the planar tem-
perature is T? ¼ 0:92mK.

TABLE I. Mode temperatures of the first eight (starting with m¼ 0) axial
eigenmodes.

m xm (MHz) TkðxmÞ=Tk;Doppler

0 1.580532 1.05
1 1.553344 0.58
2 1.552781 0.31
3 1.532620 0.81
4 1.532467 0.81
5 1.515915 0.85
6 1.515464 0.94
7 1.511197 1.01
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reported simulations. Higher mode numbers are harder to diagnose
using Eq. (26) due to the “grassy” spectrum in the range of 1.1MHz to
1.5MHz seen in Fig. 3(b). The spectral peaks become very close to
each other with the increasing mode number, making them difficult to
differentiate. Additionally, the lowest T? is obtained by varying Wy

and d and found to be T? � 1 mK with Wy ¼ d ¼ 5 lm. Such small
Wy and d, compared to the radius of the crystal Rc¼ 70lm, allow the
perpendicular beam to generate a modest torque, which is straight for-
wardly balanced by the rotating wall.28 Additionally, the different T?
and Tk demonstrate the temperature anisotropy and weak coupling
between axial and planar directions.

V. SUMMARY

We have described in detail a direct numerical simulation model
of ultracold ions in a Penning trap with a rotating wall. The simulation
includes a Doppler cooling model based on the microscopic physics of
resonance fluorescence with a realistic laser beam geometry. Due to
the low temperatures of interest, very good agreement is obtained with
a linear eigenmode analysis, in both the in-plane and out-of-plane
directions. The advantages of a direct numerical simulation are that
weak nonlinear coupling between modes is accurately modeled and
the laser cooling/heating processes. Additionally, it is difficult to diag-
nose in-plane motion experimentally, so simulations can help in better
interpreting and understanding this physics.

Such a model is very useful for understanding the parametric
dependences of the heating and cooling processes in the experiment
and the relevant time scales. The Doppler cooling process was success-
fully incorporated in a molecular dynamics simulation for the first
time, and the results were compared with the existing theory. Axial
and planar temperatures were within the range of experimental results,
and more work is needed to make detailed comparisons with the
experiment. We varied the waist Wy and offset d of the perpendicular
laser beam to obtain the lowest planar temperature with the laser offset
equal to the beam width d ¼Wy ¼ 5lm� Rc � 70lm. The fluid
equilibrium model28 predicts low in-plane temperatures for small Wy,
with a very weak dependence on d if D? ¼ �c=2þ kxRd. This pre-
diction will be interesting to investigate because increasing d produces
a large laser torque which, when balanced with a similar large torque
from the rotating wall, produces shear and potential instabilities in the
crystal.

There are areas where the simulation model could be improved
further. The Doppler cooling model treats photon-ion interactions
instantaneously, neglecting the transition time. We also neglect infre-
quent interactions with background neutrals and associated ion loss,
as well as impurities and trap error fields. These features of a more
realistic experiment will be addressed in future work.
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