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Abstract

Entanglement generation can be robust against certain types of noise in approaches that deliberately
incorporate dissipation into the system dynamics. The presence of additional dissipation channels
may, however, limit fidelity and speed of the process. Here we show how quantum optimal control
techniques can be used to both speed up the entanglement generation and increase the fidelity in a
realistic setup, whilst respecting typical experimental limitations. For the example of entangling two
trapped ion qubits (Lin et al 2013 Nature 504 415), we find an improved fidelity by simply optimizing
the polarization of the laser beams utilized in the experiment. More significantly, an alternate
combination of transitions between internal states of the ions, when combined with optimized
polarization, enables faster entanglement and decreases the error by an order of magnitude.

1. Introduction

Quantum devices aim to exploit the two essential elements of quantum physics, quantum coherence and
entanglement, for practical applications. They require the implementation of a number of basic tasks such as
state preparation or generation of entanglement, all the while preserving the relevant non-classical features at the
level of device operation. The implementation of quantum tasks thus needs to be robust with respect to
parameter fluctuations and external noise that is unavoidable in any real physical setup.

Loss of coherence and noise are commonly attributed to the coupling of the quantum system with its
surrounding environment [1]. One strategy for realizing all necessary tasks with sufficient accuracy is to perform
the quantum operations at a time scale faster than the time scale at which the noise affects the system. Quantum
optimal control theory provides a set of tools to derive the corresponding protocols [2] and can be used to
identify the quantum speed limit [3—6], i.e. the shortest possible duration within which the operation can be
carried out with a pre-specified fidelity.

Nevertheless, there is a fundamental limit in that one cannot ‘beat’ the noise, particlularly, when its time
scales are comparable to or faster than the typical speed limits of the target operation. An alternative is found in
approaches that deliberately incorporate dissipation into the system dynamics, often referred to as quantum
reservoir engineering [7]. The basic idea is to implement stochastic dynamics whose stationary state is non-
classical. This is achieved by manipulating the coupling to the environment, or reservoir. In its simplest form, a
constant but switchable coupling is realized by an electromagnetic field that drives a transition to a state with fast
decay [7]. The dynamics are described by the quantum optical master equation [1], and the system will
eventually be driven into the fixed point of the corresponding Liouvillian [8, 9].

Applications of this basic idea are many faceted—its use has been suggested, for example in generating
entanglement [10-23], implementing universal quantum computing [9], driving phase transitions [24—26] and
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autonomous quantum error correction [27-29]. Experimentally, the generation of non-classical states [30],
entangled states [31-34], and non-equilibrium quantum phases [35—37] have successfully been demonstrated.
Engineered dissipation can also be used towards a better understanding of open quantum system dynamics, by
means of quantum simulation [37].

All of these examples testify to the fact that dissipation can be a resource [9] for quantum technology. The
ultimate performance bounds that can be reached with driven-dissipative dynamics under realistic conditions
have, however, not yet been explored. While quantum reservoir engineering has been advocated for its
robustness, its performance in a practical setting is compromised as soon as additional noise sources perturb the
steady state or trap population flowing towards it.

This can be illustrated by examining the experiment described in [32]. For a “Be™ — Mg —#Mg" —°Be"
chain occupying the same linear Paul trap, the two Be" ions were entangled via their collective motion using
hyperfine electronic ground state levels as logical states. Entanglement was achieved by applying a combination
of laser and microwave transitions. This could be done in an either time-continuous manner or by repeating a
fixed sequence of steps, driving the system into a steady state, with the majority of population in the targeted,
maximally entangled singlet state. Desired dissipation was brought into play by a combination of spin-motion
coupling from a sideband laser, motion dissipation by sympathetically cooling cotrapped *Mg" ions, and a
repump laser which addresses the transition to a rapidly decaying electronically excited state. The sideband laser
beams also lead to undesired pumping of spins, so-called spontaneous emission. This resulted in population
leakage and was the main source of error in that experiment [32].

