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Abstract
Entanglement generation can be robust against certain types of noise in approaches that deliberately
incorporate dissipation into the systemdynamics. The presence of additional dissipation channels
may, however, limitfidelity and speed of the process. Herewe showhowquantumoptimal control
techniques can be used to both speed up the entanglement generation and increase thefidelity in a
realistic setup, whilst respecting typical experimental limitations. For the example of entangling two
trapped ion qubits (Lin et al 2013Nature 504 415), we find an improved fidelity by simply optimizing
the polarization of the laser beams utilized in the experiment.More significantly, an alternate
combination of transitions between internal states of the ions, when combinedwith optimized
polarization, enables faster entanglement and decreases the error by an order ofmagnitude.

1. Introduction

Quantumdevices aim to exploit the two essential elements of quantumphysics, quantum coherence and
entanglement, for practical applications. They require the implementation of a number of basic tasks such as
state preparation or generation of entanglement, all thewhile preserving the relevant non-classical features at the
level of device operation. The implementation of quantum tasks thus needs to be robust with respect to
parameter fluctuations and external noise that is unavoidable in any real physical setup.

Loss of coherence and noise are commonly attributed to the coupling of the quantum systemwith its
surrounding environment [1]. One strategy for realizing all necessary taskswith sufficient accuracy is to perform
the quantumoperations at a time scale faster than the time scale at which the noise affects the system.Quantum
optimal control theory provides a set of tools to derive the corresponding protocols [2] and can be used to
identify the quantum speed limit [3–6], i.e. the shortest possible durationwithinwhich the operation can be
carried outwith a pre-specifiedfidelity.

Nevertheless, there is a fundamental limit in that one cannot ‘beat’ the noise, particlularly, when its time
scales are comparable to or faster than the typical speed limits of the target operation. An alternative is found in
approaches that deliberately incorporate dissipation into the systemdynamics, often referred to as quantum
reservoir engineering [7]. The basic idea is to implement stochastic dynamics whose stationary state is non-
classical. This is achieved bymanipulating the coupling to the environment, or reservoir. In its simplest form, a
constant but switchable coupling is realized by an electromagnetic field that drives a transition to a statewith fast
decay [7]. The dynamics are described by the quantumopticalmaster equation [1], and the systemwill
eventually be driven into the fixed point of the corresponding Liouvillian [8, 9].

Applications of this basic idea aremany faceted—its use has been suggested, for example in generating
entanglement [10–23], implementing universal quantum computing [9], driving phase transitions [24–26] and
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autonomous quantum error correction [27–29]. Experimentally, the generation of non-classical states [30],
entangled states [31–34], and non-equilibriumquantumphases [35–37] have successfully been demonstrated.
Engineered dissipation can also be used towards a better understanding of open quantum systemdynamics, by
means of quantum simulation [37].

All of these examples testify to the fact that dissipation can be a resource [9] for quantum technology. The
ultimate performance bounds that can be reachedwith driven-dissipative dynamics under realistic conditions
have, however, not yet been explored.While quantum reservoir engineering has been advocated for its
robustness, its performance in a practical setting is compromised as soon as additional noise sources perturb the
steady state or trap population flowing towards it.

This can be illustrated by examining the experiment described in [32]. For a Be9 + – Mg24 + – Mg24 + – Be9 +

chain occupying the same linear Paul trap, the two Be9 + ionswere entangled via their collectivemotion using
hyperfine electronic ground state levels as logical states. Entanglement was achieved by applying a combination
of laser andmicrowave transitions. This could be done in an either time-continuousmanner or by repeating a
fixed sequence of steps, driving the system into a steady state, with themajority of population in the targeted,
maximally entangled singlet state. Desired dissipationwas brought into play by a combination of spin-motion
coupling from a sideband laser,motion dissipation by sympathetically cooling cotrapped Mg24 + ions, and a
repump laser which addresses the transition to a rapidly decaying electronically excited state. The sideband laser
beams also lead to undesired pumping of spins, so-called spontaneous emission. This resulted in population
leakage andwas themain source of error in that experiment [32].

The simultaneous presence of both desired and undesired dissipation channels is rather generic. To harness
the full power of dissipative entangled state preparation, onewould like to exploit the formerwhilemitigating
the latter.Here, we use quantumoptimal control theory [2] to address this problem. For the example of
preparing two trapped ions in amaximally entangled state [32], we askwhether entanglement can be generated
faster andmore accurately when judiciously choosing a few key parameters. In order to keep in linewith the
experimental setup described in [32], we forego the usual assumption of time-dependent pulses whose shapes
are derived by quantumoptimal control. Instead, we employ electromagnetic fields with constant amplitude and
use tools fromnonlinear optimization to directly determine the bestfield strengths, detunings and polarizations.
Our approach allows to not only determine the optimal values for these parameters, but also, identify key factors
that ultimately limit fidelity and speed of entanglement generation. Based on this insight, we explore an
alternative set of transitions and show that this scheme can outperform the original one both in terms offidelity
and speed.

The paper is organized as follows. Section 2 recalls themechanism for entanglement generation in the
experiment of [32] and details the theoretical description of the corresponding trapped ion system.
Optimization of the transitions used in [32] is discussed in section 3. An alternative set of transitions is
introduced in section 4, togetherwith the optimization of the corresponding experimental parameters.We
conclude in section 5.

2.Model

In this sectionwe consider the systemdescribed in [32], consisting of a linear Paul trap containing Be9 + ions and
Mg24 + ions, which interactmutually through their Coulomb repulsion andwith external electricfields. A

unitary idealization of these interactions is summarized in theHamiltonianH. Themechanism giving rise to
dissipation in the state preparation process is spontaneous emission after excitation of internal electronic states
of the ion by the external laser fields. The systemdynamics is therefore described by the quantumopticalmaster
equation in Lindblad form (with 1 = ),

Hi , . 1t  r r r r¶ = = - +[ ] ( )

We refer to  as the (Lindblad) dissipator, which is given by

L L L L
1

2
, , 2

k
k k k k år r r= -⎜ ⎟⎛

⎝
⎞
⎠[ ] ( )† †

where the sumover k contains individual contributions due to sympathetic cooling, heating and photon
scattering occurring during stimulated Raman processes and repumping into an electronically excited state.

2.1. State space
ThemodelHamiltonianH accounts for the internal structure of two Be9 + ions aswell as two vibrationalmodes
of the trapped ion chain. The state space of the considered system consists of the following tensor product
structure
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n n n n . 3qb1 qb2 1 2Ä Ä Än n( ) ( ) ( ) ( ) ( )

In equation (3) nqb1 and nqb2 designate hyperfine states of the Be9 + ions, specified by the quantumnumbers F
and their projectionsmF, obtained from coupling the total electronic angularmomentumquantumnumber J
with the nuclear spin quantumnumber I. Figure 1(a) highlights the hyperfine states of interest, comprising of

S F m, 2, 2F1 2
defñ = = = ñ∣ ∣ and S F m, 1, 1F1 2

defñ = = = ñ∣ ∣ , the two hyperfine levels to entangle, as well as an

auxiliary level a S F m, 2, 1F1 2
defñ = = = ñ∣ ∣ . The neighboring levels o S F m, 1, 0F1 2

defñ = = = ñ∣ ∣ and

t S F m, 2, 0F1 2
defñ = = = ñ∣ ∣ are also accounted for in themodel, since these are predominantly populated by

inadvertent scattering processes. In the following, the onlyelectronically excited state of interest will
be e P F m, 2, 2F1 2

defñ = ¢ = ¢ = ñ∣ ∣ .
n

1n and n
2n are vibrational quantumnumbers of two of the four sharedmotionalmodes of the trapped ionic

crystal along its linear axis. Entanglement generation employs 1n , and sideband transitions utilizing thismode
are essential for the presented schemes. Unless specifically required, themode 2n , which is not utilized for
entanglement but is included in themodel to account for off-resonant coupling, will be suppressed notationally
for the sake of simplicity. It is assumed that the trap has an axis of weakest confinement alongwhich the four-ion
string is aligned and that the eight radialmotionalmodes can be neglected, since they are largely decoupled given
the sideband laser configuration described in [32]. Figure 1(b) shows three transitions that were driven on a
single Be9 + ion in [32]. These belong to the coherent part of equation (1), described byH, and one of them
results in population of the electronically excited state eñ∣ with subsequent dissipationwhich ismodeled by the
incoherent part, r. After adiabatic elimination, however, the transition to eñ∣ no longer appears in the
coherent part of equation (1), while the dissipative part ismodified by the result of the adiabatic elimination to
fully account for the effective decay out of a electronic ground state hyperfine level instead [32]. This is illustrated
infigure 1(c).

