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Abstract: We present a hybrid fiber/waveguide design for a 100-MHz frequency comb that is 
fully self-referenced and temperature controlled with less than 5 W of electrical power. Self-
referencing is achieved by supercontinuum generation in a silicon nitride waveguide, which 
requires much lower pulse energies (~200 pJ) than with highly nonlinear fiber. These low-
energy pulses are achieved with an erbium fiber oscillator/amplifier pumped by two 250-mW 
passively-cooled pump diodes that consume less than 5 W of electrical power. The 
temperature tuning of the oscillator, necessary to stabilize the repetition rate in the presence 
of environmental temperature changes, is achieved by resistive heating of a section of gold-
palladium-coated fiber within the laser cavity. By heating only the small thermal mass of the 
fiber, the repetition rate is tuned over 4.2 kHz (corresponding to an effective temperature 
change of 4.2 °C) with a fast time constant of 0.5 s, at a low power consumption of 0.077 
W/°C, compared to 2.5 W/°C in the conventional 200-MHz comb design. 

1. Introduction 

There exists an increasing need to operate femtosecond frequency combs outside the 
laboratory [1,2]. Applications such as comb spectroscopy [3,4], femtosecond timing 
dissemination [5], low-noise microwave generation [6,7], and portable optical clocks [8,9] all 
require practical, fieldable frequency combs. While chip-scale combs may one day be a 
practical alternative [10], the current solution for fieldable combs remains fiber frequency 
combs with polarization-maintaining (PM) erbium (Er) fiber [11–14]. Self-referenced fiber 
frequency combs have already been demonstrated in moving vehicles [15], sounding rockets 
[16], industrial environments [17] and remote field sites [18]. As these combs become more 
robust and immune to environment perturbations, the principle challenge of fielding a comb 
shifts to the total electrical power consumption and the heat dissipation associated with their 
operation. Such issues might go unnoticed in the laboratory, but they constitute serious limits 
in the field. A typical fully self-referenced frequency comb will require two to four high-
powered pump diodes for the erbium-doped fiber amplifier (EDFA) to produce the high-
energy pulses traditionally needed for self-broadening. Additionally, careful temperature 
control of the oscillator is required to stabilize the comb repetition rate (frep) otherwise the 
thermal refractive coefficient of fiber (~10−5/°C) would overrun all other cavity length 
modulations. Overall, it is not uncommon for a typical Er fiber comb to draw > 40 W of 
electrical power. This power draw is particularly cumbersome in space, where electrical 
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power is both expensive and limited [16,19]. As a point of reference, a CubeSat may have 
only 30 W of electrical power to distribute between all systems. 

For the comb design demonstrated in Ref. [15], which is typical of many fiber systems, 
the power draw is equally divided between temperature control of frep and generation of the 
carrier-envelope offset (fCEO) signal for self-referencing. For fCEO generation, the 
aforementioned 200-MHz comb requires almost 2 W of pump power corresponding to almost 
20 W of conditioned, DC electrical power. Temperature control is often applied to a large 
enclosure when only the oscillator fiber at the heart of the comb needs to be controlled. Here, 
we demonstrate two solutions to reduce the power consumption of a frequency comb by 
almost a factor of 10. First, by performing spectral broadening in silicon nitride (Si3N4, 
henceforth SiN) waveguides [20–22], we can greatly reduce the optical power required for 
self-broadening by a factor of 5. At the same time, we have redesigned the waveguide to 
allow efficient spectral broadening with 200-fs pulses as opposed to <80-fs pulses used in 
Ref. [22]. There are two important consequences of this redesign. First, <80-fs pulses from a 
fiber system are typically generated via nonlinear amplification in a high-gain, normal-
dispersion fiber amplifier [23]. (For instance, in Ref. [22], pulses are amplified to >2 nJ 
before being attenuated to ~100 pJ). Broadening with 200-fs pulses greatly increases the 
design space available for the combs, allowing for low power linear amplifiers and truly low 
power operation. Secondly, the use of low gain fiber amplifiers means one can practically use 
low power, passively-cooled pump diodes for these amplifiers. Since active cooling can 
consume up to two-thirds of power draw of a pump diode, it further magnifies the energy 
savings from the SiN approach. As an additional point of interest, low power fiber amplifiers 
can be constructed from lightly doped erbium fiber, which can be made more compatible with 
a radiation environment in space. 