The simultaneous presence of both desired and undesired dissipation channels is rather generic. To harness
the full power of dissipative entangled state preparation, one would like to exploit the former while mitigating
the latter. Here, we use quantum optimal control theory [2] to address this problem. For the example of
preparing two trapped ions in a maximally entangled state [32], we ask whether entanglement can be generated
faster and more accurately when judiciously choosing a few key parameters. In order to keep in line with the
experimental setup described in [32], we forego the usual assumption of time-dependent pulses whose shapes
are derived by quantum optimal control. Instead, we employ electromagnetic fields with constant amplitude and
use tools from nonlinear optimization to directly determine the best field strengths, detunings and polarizations.
Our approach allows to not only determine the optimal values for these parameters, but also, identify key factors
that ultimately limit fidelity and speed of entanglement generation. Based on this insight, we explore an
alternative set of transitions and show that this scheme can outperform the original one both in terms of fidelity
and speed.

The paper is organized as follows. Section 2 recalls the mechanism for entanglement generation in the
experiment of [32] and details the theoretical description of the corresponding trapped ion system.
Optimization of the transitions used in [32] is discussed in section 3. An alternative set of transitions is
introduced in section 4, together with the optimization of the corresponding experimental parameters. We
conclude in section 5.

2. Model

In this section we consider the system described in [32], consisting of a linear Paul trap containing Be" ions and
24Mg" ions, which interact mutually through their Coulomb repulsion and with external electric fields. A
unitary idealization of these interactions is summarized in the Hamiltonian H. The mechanism giving rise to
dissipation in the state preparation process is spontaneous emission after excitation of internal electronic states
of the ion by the external laser fields. The system dynamics is therefore described by the quantum optical master
equation in Lindblad form (with 7z = 1),

dup = Lp = —ilH, p] + Lpp. )
Werefer to Lp as the (Lindblad) dissipator, which is given by
+ 1, .
Lpp = Z(Lkak' - L p]), (@)
k
where the sum over k contains individual contributions due to sympathetic cooling, heating and photon

scattering occurring during stimulated Raman processes and repumping into an electronically excited state.

2.1. State space

The model Hamiltonian H accounts for the internal structure of two *Be" ions as well as two vibrational modes
of the trapped ion chain. The state space of the considered system consists of the following tensor product
structure
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Figure 1. (a) The fine and hyperfine structure of the electronic ground and first excited state of °Be", including the most relevant
hyperfine levels. (b) In the original scheme [32], a stimulated Raman blue sideband transition from the | | ) to the | T) level (),
represented by a blue double-headed arrow, a microwave carrier transition between the |a) and |T) levels (£2,), represented by a black
double-headed arrow, and a repump transition out of |a) into the excited level |e) (€2,), represented by an orange double-headed
arrow, are driven. |e) rapidly decays back into |a), | |) and |1), as represented by the black snaking lines. (c) In the picture after adiabatic
elimination [32], the excited level |e) no longer explicitly appears and effective decay, represented by orange snaking lines, occurs
directly out of |a). In (b) and (c), 1 refers to the occupation number of the utilized vibrational mode.

(ngp) ® (ng2) ® (my) ® (1,,,). (3

In equation (3) n1q,1 and nqp,, designate hyperfine states of the *Be" ions, specified by the quantum numbers F
and their projections mp, obtained from coupling the total electronic angular momentum quantum number J
with the nuclear spin quantum number I. Figure 1(a) highlights the hyperfine states of interest, comprising of

[1) £ S1/2 F =2, mp = 2)and|1) £ |S,/2, F = 1, mp = 1), the two hyperfine levels to entangle, as well as an
auxiliarylevel |a) £ [S, ,, F = 2, mp = 1). The neighboringlevels |0) £ [S,,,, F = 1, mz = 0)and

[t) £ 1S, /2, F = 2, mp = 0)arealso accounted for in the model, since these are predominantly populated by
inadvertent scattering processes. In the following, the onlyelectronically excited state of interest will

bele) & |Py )y, F' =2, mj = 2).