2.2.Original scheme for entanglement preparation
As represented in figure 1, the dissipative entanglement generation of [32] uses three different types offields to
induce population flow in the state space. The entanglementmechanism can be understood by qualitatively
tracing theflowof population from state to state as indicated infigure 2. Entangling the two Be9 + ions via their
jointmotion in the trap ismade possible by utilizing sideband transitions driven byRaman lasers. These change
the internal states of the Be9 + ionswhilst simultaneously exciting or de-exciting the utilizedmotionalmode. In
contrast, carrier transitions driven by amicrowave field change the Be9 + internal states only. Finally, a repump
laser excites population to a short-lived electronically excited state. Specifically, in [32], a single sideband

Figure 1. (a)Thefine and hyperfine structure of the electronic ground and first excited state of Be9 +, including themost relevant
hyperfine levels. (b) In the original scheme [32], a stimulated Raman blue sideband transition from the ñ∣ to the ñ∣ level (Ωs),
represented by a blue double-headed arrow, amicrowave carrier transition between the añ∣ and ñ∣ levels (Ωc), represented by a black
double-headed arrow, and a repump transition out of añ∣ into the excited level eñ∣ (Ωe), represented by an orange double-headed
arrow, are driven. eñ∣ rapidly decays back into añ∣ , ñ∣ and ñ∣ , as represented by the black snaking lines. (c) In the picture after adiabatic
elimination [32], the excited level eñ∣ no longer explicitly appears and effective decay, represented by orange snaking lines, occurs
directly out of añ∣ . In (b) and (c), n refers to the occupation number of the utilized vibrationalmode.
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transition between ñ∣ and ñ∣ , a carrier transition between añ∣ and ñ∣ and a repump transition between añ∣ and
eñ∣ are used. Figure 1 indicates the transitions between the hyperfine levels of interest for a single Be9 + ion. The
above transitions can be driven simultaneously and time-independently for the duration of the experiment or in
a step-wisemanner [32]. Here, we focus on the continuous case, which resulted in a larger error. Each Be9 + ion
is affected by the driven transitions independently and no individual addressing is required. Starting with both
Be9 + ions in an arbitrary state confined to the hyperfine subspace a, , { }, in the ideal case, this scheme always
leads to a steady state inwhich the the population is trapped in the singlet entangled state between ñ∣ and ñ∣ ,

S 1

2

defñ = ñ - ñ∣ (∣ ∣ ). In the following, all singlet entangled states are designated by S ij jiij
1

2

defñ = ñ - ñ∣ (∣ ∣ ),

whilst the triplet entangled states are designated by T ij jiij
1

2

defñ = ñ + ñ∣ (∣ ∣ ), i j a, , ," Î  { }.
Let us inspect inmore detail theflowof population from state to state infigure 2. Starting in n 0

1
 = ñn∣ ,

for instance, it is possible to reach the target singlet entangled state S ñ∣ by two sideband transitions leading to
n

1
 ñn∣ , followed by a carrier transition into a combination of the a n

1
 ñn∣ and an

1
 ñn∣ states. Population in the

auxiliary state is driven by the repump laser into the electronically excited state fromwhere it subsequently
decays back into the electronic ground state hyperfine subspace. The process of electronic excitation and decay
happens sufficiently fast with respect to the other transitions, that it can be regarded as ‘effective decay’ directly
out of añ∣ , as depicted infigures 1(b) and (c). This decay drives the system into a combination of n

1
 ñn∣ , the

triplet entangled state T n
1

ñ Ä ñn∣ ∣ , and the target state S n
1

ñ Ä ñn∣ ∣ . At any stage, sympathetic cooling can
counteract the excitations of the vibrationalmode in the trapwhich are caused by sideband transitions and
heating. Sympathetic cooling is induced by a different set of sideband lasers driving transitions only between
internal states of the Mg24 + ionswhich share commonmotionalmodes with the Be9 + ions. The carrier

Figure 2.Graphical overview of transitions needed for steady state entanglement. For simplicity, only states within the hyperfine
subspace a, , { } and only themode 1n are displayed. The vibrational quantumnumber of the utilizedmode increases radially
outwards from the center with shaded areas sharing the same quantumnumber. Carrier transitions between añ∣ and ñ∣ at rate acar, ,W 

are represented by black double headed arrows. Sideband transitions between ñ∣ and ñ∣ at rate p
blue, ,
2W   are represented by blue

double headed arrows. Effective decay from añ∣ at the rates a f,
effg for f a, ,Î  { }, is represented by orange snaking lines. Sympathetic

cooling of the utilized vibrationalmode is represented by black snaking lines, whilst heating acts in the opposite direction and is not
shown. For the sake of clarity, certain transitions are omitted and the leaking between the hyperfine states is also not shown.
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transition between añ∣ and ñ∣ leads out of the target state S ñ∣ into Sa ñ∣ . This particular transition is highlighted
specifically infigure 2 by a dotted black double headed arrow.

By ensuring that the two-photonRabi frequency p
blue, ,
2W   of the stimulated Raman sideband transition

between ñ∣ and ñ∣ ismuch larger than the carrier Rabi frequency acar, ,W , the latter transition can effectively be
suppressed. Figure 2 also highlights the state 0 ñ∣ with a thick, dotted, black border, since the effective decay,
proportional to the square of the repump laser Rabi frequencyΩcar,a,emust bemade sufficiently weak relative to

acar, ,W , in order to prevent the trapping of population in 0 ñ∣ . Consequently, a hierarchy of rates is established
inwhich themaximumattainable two-photonRabi frequency of the stimulated Raman transition determines
themaximal carrier Rabi frequency between añ∣ and ñ∣ , which in turn determines themaximal repumpRabi
frequency between añ∣ and eñ∣ .

2.3.Hamiltonian
In the rotatingwave approximation and interaction picture, the total systemHamiltonian is comprised of the
driven hyperfine transitions

H H , 4
i f

i f
type, ,

type, ,å= ( )

where the sum runs over specific triples i ftype, ,( ), designating a transition of type ‘red’ or ‘blue’ sideband or
‘carrier’, between the initial and final hyperfine states iñ∣ and f ñ∣ .

Transitions of the carrier type between the ground state hyperfine levels are driven bymicrowavefields with
aHamiltonian of the form

H f i

f i e h.c .. 5

i f i f

t

car, , car, , qb2

qb1
i i f

1 2

1 2
car, ,

  

  

= W ñ á Ä Ä Ä

+ Ä ñ á Ä Ä +
n n

n n
- D

(∣ ∣
∣ ∣ ) ( )

Above,Ωcar,i,f denotes the Rabi frequency andΔcar,i,f a small detuning between the appliedfield and the
transition energy between iñ∣ and f ñ∣ . Each identity operator j , with j qb1, qb2, ,1 2n nÎ { }, is labeled according
to the subspace towhich it corresponds. A repump laser is required to drive transitions between ground and
electronically excited hyperfine states. These transitions therefore involveHamiltonians of the formof
equation (5), where iñ∣ is a hyperfine ground state level and f eñ = ñ∣ ∣ is the addressed electronically excited
hyperfine level. Since population excited by this repumper decays very rapidly into the hyperfine ground states,
adiabatically eliminating the excited state is well justified.