The second principle source of energy consumption in a frequency comb is temperature 
control of the oscillator, which is necessary for any frequency stabilized comb. This 
temperature control is typically achieved by controlling the oscillator enclosure with heaters 
or thermoelectric coolers, often consuming several Watts of power. Typically, one will limit 
this power draw by compressing the size of the oscillator package to reduce the thermal mass 
to be controlled. Here, we take this idea to the logical extreme and use metalized fiber — as 
first employed in the telecom industry [24–26] — to resistively heat and control only the very 
small thermal mass of the optical fiber in the oscillator. By direct resistive heating of intra-
cavity gold-palladium-coated fiber, which we refer to as a “fiber resistive modulator,” we 
demonstrate a simple and low-power temperature tuning solution consuming ~77 mW/°C. 

Together these two techniques allow for a 5–10× reduction in power consumption and 
bring the total consumption of the comb system below 5 W. At this power, a host of new 
applications should be possible including battery powered operation. 

2. f-to-2f self-referencing at low power 

The low power comb design developed here is shown in Fig. 1(a). The oscillator is based on 
the Er-doped fiber design, presented in Ref. [11], but is modified to operate at an frep of 
100 MHz. The cavity consists of all anomalous dispersion, PM fiber with semiconductor 
saturable absorbing mirror (SESAM) based modelocking. Output coupling is generated with a 
dielectric coated FC/PC connector with 15% transmission. The oscillator outputs a modest 
11-nm spectral bandwidth centered at 1562.6 nm, 200-fs pulse train, and an average power of 
2 mW. Amplification to 34 mW is performed in a 45-cm segment of Er doped fiber, which 
provides ~12 dB gain and roughly maintains the pulse characteristics (bandwidth of 12.5 nm, 
and 170-fs pulses at the output). This modest output power and pulse width are achieved by 
pumping the oscillator and amplifier with efficient, passively-cooled 250-mW pump diodes at 
980 nm. Each of these diodes is designed to consume 2.5 W of electrical power. 
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Table 1. Comparison of electrical power consumption between a conventional 200-MHz 
comb design (left column), and two optimized 100-MHz designs, first only with fiber 

resistive modulator (middle) and second fully optimized using passively-cooled pumps 
(right). It should be noted that the fully optimized design assumes the use of a fiber 

resistive modulator for temperature tuning. All the values are based on actual 
measurements. The temperature tuning values are based on a 3 °C offset from ambient 
temperature. Measured power draw for the pump diodes includes the diode controllers 

(Wavelength Electronics LDTC1040 and LDTC2E for the oscillator and amplifier pump 
respectively and two LDTC1024’s for the passively-cooled pumps [27]). The power 

consumption of the locking electronics including the PZTs has not been included here, 
although for the PZT the consumption is negligibly low (< 5 mW) 

Parameter 

Conventional 
200-MHz 

comb 
(HNLF + 
PPLN) 

100-MHz 
comb + fiber 

resistive 
modulator + 

HNLF + 
PPKTP 

100-MHz 
comb + 

passively-
cooled 

pumps + SiN 
waveguide + 

PPKTP 
Temperature tuning of frep 7.5 W 0.23 W 0.23 W 
Oscillator pump 4.4 W 4.4 W 1.85 W 
Amplifier pumps 20 W 10 W 2.75 W 
Doubling waveguide TEC ~1 W [11] 0 W 0 W 
TOTAL 33 W 14.6 W 4.8 W 
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