n,, and n,,, are vibrational quantum numbers of two of the four shared motional modes of the trapped ionic
crystal along its linear axis. Entanglement generation employs v/, and sideband transitions utilizing this mode
are essential for the presented schemes. Unless specifically required, the mode v, which is not utilized for
entanglement but is included in the model to account for off-resonant coupling, will be suppressed notationally
for the sake of simplicity. It is assumed that the trap has an axis of weakest confinement along which the four-ion
string is aligned and that the eight radial motional modes can be neglected, since they are largely decoupled given
the sideband laser configuration described in [32]. Figure 1(b) shows three transitions that were driven on a
single °Be" ion in [32]. These belong to the coherent part of equation (1), described by H, and one of them
results in population of the electronically excited state |e) with subsequent dissipation which is modeled by the
incoherent part, Lpp. After adiabatic elimination, however, the transition to |e) no longer appears in the
coherent part of equation (1), while the dissipative part is modified by the result of the adiabatic elimination to
fully account for the effective decay out of a electronic ground state hyperfine level instead [32]. This is illustrated
in figure 1(c).

2.2. Original scheme for entanglement preparation

As represented in figure 1, the dissipative entanglement generation of [32] uses three different types of fields to
induce population flow in the state space. The entanglement mechanism can be understood by qualitatively
tracing the flow of population from state to state as indicated in figure 2. Entangling the two °Be" ions via their
joint motion in the trap is made possible by utilizing sideband transitions driven by Raman lasers. These change
the internal states of the *Be" ions whilst simultaneously exciting or de-exciting the utilized motional mode. In
contrast, carrier transitions driven by a microwave field change the *Be" internal states only. Finally, a repump
laser excites population to a short-lived electronically excited state. Specifically, in [32], a single sideband
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Figure 2. Graphical overview of transitions needed for steady state entanglement. For simplicity, only states within the hyperfine
subspace {4, |,T} and only the mode v are displayed. The vibrational quantum number of the utilized mode increases radially
outwards from the center with shaded areas sharing the same quantum number. Carrier transitions between |a) and | ) at rate Qgyy, 41
are represented by black double headed arrows. Sideband transitions between | | ) and |T) at rate le){’ue) |, are represented by blue
double headed arrows. Effective decay from |a) at the rates wff; for f € {a, |,T},isrepresented by orange snaking lines. Sympathetic
cooling of the utilized vibrational mode is represented by black snaking lines, whilst heating acts in the opposite direction and is not
shown. For the sake of clarity, certain transitions are omitted and the leaking between the hyperfine states is also not shown.

transition between || ) and | 1), a carrier transition between |a) and | 1) and a repump transition between |a) and
|e) are used. Figure 1 indicates the transitions between the hyperfine levels of interest for a single *Be" ion. The
above transitions can be driven simultaneously and time-independently for the duration of the experiment or in
a step-wise manner [32]. Here, we focus on the continuous case, which resulted in a larger error. Each °Be" ion
is affected by the driven transitions independently and no individual addressing is required. Starting with both
Be" ions in an arbitrary state confined to the hyperfine subspace {a, |,1}, in the ideal case, this scheme always
leads to a steady state in which the the population is trapped in the singlet entangled state between || ) and | 1),

def

1S;) & %(I 1Ty = 111)). Inthe following, all singlet entangled states are designated by |S;;) = %(lij) — |ji)),

whilst the triplet entangled states are designated by | T;;) e %(Iij) + i), Vi, j € {a, |,T}.