Ideally, a blue sideband transition between two hyperfine levels iñ∣ and f ñ∣ , utilizing themotionalmode 1n , is
represented by

H f i b

f i b e h.c ., 6

i f i f

t

blue, , blue, , qb2

qb1
i i f

2

2
blue, ,

 

 

= W ñ á Ä Ä Ä

+ Ä ñ á Ä Ä +
n

n

+

+ - D

(∣ ∣
∣ ∣ ) ( )

whereΩblue,i,f is the sidebandRabi frequency andΔblue,i,f a small detuning from the energy difference between iñ∣
and f ñ∣ plus the energy of one quantumof 1n . b+ and b denote the bosonic creation and annihilation operators
which respectively excite and de-excite the harmonicmode 1n . Analogously, theHamiltonian of a red sideband
transition takes the formof equation (6) but with the annihilation operator b replacing the creation operators b†

andΔblue,i,f replaced byΔred,i,f.
In the specific case of a stimulated Raman sideband transition,Ωred/blue,i,f in equation (6) becomes

i f
p

red blue, ,
2W , a two-photonRabi frequency of a red/blue sideband transition between iñ∣ and f ñ∣ , given by

E E f d k k d i

4
. 7i f

p r b

k

r b

k
red blue, ,
2

2

21 å
e e

h
m

m
W =

á ñá ñ
Dn

∣ · ∣ ∣ · ∣ ( )

In the followingwe assume Lamb–Dicke parameters of 0.180
1

h =n and 0.155
2

h =n for the utilized ( 1n ) and
off-resonant ( 2n )motionalmodes, respectively [32]. Above,Er andEb are the field strengths of the lower
(red) and higher (blue) frequency Raman laser beamswhich have polarizations re and be , expressed in spherical
components as r r r, ,r 0e = - +( ) and b b b, ,b 0e = - +( ), respectively. d is the dipole operator for the Be9 + ions
(also expressed in the spherical basis) and the sum runs over all hyperfine levels kñ∣ in the electronically excited
states P1 2 and P3 2. The laser frequencies are shifted, such that the ground state to excited state transitions are
detuned byΔe andΔe+fP below the S P1 2 1 2« and S P1 2 3 2« resonances, respectively. f 197.2 GHzP »
is thefine structure splitting between P1 2 and P3 2. For the detuning between iñ∣ and an individual excited state
hyperfine level kñ∣ , the hyperfine splitting is neglected such that

k P

f k P

, if

, if .
k

e

e P

1 2

3 2
D »

D ñ Î
D + ñ Î

⎧⎨⎩
∣
∣

Equation (7) utilizes a characteristic stretched state transitionmatrix element, P F, 3,3 2
defm = á =

m d S F m3 , 2, 2F F1 2= = = ñ+∣ ∣ to properly scale a given reducedmatrix element, f d ie má ñ∣ · ∣ , with d+, the
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right circular component of the dipole operator. TheWigner–Eckart theorem [38] andBreit–Rabi formula [39]
can then be used to express an arbitrary transitionmatrix element f d ieá ñ∣ · ∣ between two hyperfine levels iñ∣
and f ñ∣ .

To accuratelymodel the systemdynamics, it is necessary to account for the undesired off-resonant coupling
of a given sideband transition described by equation (6) to an additionalmode 2n , given by

H f i c

f i c e h.c ., 8

i f i f
p

t

blue, , blue, ,
2

qb2

qb1
i i f

2 2

1

1

1
blue, ,

 

 

h

h
= W ñ á Ä Ä Ä

+ Ä ñ á Ä Ä ´ +

n n

n
n

n
d

+

+ - -D

(∣ ∣

∣ ∣ ) ( )( )

in the case of a blue sideband transition. In equation (8), δ is the detuning between the utilizedmode 1n and 2n ,
which couples off-resonantly. In the case of a red sideband transition, the off-resonant coupling takes the form
of equation (8) under interchange of the annihilation and creation operators of the harmonic oscillator
describing the 2n motionalmode, c and c+, and replacement ofΔblue,i,f byΔred,i,f, respectively.

2.4. Lindblad operators
Incoherent processes taking place alongside the driven transitions appear in the dissipative part  in
equation (1), which is comprised of individual contributionsmodeled by the Lindblad (jump) operators Lk in
equation (2). An effective operator formalism [40] allows to adiabatically eliminate the hyperfine excited state
addressed by the repump laser. It leads to Lindblad operators of the form [41]

L f i , 9i f ifrep, ,
1 eff

qb2 1 2  g= ñ á Ä Ä Än n∣ ∣ ( )( )

L f i , 10i f ifrep, ,
2 eff

qb1 1 2  g= Ä ñ á Ä Än n∣ ∣ ( )( )

with effective rates

4
, 11if ef

i eeff car, ,
2

2
g g

g
=

W
( )

where eñ∣ is the intermediate, rapidly decaying, electronically excited state,Ωcar,i,e the repumpRabi frequency, γef
the decay rate from eñ∣ into the hyperfine ground state f ñ∣ and f efg g= å ¢ ¢ the total decay rate out of eñ∣ into a
subspace of hyperfine ground states.

Similarly to equations (9), (10), leaking between ground-state hyperfine levels due to stimulated Raman
sideband transition acts on both beryllium ions according to

L f i , 12i f ifsid, ,
1

qb2 1 2  = G ñ á Ä Ä Än n∣ ∣ ( )( )

L f i . 13i f ifsid, ,
2

qb1 1 2  = G Ä ñ á Ä Än n∣ ∣ ( )( )

The scattering rateΓif between an initial hyperfine ground state iñ∣ and afinal hyperfine ground state f ñ∣ , due to a
single laser beam is given by theKramers–Heisenberg formula

E a

4
, 14if i f

k

if
k

k

2 2
2

åm
gG = G =

D


∣ ∣ ( )
( )

where

a a
f d k k d i

15if
k

i f
k

q

q

,0,
å

e
m m

= =
á ñ á ñ


Î + -

∣ ∣ ∣ · ∣ ( )( ) ( )

{ }

is the two-photon transition amplitude between iñ∣ and f ñ∣ . As in equation (7), k runs over all states kñ∣ belonging
to the Be9 + ion P1 2 and P3 2 manifolds. Again, it sufficies to approximate theΔk of k P P,1 2 3 2Î asΔe and
Δe+fP, respectively. Rayleigh scattering ismodeled by a Pauliσzmatrix between pairs of levels. Acting at the
rate

E a a

4
, 16if

k

ii
k

k

ff
k

k

2 2
2

åf
m

g=
D

-
D

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∣ ∣ ( )
( ) ( )

Rayleigh scattering is only of concern between the ñ∣ and ñ∣ levels and inmost cases negligibly small.
Sympathetic cooling is achieved by using stimulated Raman laser cooling and can bemade to affect either or

both of the consideredmotionalmodes according to

L b , 17ccool, , qb1 qb21 1 2  k= Ä Ä Än n n ( )
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L c, 18ccool, , qb1 qb22 2 1  k= Ä Ä Än n n ( )

where the cooling rates c, 1
k n and c, 2

k n are governed by thefield strengths of the repump and stimulated Raman
lasers acting on themagnesium ions.

Heating acts on allmotionalmodes. It is caused by spontaneous emission occuring during themagnesium
sidebandRaman transitions, as well as photon recoil from spontaneous emission and also the anomalous
heating of the ion trap. The total heating can bemodeled by

L b , 19hheat, , qb1 qb21 1 2  k= Ä Ä Än n n ( )†

L c , 20hheat, , qb1 qb22 2 1  k= Ä Ä Än n n ( )†

for a set of given heating rates h, 1
k n and h, 2

k n .