Let us inspect in more detail the flow of population from state to state in figure 2. Startingin || | n,, = 0),
for instance, it is possible to reach the target singlet entangled state |S, ) by two sideband transitions leading to
[T1 n,,), followed by a carrier transition into a combination of the |a T n,,) and |1 an,,) states. Population in the
auxiliary state is driven by the repump laser into the electronically excited state from where it subsequently
decays back into the electronic ground state hyperfine subspace. The process of electronic excitation and decay
happens sufficiently fast with respect to the other transitions, that it can be regarded as ‘effective decay’ directly
out of |a), as depicted in figures 1(b) and (c). This decay drives the system into a combination of | 1 1,,), the
triplet entangled state | Tj;) ® |n,,), and the target state |S;) ® |n,,). At any stage, sympathetic cooling can
counteract the excitations of the vibrational mode in the trap which are caused by sideband transitions and
heating. Sympathetic cooling is induced by a different set of sideband lasers driving transitions only between
internal states of the 2*Mg" ions which share common motional modes with the *Be" ions. The carrier
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transition between |a) and |T) leads out of the target state |S|;) into |S, ). This particular transition is highlighted
specifically in figure 2 by a dotted black double headed arrow.

By ensuring that the two-photon Rabi frequency fofue, ,1 of the stimulated Raman sideband transition
between || ) and |1) is much larger than the carrier Rabi frequency Qc,y, 4,1, the latter transition can effectively be
suppressed. Figure 2 also highlights the state | 11 0) with a thick, dotted, black border, since the effective decay,
proportional to the square of the repump laser Rabi frequency €2, , . must be made sufficiently weak relative to
Qcar,a,1> in order to prevent the trapping of populationin | T 0). Consequently, a hierarchy of rates is established
in which the maximum attainable two-photon Rabi frequency of the stimulated Raman transition determines
the maximal carrier Rabi frequency between |a) and | 1), which in turn determines the maximal repump Rabi
frequency between |a) and |e).

2.3. Hamiltonian
In the rotating wave approximation and interaction picture, the total system Hamiltonian is comprised of the
driven hyperfine transitions

H= ) Hypeifs (4)
type,i,f

where the sum runs over specific triples (type, i, f), designating a transition of type ‘red’ or ‘blue’ sideband or
‘carrier’, between the initial and final hyperfine states |i) and | f).

Transitions of the carrier type between the ground state hyperfine levels are driven by microwave fields with
a Hamiltonian of the form

Hcar,i,f = Qcar,i,f(lf> <1| o2 ﬂqbZ ® ]1”1 ® ]1”2
+ lgp1 ® |f) (il ® 1, ® 1,,,)e"Banis® + hec.. 5)

Above, (), ; rdenotes the Rabi frequency and A, ; ra small detuning between the applied field and the
transition energy between ) and | f). Each identity operator 1;, with j € {gb1, gb2, v, 15}, islabeled according
to the subspace to which it corresponds. A repump laser is required to drive transitions between ground and
electronically excited hyperfine states. These transitions therefore involve Hamiltonians of the form of
equation (5), where i) is a hyperfine ground state level and | f) = |e) is the addressed electronically excited
hyperfine level. Since population excited by this repumper decays very rapidly into the hyperfine ground states,
adiabatically eliminating the excited state is well justified.

Ideally, a blue sideband transition between two hyperfine levels |i) and | f), utilizing the motional mode v, is
represented by

Hblue,i,f - leue,i,f(|f> <1| & qubZ ® b+ ® Jluz
+ g @ 1f) (il @ bt ® 1,,)e " Aomeis? + hec., (6)

where Qi is the sideband Rabi frequency and Ay, ra small detuning from the energy difference between |i)
and | f) plus the energy of one quantum of 1. b and b denote the bosonic creation and annihilation operators
which respectively excite and de-excite the harmonic mode . Analogously, the Hamiltonian of a red sideband
transition takes the form of equation (6) but with the annihilation operator b replacing the creation operators b’
and Ay, i replaced by A eq i f

In the specific case of a stimulated Raman sideband transition, 2ed/piue,ifin equation (6) becomes
o /blue,,f> @ tWo-photon Rabi frequency of a red/blue sideband transition between |i) and | f), given by

’EEp <~ (fld - &/|k) (kld - &li)
0 o KLy Ep
red /blue,i,f M, 4 zk: Akﬂz

. ™)

In the following we assume Lamb-Dicke parameters of 73, = 0.180 and 7,, = 0.155 for the utilized (v;) and
off-resonant (v/,) motional modes, respectively [32]. Above, E, and Ej are the field strengths of the lower

(red) and higher (blue) frequency Raman laser beams which have polarizations &, and &, expressed in spherical
componentsas g, = (r_, 1, ry) and g, = (b_, by, b,), respectively. d is the dipole operator for the *Be" ions
(also expressed in the spherical basis) and the sum runs over all hyperfine levels |k) in the electronically excited
states P; /, and Ps /. The laser frequencies are shifted, such that the ground state to excited state transitions are
detunedby A.and A, + fpbelowthe S, ,, «<» P /;and S/, < Ps/, resonances, respectively. f, ~ 197.2 GHz
is the fine structure splitting between P; /, and P; ;. For the detuning between |i) and an individual excited state
hyperfine level |k), the hyperfine splitting is neglected such that

A A, iflk) € P,
“TlAc+ S, iR € Py

Equation (7) utilizes a characteristic stretched state transition matrix element, u £ (P;/,, F = 3,
mp = 3|d(|S 2, F = 2, mp = 2) to properly scale a given reduced matrix element, (f|d - |i) /1, with d, the

5
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right circular component of the dipole operator. The Wigner—Eckart theorem [38] and Breit—Rabi formula [39]
can then be used to express an arbitrary transition matrix element { f|d - €|i) between two hyperfine levels |7)

and | f).

To accurately model the system dynamics, it is necessary to account for the undesired off-resonant coupling
of a given sideband transition described by equation (6) to an additional mode v, given by

” n
Hllalzuelf 771/2 Q%)}ruelf(lf> < ® qubZ ® lel ® cT

V1

+ g1 @ |f) (il ® 1, @ c*) x e 0= Abmeint + hc., (8)

in the case of a blue sideband transition. In equation (8), 0 is the detuning between the utilized mode v; and v,
which couples off-resonantly. In the case of a red sideband transition, the off-resonant coupling takes the form
of equation (8) under interchange of the annihilation and creation operators of the harmonic oscillator
describing the , motional mode, cand ¢*, and replacement of Aplye,ifby Areq,ip respectively.

2.4. Lindblad operators

Incoherent processes taking place alongside the driven transitions appear in the dissipative part Lp in
equation (1), which is comprised of individual contributions modeled by the Lindblad (jump) operators L in
equation (2). An effective operator formalism [40] allows to adiabatically eliminate the hyperfine excited state
addressed by the repump laser. It leads to Lindblad operators of the form [41]

LY = 1) (il @ g @ 1, @ L, o)
L = g @ If) (| © 1, ® L, (10)
with effective rates
4002
“Yffff = %fi;azrle, (11)

where |e) is the intermediate, rapidly decaying, electronically excited state, (. the repump Rabi frequency, v,
the decay rate from |e) into the hyperfine ground state | f) and v = 37 7, the total decay rate out of |e) into a
subspace of hyperfine ground states.

Similarly to equations (9), (10), leaking between ground-state hyperfine levels due to stimulated Raman
sideband transition acts on both beryllium ions according to

Ls(lh)zf \/7f|f ll ® ﬂqbZ ® ]11/1 ® Jle’ (12)
LG = Tl @ 1f) (il © L, © L., (13)

The scattering rate I';sbetween an initial hyperfine ground state |#) and a final hyperfine ground state | f), due toa
single laser beam is given by the Kramers—Heisenberg formula

|EJ* 1 aj) ’
Ly =Lip=—" ) 14
=l == | 25, (14)
where
d,|k . eli
o =a) = 3 (fldglk) (K|d - eli) )

qE{+,0,—} K K

is the two-photon transition amplitude between |i) and | f). As in equation (7), k runs over all states | k) belonging
to the °Be" ion P} /; and P;/, manifolds. Again, it sufficies to approximate the Ay of k € P, /5, P55 as A,and

A, + fp, respectively. Rayleigh scattering is modeled by a Pauli o, matrix between pairs of levels. Acting at the
rate

®\ [
|EJ? 12 a)  ay

= ) A 16

U= 7 2 Ay T A (16)

Rayleigh scattering is only of concern between the || ) and | 1) levels and in most cases negligibly small.
Sympathetic cooling is achieved by using stimulated Raman laser cooling and can be made to affect either or
both of the considered motional modes according to

Lcool,ul = \/’ic,l/]ﬂqbl ® Jlqb2 ® b ® Jluzy (17)
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Lcool,uz = JFer;, qubl ® Jlqb2 ® lel ® ¢ (18)

where the cooling rates ., and &, ,, are governed by the field strengths of the repump and stimulated Raman
lasers acting on the magnesium ions.