3.Optimizing the original scheme

The goal of optimization is tomaximize the population in the target state S ñ∣ . To this end, the final timeT is
defined as the time at which the peak population in the target state is reached and all driving fields can be turned
off. The target state population atfinal time is defined as the fidelity F and correspondingly the error as

F1def = - . The peak population at thefinal time is an appropriate quantity to observe, since the stability of the
ionic hyperfine ground states causes the system to remain in its entangled state for a long time after all driving
fields have been turned off.

In the following, the systemdegrees of freedom available for control are introduced and categorized into two
collections in preparation for the optimization scheme discussed below. In contrast to a straightforward
parameter optimization of all degrees of freedom, the specialized optimization scheme presented here is less
susceptible to running into localminima and demonstrates reliable and fast convergence.

3.1.Optimization parameters
As previously discussed, the limitations of the original scheme [32] are fundamentally linked to the physical
process of the stimulated Raman sideband transition. The two-photonRabi frequency p

blue, ,
2W   associatedwith

this transition should bemade as large as possible to drive the system towards the desired target statewhilst
ensuring that the unfavorable transition between S ñ∣ and Sa ñ∣ is suppressed. Consequently, the carrier
transitionRabi rate acar, ,W  and in turn the repump transitionRabi rate governing the effective decay out of añ∣
are limited, bottlenecking the flowof population into the target state.

Equations (7), (14), (15) show thatmerely increasing the field strengths of the sideband lasers has the adverse
side effect of also increasing the chance of photon scattering and therefore the rates of leaking between hyperfine
ground states. As such, a safe way of increasing thefield strength of the sideband lasers is to compensate by
increasing the detuningΔe from the excited statemanifold, since the two-photonRabi frequency scales inversely
with the detuningwhilst the scattering rates between hyperfine states scale with the square of the inverse
detuning. Thefield strengths required to significantly increase the two-photonRabi frequency whilst
minimizing the associated scattering rates are, however, beyond current experimental capabilities [42]. A third
option is given by the polarization of the two stimulated Raman sideband laser beams re and be , which have a
great impact on both p

blue, ,
2W   and also ifG{ }.

The tunable parameters Er andEb, re and be andΔe, appearing in equations (7), (14), (15) constitute afirst
set of parameters defined as

E E, , , , . 21r b r b einner
def e e= D{ } ( )

These are directly associatedwith the stimulated Raman sideband transition. The two-photonRabi frequency
p

blue, ,
2W   scales with the product of field strengthsErEb, whilst the scattering rates due to each laser beam scale

with Er b
2∣ ∣ , themagnitude of thefield strength squared. The polarization is split into its three spherical

components, , ,0e e e e= - +( )where i1, 1 , ,0,ie Î - " Î - +[ ] { } andwith

1. 222
0

2 2e e e+ + =- +∣ ∣ ∣ ∣ ∣ ∣ ( )

Due to the normalization of the spherical components, each polarization possesses two degrees of freedom
which can be represented as the azimuthal and polar angles on the unit sphere.

A given configuration of inner fully determines the resulting two-photonRabi frequency p
blue, ,
2W   and all

leakage ratesΓif between hyperfine states. These parameters are deliberately regarded separately from a second
set of parameters

a, , , , , 23a a e aouter car, , car, , car, , blue, ,
def = W W D D   { } ( )
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consisting of the carrier Rabi frequencies and detunings for both ground state transitions and a balance
parameter a, which shall become important during the optimization. The carrier Rabi frequencies are directly
determined by the appliedfield strengths and can be tuned over broad ranges. The detunings acar, ,D  and

blue, ,D   should be kept small to prevent off-resonant coupling to additionalmotionalmodes.

3.2.Optimization algorithm
Our optimization algorithm, schematically depicted infigure 3, takes the approach of optimizing the sets
introduced above in a two-step process. Conceptually, the inner optimization over the first set of parameters

inner incorporates the dynamics indirectly and is encapsulated by an outer optimization over the second set of
parameters outer , maximizing the actualfidelity F. This strategy ismotivated by the fact that determining

E E, , , ,p p
r b r b eblue, ,

2
blue, ,
2 e eW = W D   ( ) and E E, , , ,if if r b r b ee eG = G D{ ( )}does not require explicit knowledge

of the dynamics and is therefore computationally inexpensive.
The target functional of the inner step of the optimization depends on the field strengthsEr andEb,

polarizations re and be and excited state detuningΔe and is defined as

J E E c, , , , . 24r b r b e
if

if if
p

inner sid
2åe e aD = G - W[ ] ( )

Here,α is a balance parameter whichweights up the relative importance ofmaximizing p
blue, ,
2W   versus

minimizing the sum cif if ifå G , for a given set of weights cif{ }. If the set of weights cif{ } and a are fixed, the inner
optimization can calculate p

blue, ,
2W   and ifG{ } in terms of inner , which are passed back to the outer part of the

optimization, once Jinner isminimal.
The optimization of the set of parameters inner requires ameasurement of the effect a change in each

scattering rateΓif has on F, the overall fidelity of the dynamics. This runs contrary to the usual practice of
minimizing the total scattering rate if ifå G between all pairs of ground state hyperfine levels. Individually

weighting eachΓif comes as a consequence of the observation that the leaking between each pair of hyperfine
ground states affects the reachedfidelity differently.Most notably, transitions leading out of the steady state S ñ∣
and transitions leading out of the hyperfine subspace a, , { } into the neighboring states o t,{ }have the largest
negative effect on the fidelity. Taking into account each individual leaking rate therefore offers the possibility of
strongly suppressing certain detrimentalΓif by carefully tuning the polarization.We encode the degree towhich
a certainΓif affects thefidelity by running several simulationswhere each individual rateΓif is artificially boosted
by a factor of 10, whilst keeping all other ratesfixed, resulting in a set of fidelities Fif{ }. Observing the difference
F−Fif, between boosted and unaltered dynamics leads to a set of weights, c F F1000if if

def= -{ ( )}.
Figure 4 shows two different sets of weights at the beginning of the optimization and after a few updates. As

discussed in [32] the biggest scattering error is due to the qubit transition between ñ∣ and ñ∣ . G, Alongwith
transitions leading out of the hyperfine subspace into the neighboring oñ∣ and tñ∣ levels, received the largest
weights cif for the duration of the optimization.

A given set of weights can be used to optimize inner , leading to the best possible p
blue, ,
2W   and ifG{ }with

which to perform the dynamics.

Figure 3. Schematic overview of the two-step parameter optimization algorithm for the two sets of parameters, inner and outer . The
inner optimization (red loop) depends on inner and a set of weights cif{ }. After the inner optimization, the old set of weights can be
updated (orange loop) and thefidelity F of the dynamics is optimized in an outer (blue) loop.
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The optimization of the second set of parameters, outer , directly targets the fidelity F of the dynamics

J F, , , , 1 . 25a a e aouter car, , car, , blue, , car, ,
def aW W D D = - =   [ ] ( )

For each iteration of the outer optimization, the inner optimization over equation (24) leading to optimal
p

blue, ,
2W   and ifG{ } is performed using the set of weights cif{ }generated during the previous iteration (for thefirst

iteration c i f1, ,if = " ). After the inner optimization, a new set of weights cif{ } is generated for the next
iteration of the outer optimization, as illustrated infigure 3.

This two-step optimization is easily generalized for arbitrary combinations of transitions, including the
possibility formultiple sideband transitions between differentground state hyperfine levels. Optimization of
multiple sideband transitions follows the rule, that the jth sideband transition has its own set of polarizations

r
je( ) and b

je( ),field strengths Er
j( ) and Eb

j( ), balance parameterα( j) and excited state detuning e
jD( ) but each

contributes towards a set of total scattering rates if j if
jG = å G{ }( ) . Furthermore, all transitions except for the

repump transition have a detuningΔtype,i,f and all carrier transitions have a Rabi frequencyΩcar,i,f to be
optimized directly, alongwith the set of balance parameters ja{ }( ) , in the outer optimization.