Heating acts on all motional modes. It is caused by spontaneous emission occuring during the magnesium
sideband Raman transitions, as well as photon recoil from spontaneous emission and also the anomalous
heating of the ion trap. The total heating can be modeled by

Lheat,ul = JFhu, Jlqbl (24 Ilqb2 & b & ﬂl/p (19)
Lheat,uz = JFhuv, qubl X Jlqb2 ® ﬂm ® C+) (20)

for a set of given heating rates x, ,, and &y, ,,.

3. Optimizing the original scheme

The goal of optimization is to maximize the population in the target state |S; ;). To this end, the final time T'is
defined as the time at which the peak population in the target state is reached and all driving fields can be turned
off. The target state population at final time is defined as the fidelity F and correspondingly the error as

€ £ 1 — F.The peak population at the final time is an appropriate quantity to observe, since the stability of the
ionic hyperfine ground states causes the system to remain in its entangled state for a long time after all driving
fields have been turned off.

In the following, the system degrees of freedom available for control are introduced and categorized into two
collections in preparation for the optimization scheme discussed below. In contrast to a straightforward
parameter optimization of all degrees of freedom, the specialized optimization scheme presented here is less
susceptible to running into local minima and demonstrates reliable and fast convergence.

3.1. Optimization parameters

As previously discussed, the limitations of the original scheme [32] are fundamentally linked to the physical
process of the stimulated Raman sideband transition. The two-photon Rabi frequency Qifue’ 1 associated with
this transition should be made as large as possible to drive the system towards the desired target state whilst
ensuring that the unfavorable transition between |S};) and |S, ) is suppressed. Consequently, the carrier
transition Rabi rate {2, .1 and in turn the repump transition Rabi rate governing the effective decay out of |a)
are limited, bottlenecking the flow of population into the target state.

Equations (7), (14), (15) show that merely increasing the field strengths of the sideband lasers has the adverse
side effect of also increasing the chance of photon scattering and therefore the rates of leaking between hyperfine
ground states. As such, a safe way of increasing the field strength of the sideband lasers is to compensate by
increasing the detuning A, from the excited state manifold, since the two-photon Rabi frequency scales inversely
with the detuning whilst the scattering rates between hyperfine states scale with the square of the inverse
detuning. The field strengths required to significantly increase the two-photon Rabi frequency whilst
minimizing the associated scattering rates are, however, beyond current experimental capabilities [42]. A third
option is given by the polarization of the two stimulated Raman sideband laser beams €, and &, which have a
greatimpact on both Qi{’ue, L andalso {Ij}.

The tunable parameters E, and Ey, €, and €, and A, appearing in equations (7), (14), (15) constitute a first
set of parameters defined as

Pinner o {Era Eha €r> Eps Ae}- (21)
These are directly associated with the stimulated Raman sideband transition. The two-photon Rabi frequency
lefl’ue, |, scales with the product of field strengths E, Ej, whilst the scattering rates due to each laser beam scale

with |E, ; |*, the magnitude of the field strength squared. The polarization is split into its three spherical
components, € = (¢_, &y, ;) where¢; € [—1, 1], Vi € {—,0, 4} and with

le-* + leol® + les P = 1. (22)

Due to the normalization of the spherical components, each polarization possesses two degrees of freedom
which can be represented as the azimuthal and polar angles on the unit sphere.

A given configuration of Pippr fully determines the resulting two-photon Rabi frequency Qﬁfue’ \,yandall
leakage rates I'jrbetween hyperfine states. These parameters are deliberately regarded separately from a second
set of parameters

P)uter = {Qcar,a,T) Qcar,a,e: Acar,u,Ta Ablue,l,T) a}) (23)
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Outer optimisation

Inner optimisation
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Qear e . . 7]
AR Do, .1
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Figure 3. Schematic overview of the two-step parameter optimization algorithm for the two sets of parameters, Pipner and Poyer. The
inner optimization (red loop) depends on Piyner and a set of weights {c;¢}. After the inner optimization, the old set of weights can be
updated (orange loop) and the fidelity F of the dynamics is optimized in an outer (blue) loop.

consisting of the carrier Rabi frequencies and detunings for both ground state transitions and a balance
parameter a, which shall become important during the optimization. The carrier Rabi frequencies are directly
determined by the applied field strengths and can be tuned over broad ranges. The detunings A, , + and
Ablye, |,1 should be kept small to prevent off-resonant coupling to additional motional modes.

3.2. Optimization algorithm
Our optimization algorithm, schematically depicted in figure 3, takes the approach of optimizing the sets
introduced above in a two-step process. Conceptually, the inner optimization over the first set of parameters
Pinner incorporates the dynamics indirectly and is encapsulated by an outer optimization over the second set of
parameters P, maximizing the actual fidelity F. This strategy is motivated by the fact that determining
Qifue, = Qilljue, L,T(E” Ey, &, €y, Ap)and {Iiy = Tir(E,, Ep, €, €, A,)} does not require explicit knowledge
of the dynamics and is therefore computationally inexpensive.

The target functional of the inner step of the optimization depends on the field strengths E, and E,,,
polarizations €, and &, and excited state detuning A, and is defined as

Jinner [Er» Eps €15 €1, O] = Z CifE'f - anﬁj (24)
if

Here, o is a balance parameter which weights up the relative importance of maximizing Qi{’ue’ |, versus
minimizing the sum i cif Ly, for a given set of weights {c;r}. If the set of weights {c;r} and a are fixed, the inner
optimization can calculate Qi{’ue, L1 and {I} in terms of Pipner, which are passed back to the outer part of the
optimization, once Ji, e is minimal.

The optimization of the set of parameters Py, requires a measurement of the effect a change in each
scattering rate I';rhas on F, the overall fidelity of the dynamics. This runs contrary to the usual practice of
minimizing the total scattering rate 3~ I}y between all pairs of ground state hyperfine levels. Individually
weighting each I'jrcomes as a consequence of the observation that the leaking between each pair of hyperfine
ground states affects the reached fidelity differently. Most notably, transitions leading out of the steady state |S);)
and transitions leading out of the hyperfine subspace {4, |,T}into the neighboring states {0, ¢} have the largest
negative effect on the fidelity. Taking into account each individual leaking rate therefore offers the possibility of
strongly suppressing certain detrimental I'jby carefully tuning the polarization. We encode the degree to which
a certain ['jraffects the fidelity by running several simulations where each individual rate Iiis artificially boosted
by a factor of 10, whilst keeping all other rates fixed, resulting in a set of fidelities { Fir}. Observing the difference
F — Fjs between boosted and unaltered dynamics leads to a set of weights, {c;r & 1000(F — Fi)}.

Figure 4 shows two different sets of weights at the beginning of the optimization and after a few updates. As
discussed in [32] the biggest scattering error is due to the qubit transition between |T) and | | ). I}, Along with
transitions leading out of the hyperfine subspace into the neighboring |0} and |¢) levels, received the largest
weights c; for the duration of the optimization.

A given set of weights can be used to optimize Pjyper, leading to the best possible Qf)}l)ue, Lt and {I}s} with
which to perform the dynamics.
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Figure 4. Change in fidelity F — F;sbetween unaltered dynamics and dynamics resulting from artificially boosting a specific I'yz The
dark blue set of weights generated in the first iteration is different from the pale blue set of weights generated after several updates.
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Figure 5. Time-dependent population in the states | | |),|17), |S) and | T ;) after summing over all motional levels. The
graph compares the dynamics when starting with all population in the | | | ) state initially, before (dashed lines) and after (solid lines)
the combined optimization, leading to fidelities of F = 76% and 88%, respectively.