3.3. Result of optimization
All parameter optimizations have been performedwith theNLopt package [43]using the Subplex algorithm
[44].While other optimizationmethods could also be used in the outer and inner optimization loops, we have
found these to convergewell. Figure 5 compares the simulated dynamics of the system as described in [32]with
the dynamics obtained after optimization. The peak fidelity is increased from F=76% to F=88%. This is due
to amodified steady state, in which the populations in T ñ∣ , ñ∣ and ñ∣ each are smaller than in the original
scheme. Furthermore, through optimization of theΓif, a significant portion of the population can be prevented
from escaping the ground state hyperfine subspace a, , { }, which causes the prominent crest in the S ñ∣
population for the original scheme. The optimized result was compared to different realizations of randomly

Figure 4.Change infidelity F−Fif between unaltered dynamics and dynamics resulting from artificially boosting a specificΓif. The
dark blue set of weights generated in thefirst iteration is different from the pale blue set of weights generated after several updates.

Figure 5.Time-dependent population in the states ñ∣ , ñ∣ , S ñ∣ and T ñ∣ after summing over allmotional levels. The
graph compares the dynamics when startingwith all population in the ∣ ⟩ state initially, before (dashed lines) and after (solid lines)
the combined optimization, leading to fidelities of F=76%and 88%, respectively.
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Table 1.Optimized parameters when using the same transitions as in [32], leading to a fidelity of F 88%= , compared to F 76%= in [32]. Both field strengths Er andEb are limited to themaximumvalues of 7520 V m 1- . p
blue, ,
2W   is

determined by equation (7), a ecar, ,W leads to ifg in equations (9), (10).

Quantity Er Eb re be 2

acar, ,

p

W 

2

p
blue, ,
2

p

W  

2
a ecar, ,

p
W

acar, ,D  blue, ,D   eD

Value 7520 V m 1- 7520 V m 1- 0.162, 0.987, 0.000( ) 0.870, 0.286, 0.403- - -( ) 316 Hz 7.65 kHz 179 kHz 46 Hz- 44 Hz- 662 GHz
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chosen polarizations re and be , which leads to dramatically varying peakfidelities that can be as low as F=10%
but are only rarely in the vicinity of but never surpass the peak fidelity reached by optimization.

The optimized values of the various parameters are reported in table 1. After optimization, the two-photon
sidebandRabi frequency p

blue, ,
2W   assumes a value of 2 7.65 kHzp ´ , which is very close to the rate

2 7.81 kHzp ´ reported in [32]. The increase infidelity can thereforemainly be attributed to the adjustments
made to the polarization re , be and increase in excited statemanifold detuningΔe from 270 GHz to 662 GHz,
which is feasible, see for example in [45]. In other words, the outcome of the inner optimization is a superior set
of scattering rates ifG{ }, with the parameters of the outer optimization adjusted to rebalance the system.
Compared to [32], inwhich 495 Hzacar, ,W = , the carrier Rabi frequency between añ∣ and ñ∣ drops to 316 Hz
after optimization, thus further suppressing the unwanted S Sañ « ñ ∣ ∣ transition. As the optimal fidelity is
approached, the detunings acar, ,D  and blue, ,D   become negligibly small, indicating that for this particular
entanglement scheme, the shift out of resonance due to the driven transitions is notmuch of a factor.

Nevertheless, the achievable fidelity is inherently limited in this entanglement scheme. As demonstrated by
equations (7), (14), (15), even if the field strengths of the lasers utilized for the stimulated Raman sideband
transitionwere unconstrained, afinite amount of leaking between hyperfine states would remain present.
Limitedfield strengths of the sideband lasers necessitate a trade-off between the error due to leaking between
hyperfine states and the errors due to population trapping in ñ∣ and the unfavorable transition between S ñ∣
and Sa ñ∣ .

As such, thefidelity that can be reachedwith our optimized parameters falls short of the fidelity obtained by
switching to the stepwise scheme presented in [32]which amounts to F=89.2%. The stepwise scheme negates
the error caused by the unfavorable transition between S ñ∣ and Sa ñ∣ by temporally separating the ground state
hyperfine transitions from the application of the repumper and also the sympathetic cooling. This strategy
ensures that population lost out of S ñ∣ into Sa ñ∣ has nowhere to go and, if precisely timed, is returned to S ñ∣
after a full Rabi cycle. Essentially, the stepwise scheme lifts the requirement of balancing the rates at which each
transition can be driven, thereby overcoming the limitations associatedwith the time-continuous
implementation. In the followingwewill show that a continuously operated scheme can outperformboth
variants for entanglement generation of [32] by exploiting a different combination of transitions.

4. Two-sideband scheme

Alternatively to the original scheme presented in (2.2), steady-state entanglement can be reached using other
combinations of continuously driven carrier and sideband Be9 +-hyperfine transitions.We consider here a
scheme that features two sideband transitions: a blue sideband transition from ñ∣ to ñ∣ , and a second, red
sideband transition from ñ∣ to añ∣ . Note that we assume each sideband transition to be driven by its own pair of
stimulated Raman laser beams. It would also be possible to drive the two sideband transitions using only three
beams. This simply requires proper choice of the correct relative detunings. In addition, and as in the original
scheme, a repump transition between añ∣ and eñ∣ is driven. In order for all states in the hyperfine subspace to be
connected to the target state S ñ∣ , a carrier transition between ñ∣ and ñ∣ is included as well. This choice is
similar to the combination of transitions utilized for the entanglement of two 40Ca+ ions in [20]. It offers
numerous advantages over the original scheme as detailed below.

4.1. Entanglementmechanism and optimization parameters
Figure 6 illustrates the entanglementmechanism for this new combination of transitions. Crucially, the
unfavorable transition between S 0ñ Ä ñ∣ ∣ and S 0a ñ Ä ñ∣ ∣ due to the carrier connecting añ∣ and ñ∣ in the
original scheme has been eliminated. Instead, the red sideband transition from ñ∣ to añ∣ leads from S n

1
ñ Ä ñn∣ ∣

to S n 1a 1
ñ Ä - ñn∣ ∣ onlywhen n 0

1
>n . Consequently, for this combination of transitions, in the absence of

leakage between hyperfine states and heating, S n 0
1

ñ Ä = ñn∣ ∣ alone is the steady state of the dynamics. In the
presence of heating, population in S 0ñ Ä ñ∣ ∣ can only escape due to an excitation of the utilized vibrational
mode 1n followed by a sideband transition from S n

1
ñ Ä ñn∣ ∣ to S n 1a 1

ñ Ä - ñn∣ ∣ . Population in
S n 1a 1

ñ Ä - ñn∣ ∣ can takemultiple branching paths, all of which eventually lead back to S ñ∣ . As such, in
contrast to the original scheme, which relies on sympathetic cooling, this particular combination of transitions
inherently cools the utilizedmode 1n of the systemduring entanglement generation.

Without the need for sympathetic cooling, the Mg24 + ions can be removed. This leads not only to a
simplification of the experiment but also reduces the number ofmotionalmodes of the ionic crystal. It thus
effectively eliminates the error due to off-resonant coupling to 2n , given by equation (8) in the original scheme.
As described in section 3, in the original scheme the carrier Rabi frequencies acar, ,W  and a ecar, ,W , which

determine the rate of effective decay out of añ∣ , are limited by themaximumattainable p
blue, ,
2W  . In contrast, in

the current scheme the carrier Rabi frequencies car, ,W   and a ecar, ,W can be increased significantly, without
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causing losses out of the target state and population trapping in ñ∣ . By driving an additional sideband
transition, the graph of states infigure 6 ismore connected, permitting population to reach S ñ∣ by additional
paths. Comparing the graphs shown infigures 2, 6, the combined effect of additional paths into the target state
and the increase in a ecar, ,W which results in larger effective decay rates a f a e, car, ,

2g µ W{ } should lead tomuch faster

entanglement preparation.
Optimization of the field strengths and polarizations for the two-sideband scheme has been carried out

according to the same principle as described in section 3, with the slight complication of having to address
additional degrees of freedom. In the specific case of the two-sideband combination, the corresponding formof
the target functional for the polarization optimization, equation (24), becomes

J E E E E

c

, , , , , , , , ,

. 26

b r b r e b r b r e

if
if if

p
a

p

inner
1 1 1 1 1 2 2 2 2 2

1
blue, ,
2 1 2

red, ,
2 2å

e e e e

a a

D D

= G - W - W  

[ ]

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

As in theoriginal scheme anddescribed indetail in section 3, optimization of the polarization canbe accomplished
without having to simulate thedynamics in each iteration.A single inner optimization step determines both

E E, , , ,p p
r b r b eblue, ,

2 1
blue, ,
2 1 1 1 1 1 1e eW = W D   ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) and E E, , , ,a

p
a

p
r b r b ered, ,

2 2
red, ,
2 2 2 2 2 2 2e eW = W D  ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) , in addition to

E E E E, , , , , , , ,if if r b r b e if r b r b e
1 1 1 1 1 1 2 2 2 2 2 2e e e eG = G D + G D{ ( ) ( )}( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , the set of scattering rates due to each

sideband transition.As in section 3, the outer optimization is performeddirectly on thefidelity Fof the dynamics

J F, , , , , , 1 . 27a e aouter car, , car, , car, , blue, , red, ,
1 2 def a aW W D D D = - =      [ ] ( )( ) ( )

The set outer now consists of the carrier Rabi frequencies car, ,W  ,Ωcar,a,e, the detunings car, ,D  , blue, ,
1D  

( ) and

ared, ,
2D 

( ) , of themicrowave carrier, first and second sideband transitions, and theweights 1a( ) andα(2). Since the

Figure 6.Graphical overview of transitions for the two-sideband transition scheme. As in the original scheme, only themost critical
transitions for entanglement are shown and only states of the hyperfine subspace a, , { } and the 1n motionalmode are displayed.
Carrier transitions between ñ∣ and ñ∣ at rate car, ,W   appear as black double-headed arrows. The blue ñ  ñ∣ ∣ sideband transitions
act at a rate of p

blue, ,
2W   and appear as blue double headed arrows, whilst the red añ  ñ∣ ∣ sideband transitions acts at a rate a

p
red, ,
2W 

and appear as red double headed arrows. Effective decay out of añ∣ into the hyperfine subspace appears as orange snaking lines.
Sympathetic cooling is no longer incorporated into themechanism and heating of themotionalmode and leaking between hyperfine
states are not shown.
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scheme now involves a second sideband combination, an additional weight is required to balance the
maximization of its two-photon sidebandRabi frequency against the sideband photon scattering rates in
equation (26). In order tomake sure that both Rabi frequencies aremaximizedwithout one dominating the
other, however, the left-hand side of equation (26) can bemodified slightly, such that

J E E E E

c

, , , , , , , , ,

, 28

b r b r e b r b r e

if
if if

p
a

p p
a

p

inner
1 1 1 1 1 2 2 2 2 2

blue, ,
2 1

red, ,
2 2

blue, ,
2 1

red, ,
2 2å

e e e e

a b

D D

= G - W + W + W - W     

˜ [ ]

( ) ∣ ∣ ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

whereαnowbalances themaximization of the sumof two-photonRabi frequencies against theΓif, whilstβ is a
parameter controlling how strictly the two-photon sidebandRabi frequencies should bematched. For simplicity
it is assumed that E Er r

1 2=( ) ( ) and E Eb b
1 2=( ) ( ) and that eachfield strength is limited to themaximumvalue

allowed during the optimization of the original scheme.
In the absence of sympathetic cooling, the primary source of heating, caused by spontaneous emission

during the stimulated Raman sideband transition driven on the Mg24 + ions, is eliminated. The remaining
sources of heating are photon recoil from the spontaneous emission out of eñ∣ after repumping and electric field
noise associatedwith the ion trap [32]. Since the heating rate influences the systemdynamics and therefore the
obtainedfidelity, the result of the optimization depends on the specific heating rate assumed, which can vary,
depending on themotionalmode utilized for the sideband transition.

4.2. Influence of trap heating rates
Figure 7 compares the reached peak fidelity for different values of the heating rate hk of vibrationalmode 1n . For
an assumed heating rate of 2 1 sh

1k p= ´ - , optimization leads to a peak fidelity of F=98.3%, whilst
2 10 sh

1k p= ´ - is amore realistic heating rate formodern traps leading to a peak fidelity of F=96.7%.
Finally, when 2 100 sh

1k p= ´ - , the peak fidelity is reduced to F=90.3%. For each considered heating rate,
the parameters leading to optimal entanglement are listed in table 2. As the heating rateκh is increased,
recovering population lost from the target state S ñ∣ requires an increase in theRabi frequencies of all driven

transitions. For all reported heating rates, however, the ratios p
a

p
a ecar, , blue, ,

2 1
red, ,
2 2

car, ,
2W µ W » W µ W    

( ) ( ) remain
approximately constant. Here, the repumper Rabi frequencyΩcar,a,e enters squared, since the effective decay
rates in equation (11) are proportional to a ecar, ,

2W . This observation can be understood, since the target state
should be reachable as directly as possible from any given state. Scaling all transition rates equally is necessary in
order to prevent theflowof population frombeing bottlenecked throughout the entanglement generation. The
optimized peak fidelities are again significantly higher than the average fidelity of F≈0.4 (or F≈0.5with the
fixed scaling of Rabi frequenciesmentioned above) obtained from simulating the dynamics with random
polarizations , ,r b r

1 1 2e e e( ) ( ) ( ) and b
2e( ) of the sideband laser beams and assuming 2 1 sh

1k p= ´ - . For the two-
sideband scheme it ismuchmore difficult to randomly select a near-optimal polarization, due to the increased
number of degrees of freedom,which also causes the peak fidelity to strongly vary depending on the polarization.
Furthermore, an optimization tominimize the time taken to reach a target state population of F=85%was
performed for the heating rates 2 1 s , 2 10 s , 2 100 sh

1 1 1k p p pÎ ´ ´ ´- - -{ }, leading to a preparation time
of t 0.3 ms» for all assumed heating rates.

For each increase in the heating rate, the optimization results in a different set of polarizations r
1e( ), b

1e( ), r
2e( )

and b
2e( ). As the heating rate is increased, theminimization of leakage rates ifG{ }becomes less important. A given

Figure 7.Population of the target state S ñ∣ over time obtainedwith by optimization of the peakfidelity atfinal timesT, for the two-
sideband schemewith different assumed heating rates. The plot shows curves for the heating rates hk of 2 1 s 1p ´ - (solid line)
leading to a fidelity of F=98.3%, 2 10 s 1p ´ - (dashed line) leading to F 96.7%= and 2 100 s 1p ´ - (dotted line) leading to
F=90.3%.
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Γif is determined by the polarization of each stimulated Raman laser beam and scales with the squared
magnitude of the field strength E 2∣ ∣ whilst scaling inversely with the squared detuning from the excited stateΔe

(equations (14), (15)) of the considered laser beam. Instead, themaximization of the two-photon stimulated
Raman sideband transition rates p

blue, ,
2 1W  

( ) and a
p

red, ,
2 2W 

( ) (equation (7)) is prioritized. The two-photon stimulated
Raman sideband transitionRabi frequencies depend on the polarizations re and be of both laser beams, the
product offield strengths ErEb and the detuning of both stimulated Raman laser beams from the excited stateΔe.
Larger sideband two-photonRabi frequencies ensure that population canflowback into S 0ñ Ä ñ∣ ∣ much faster
than the heating can allow it to escape.

Increasing all of the transition rates has the side effect of speeding up the entanglement but limits the
attainablefidelity, with an increased error due to population leaking outside of the hyperfine subspace a, , { }.
The behavior of the e

1D( ) and e
2D( ) is non-monotonic and appears to be strongly dependent on the particular

polarization profile. As in the original scheme, each of the car, ,D  , blue, ,D   and ared, ,D  becomes smaller as the
optimal fidelity is reached.

The error due to heating can only be reduced by increasing the flowof population into the target state
S 0ñ Ä ñ∣ ∣ , since there is no straightforwardway to compensate for heating. This comes at the cost of increasing

cif if ifå G and thus the error due to leakage between the hyperfine states, as explained above. Assuming optimal

polarization and balancing of the driven rates, the only way to reduce one errorwithout compounding the other
error is by increasing themaximum field strengths Er

1( ), Eb
1( ), Er

2( ) and Eb
2( ). This explains why the field strengths

take theirmaximal allowed value in table 2.

4.3. Comparison to the original scheme
The two-sideband scheme represents a promising alternative to the original scheme evenwith optimized
parameters, as discussed in section 3. In terms offidelity, the two-sideband scheme outperforms the original
one, regardless of the assumed heating rate hk . Even in theworst case considered, with 2 100 sh

1k p= ´ - , the
resulting error is under 10% after optimization. In comparison, the previously bestfidelity, reached by the
stepwise scheme in [32], corresponds to an error of about 11%. The corresponding errors for the original
scheme in section 3 are slightly larger for the polarization optimized case and two and a half times as large for the
non-optimized case. In terms of speed, the two-sideband scheme outperforms the original scheme. Given traps
with sufficiently small heating rates, entangling speed can be sacrificed in order tomaximizefidelity. The lowest
regarded heating rate 2 1 sh

1k p= ´ - , can be optimized over 3 ms, attaining a fidelity of F=98.3%, or
optimized over 6 ms, in order to increase thefidelity to F=98.7%. In contrast, the original scheme peaks after
approximately 6 ms but at themuch lowerfidelity F=76%.

To summarize, when considering the experimentalmodifications necessary to go from the protocol in [32]
to the two-sideband scheme, the overall complexity is reduced. Instead of a four ion setup consisting of two
Be9 + and two Mg24 + ions, with their respective sympathetic cooling laser beams, nowonly the two Be9 + to be
entangled need to be trappedwithout sympathetic cooling laser beams. Given sufficient power, the four laser
beams required for both of the stimulated Raman sideband transitions can all be derived from the same 313 nm
laser and frequency shifted using acousto-opticmodulators. The only further complication is the ability to
independentlymanipulate the polarization of each individual stimulated Raman sideband transition laser beam.

Table 2.Optimized parameters for the two-sideband scheme. As for the original scheme, eachfield strength is limited to a
maximumvalue of 7520 V m 1- . p

blue, ,
2 1W  

( ) and a
p

red, ,
2 2W 

( ) are both determined by equation (7)with individual polarizations r
1e( ),

b
1e( ), r

2e( ) and b
2e( ). Optimization of the two-sideband scheme leads to fidelities of F 98.3%, 96.7%= and 90.3% for heating

rates of 2 1 s , 2 10 sh
1 1k p p= ´ ´- - and 2 100 s 1p ´ - , respectively. The sideband detunings e

1D( ) and e
2D( ) are defined as

in (2.3)with the same assumedfine structure splitting f 197.2 GHzP = .

Parameter hk = 2 1 s 1p ´ - 2 10 s 1p ´ - 2 100 s 1p ´ -

Er 7520 V m 1- 7520 V m 1- 7520 V m 1-

Eb 7520 V m 1- 7520 V m 1- 7520 V m 1-

r
1e( ) 0.752, 0.220, 0.621- - -( ) 0.620, 0.500, 0.605- - -( ) 0.741, 0.338, 0.581- - -( )

b
1e( ) 0.440, 0.759, 0.480( ) 0.536, 0.644, 0.545( ) 0.408, 0.802, 0.435( )

r
2e( ) 0.413, 0.204, 0.888- - -( ) 0.453, 0.854, 0.257- - -( ) 0.479, 0.824, 0.303- - -( )

b
2e( ) 0.415, 0.883, 0.218- - -( ) 0.451, 0.250, 0.857- - -( ) 0.493, 0.261, 0.830( )
car, ,W   2 2.24 kHzp ´ 2 2.91 kHzp ´ 2 6.67 kHzp ´

p
blue, ,
2 1W  

( ) 2 4.96 kHzp ´ 2 6.47 kHzp ´ 2 14.92 kHzp ´

a
p

red, ,
2 2W 

( ) 2 4.96 kHzp ´ 2 6.47 kHzp ´ 2 14.92 kHzp ´

a ecar, ,W 2 691 kHzp ´ 2 802 kHzp ´ 2 1233 kHzp ´

e
1D( ) 624 GHz 245 GHz 318 GHz

e
2D( ) 464 GHz 372 GHz 206 GHz
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Onemaywonder of course how sensitive the Bell state fidelity is with respect to small deviations from the
optimized polarizations.We have foundfluctuations in the polarization components of up to 5% to only have a
neglible effect on the entanglement error, whilstfluctuations above 10%will noticeably reduce the fidelity.

4.4. Fundamental performance bound
Given the superior performance of the two-sideband scheme compared to the original protocol [32], onemay
wonder whether there are ultimate limits to the fidelity of a Bell state realized in this way. There are twomain
sources of error that limit the fidelities in this dissipative state preparation scheme—anomalous heating and
spontaneous emission. As discussed above, the obtainable fidelity is determined by a trade-off between utilizing
fast enough sideband transitions in order to beat trap heating, andminimization of the spontaneous emission
rates associatedwith the sideband transitions.While anomalous heating can in principle bemade arbitrarily
small by improving the ion trap, undesired spontaneous emission is an inherent and unavoidable loss
mechanism accompanying the desired spontaneous emission at the core of the dissipative state preparation. In
order to explore the fundamental performance bound posed by spontaneous emission, we assume a realistic trap
with 2 10 sh

1k p= ´ - , a close to perfect trap, with 2 1 sh
1k p= ´ - or no heating at all ( 0 sh

1k = - ), and
investigate howmuch laser power is needed to achieve a certainfidelity, or error.

In the absence of all heating, the optimizationwill favor slow sideband transitions that are detuned far below
the P1 2 and P3 2 levels with laser beams polarized such that there isminimal spontaneous emission. Identifying
the conditions underwhich it is possible to reach Bell state fidelities of F=99.9%or even F=99.99%allows us
to benchmark the performance of the current dissipative scheme. For comparison, [42] examines the
dependence offidelity on laser power for gate-based entanglement creation for various ion species. Of all
observed ion species, the gate error of Be9 + entanglement was lowest for a given powerP, related to the laserfield
strength E by

P E w c
4

, 292
0
2

0
p

= ( )

wherew0 is the laser beamwaist, c the speed of light and ò0 the vacuumpermittivity [42].We assumehere an
(idealized) beamwaist of w 20 m0 m= , to directly compare to [42].

During optimization, the highest regarded threshold, F=99.99%was reached after 0.33 ms using field
strengths of E 752 kV mr b

1» - per beam and detunings up to 25 THz. For the sake of comparisonwith [42],
and for the case of negligible heating, the timescale in themaster equation (1) can be changed, t tt =

c
. In

order tomatch the same entangling speed and duration of 10 sm as reported in [42], we require 4.4 MV m per
beam, corresponding to a total power of 4 16 W´ at the same detuning. For this very fast entanglement, the
negative effects of heating are limited, leading to errors of 6.5 10 5 = ´ - , ò=1.0×10−4 and
ò=4.47×10−4 for heating rates of 2 1 s , 2 10 s , 2 100 sh

1 1 1k p p pÎ ´ ´ ´- - -{ }, respectively.
If we fix the available field strength to the value E 200 kVr b » , corresponding to a total power of

4 36 mW´ , as reported in [42], the targetfidelity is reached after 4.6 ms. Again, despite themuch lowerfield
strengths, the detuning remains unchanged. It should be noted here, that an entangling duration of 4.6 ms is still
faster than that of the original entanglement scheme [32]. At this lower extreme infield strengths, the effects of

Figure 8.Bell state error ò=1−F as a function of the sideband laser beam strengthsEr/b allowed during optimization. The red
(orange and gray) points correspond to an ion trapwithκh=0 ( 2 1 sh

1k p= ´ - and 2 10 sh
1k p= ´ - , respectively). The blue

points correspond to a three-beam configuration and 0hk = . For all points, the detuning and carrier transitionfield strengths are
chosen such that thefidelity peaks after an entangling duration of 1 ms. For zero heating, attaining amaximal error of ò<0.001
requires field strengths of 100 kV m 1- , or a combined power of 4 8.3 mW´ going into a 20 μmbeamwaist, whereas ò<0.0001 is
reachedwhen the optimization allows for amplitudes up to 325 kV m 1- , or a corresponding power of 4 89 mW´ .
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heating aremore noticeable, since heating is allowed to act for almost 500 times longer relative to the 10 sm case.
Figure 8 shows the Bell state, i.e. entanglement error, obtainedwhen rescaling the duration to 1 ms, for

differentfield strengths Er b and heating rates (shown in red, orange, and gray, respectively). Afidelity of
F=99% is reached for all regarded heating rates, requiring field strengths between E 31 kV mr b

1= -

( 2 0 sh
1k p= ´ - ) and E 38 kV mr b

1= - ( 2 10 sh
1k p= ´ - ). The next threshold, F=99.9%, is only

crossed forκh=0 and 2 1 sh
1k p= ´ - atfield strengths of E 100 kV mr b

1= - and E 125 kV mr b
1= - ,

corresponding to total powers of P 4 8.3 mW» ´ and P 4 13 mW» ´ , respectively. Obtaining thisfidelity
requires detunings on the order of 6 THz. The highest threshold, F=99.99%, is reached for 2 0 sh

1k p= ´ -

whilst requiring field strengths of the order of E 325 kV mr b
1» - corresponding to a total power of

4 89 mW´ . This is about two and a half timesmore power than for the gate based approach in [42]. For
neglible heating, the required field strength per beam can be reduced by using three instead of four beams to
drive the two sideband transitions (blue curve infigure 8). This finding illustrates that parameter optimization is
prone to trapping in local optima, in particular for a larger number of optimization parameters [46].We
attribute the improvement to the fact that omission of one beam reduces the inadvertent scattering.More
specifically, the extra constraint on the beamdetunings appears to aid the optimization algorithm infinding a
configuration forwhich the contribution of each beam towards the scattering error is distributed in amore
favorable way than in the four beam setup.

5. Conclusions

Wehave addressed the problemof additional noise sources that limit fidelity and speed of dissipative
entanglement generation. Combining quantumoptimal control theory [2]with the effective operator approach
[41], we have shownhow to improve bothfidelity and speed for the example of entangling two hyperfine qubits
in a chain of trapped ions [32]. The detrimental noise source in this case is undesired spontaneous decay brought
about by the sideband laser beams that are necessary for coupling the qubits [32]. This decay leads to the
irrevocable loss of population from the hyperfine subspace of interest.Whilst the undesired spontaneous decay
cannot be eliminated entirely, an optimal choice of the experimental parameters increases the fidelity from76%
to 85%,withminimal changes to the setup. Key to the improvement is optimization of the sideband laser beam
polarizationswhich enter the decay rates of each individual hyperfine level. Due to their interdependence, the
various parameters of the experiment need to be retunedwhen changing the polarization. The two-stage
optimization process that we have developed here can easily resolve this issue, demonstrating the power of
numerical quantum control.

Further limitations tofidelity and speed can be identified graphically, by visualizing the connections between
states due to the various field-driven transitions. This allows to qualitatively trace theflowof population and
shows that, depending on the relative transition rates, population can get trapped in states other than the target
state or be transferred out of the target state by an unfavorable transition. The latter in particular implies that the
target state does not fully coincide with the steady state of the evolution. In order to overcome this limitation, we
suggest to adapt the entanglement scheme presented in [20] to using two sideband transitions. Of course, adding
a second sidebandmakes the suppression of the error due to detrimental spontaneous emission evenmore
important. Our optimizationmethod had no difficulty to copewith this task, despite the increase in the number
of tunable parameters.

Analysis aided by the graph of connected states for the two-sideband scenario reveals that the limitations of
the original scheme of [32] can indeed be overcome, whilst providing additional advantageous properties such as
higher entanglement speed and inherent cooling. This offers the possibility of reducing the complexity of the
experiment by removing the need for sympathetic cooling and all sources of error that comewith it. The
entangled, or, Bell state fidelity that we predict for the two-sideband scenario strongly depends on the heating
rate. It can be as high as 98%under conditions similar to those of [32], in particular in terms of the available laser
field strengths. Themaximumattainable fidelity is primarily limited by the heating rate of themotionalmode
that is used to couple the qubits. It dictates the timescale at which the sideband transitionsmust take place.
Weaker sideband transition rates in turn enable better suppression of spontaneous emission errors.Whilst a
fidelity of 98% represents an order ofmagnitude improvement over the originally obtainedfidelity, execution of
most quantumprotocols requires fidelities in excess of 99%. These could be achieved through experimental
refinements, such as ion trapswithweaker anomalous heating,more powerful sideband lasers [42], or use of
optical instead of hyperfine qubits [36, 37].

Provided that heating rates can bemade negligible, for instance by implementing the two-sideband scheme
on the stretch rather than the center ofmassmode of the two ions, onemaywonder whether spontaneous
emission ultimately limits the performance of dissipative Bell state preparation. Spontaneous emission can be
reduced by using larger detunings which in turn requiresmore laser power or longer durations. Compared to
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gate-based entanglement preparation [42], wefind, for the same laser power of 4×36 mW into 20 μmbeam
waist as in [42], the entangling duration to realize a Bell state fidelity of 99.99% to be increased from10 μs to
4.6 ms in an ideal trap. The advantages of the dissipative approach, in particular its inherent robustness against
noise,might easily outweigh this time requirement,making dissipative entanglement production a viable
resource for quantum information protocols. Consider, for example, carrying out primitives such as gate
teleportation. This could be driven by an entanglementmachine that produces 200 pairs/s in serialmode (per
node) or output one pair per 10 μs when runwith 250 nodes in parallel. A further speed up is possible by using
more laser power.

Our study provides afirst example for how to use quantumoptimal control theory to push driven-
dissipative protocols to their ultimate performance limit, despite imperfections in a practical setting.
Performance limits include, in addition tomaximal fidelity, also the highest speed.Here, we have obtained a
speed up of about a factor of four compared to [32]. Speed is of particular concernwhen scaling up entanglement
generation since some undesired decoherence rates are known to scale with system size [47]. Deriving the fastest
possible protocol is therefore key if dissipative generation ofmany-body entanglement [23] is to succeed. Aswe
have shown, optimal control theory is a tool ideally suited to tackle this task, and targeting amultipartite
entangled state is a natural next step.

The optimal control theory framework for dissipative entanglement generation thatwe have introduced
here is not limited to the specific example of trapped ions. In fact, our technique is applicable to genericmulti-
level quantum systems in the presence of dissipation forwhich the time evolution can be obtainedwithin
reasonable computation time6. This includes also systemswithmultiple steady states [48, 49]whichwould be
interesting for e.g. quantum error correction, or systemswith non-Markovian dynamics such as solid state
devices [50]. In the latter case, the generalization requires the combination of the present optimization approach
with one of themethods for obtaining non-Markovian dynamics [51], such as partitioning the environment into
strongly andweakly coupled parts [52]. Non-Markovianity has been shown to assist entanglement generation in
coupled dimers subject to dephasing noise [53]. Our approachwould allow to investigate, formore complex
systems and other types of dissipation, whether non-Markovianity is beneficial or detrimental to the speed and
overall success of entanglement generation.
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