The optimization of the second set of parameters, 7, ., directly targets the fidelity F of the dynamics

]outer[Qcar,a,Ty Qcar,a,e: Ab]ue,L,T) Acar,a,T: a] o l1—-F=e. (25)

For each iteration of the outer optimization, the inner optimization over equation (24) leading to optimal
Qilfue, 1,1 and {Ir} is performed using the set of weights { c;¢} generated during the previous iteration (for the first
iteration ¢jr = 1, Vi, ). After the inner optimization, a new set of weights { c;r} is generated for the next
iteration of the outer optimization, as illustrated in figure 3.

This two-step optimization is easily generalized for arbitrary combinations of transitions, including the
possibility for multiple sideband transitions between differentground state hyperfine levels. Optimization of
multiple sideband transitions follows the rule, that the jth sideband transition has its own set of polarizations
e and s(bj ), field strengths E/ and Elfj ), balance parameter o' ” and excited state detuning A but each
contributes towards a set of total scattering rates { I}y = Zjl“gfj) }. Furthermore, all transitions except for the
repump transition have a detuning Ay, ; rand all carrier transitions have a Rabi frequency (2, sto be
optimized directly, along with the set of balance parameters { o'/}, in the outer optimization.

3.3. Result of optimization

All parameter optimizations have been performed with the NLopt package [43] using the Subplex algorithm
[44]. While other optimization methods could also be used in the outer and inner optimization loops, we have
found these to converge well. Figure 5 compares the simulated dynamics of the system as described in [32] with
the dynamics obtained after optimization. The peak fidelity is increased from F = 76% to F = 88%. This is due
to a modified steady state, in which the populationsin |T;),| T T) and | | |) each are smaller than in the original
scheme. Furthermore, through optimization of the I a significant portion of the population can be prevented
from escaping the ground state hyperfine subspace {a, |,}, which causes the prominent crestin the |S|;)
population for the original scheme. The optimized result was compared to different realizations of randomly
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chosen polarizations &, and &, which leads to dramatically varying peak fidelities that can be aslowas F = 10%
but are only rarely in the vicinity of but never surpass the peak fidelity reached by optimization.

The optimized values of the various parameters are reported in table 1. After optimization, the two-photon
sideband Rabi frequency Qifue’ 1, assumes avalue of 27 X 7.65 kHz, which s very close to the rate
27 x 7.81 kHz reported in [32]. The increase in fidelity can therefore mainly be attributed to the adjustments
made to the polarization €,, €, and increase in excited state manifold detuning A, from 270 GHz to 662 GHz,
which is feasible, see for example in [45]. In other words, the outcome of the inner optimization is a superior set
of scattering rates { Iy }, with the parameters of the outer optimization adjusted to rebalance the system.
Compared to [32], in which Q01 = 495 Hz, the carrier Rabi frequency between |a) and |T) drops to 316 Hz
after optimization, thus further suppressing the unwanted |S;) < [S,) transition. As the optimal fidelity is
approached, the detunings A, 4,1 and Ay, |, become negligibly small, indicating that for this particular
entanglement scheme, the shift out of resonance due to the driven transitions is not much of a factor.

Nevertheless, the achievable fidelity is inherently limited in this entanglement scheme. As demonstrated by
equations (7), (14), (15), even if the field strengths of the lasers utilized for the stimulated Raman sideband
transition were unconstrained, a finite amount of leaking between hyperfine states would remain present.
Limited field strengths of the sideband lasers necessitate a trade-off between the error due to leaking between
hyperfine states and the errors due to population trapping in | T T) and the unfavorable transition between |S) ;)
and [S, ).

As such, the fidelity that can be reached with our optimized parameters falls short of the fidelity obtained by
switching to the stepwise scheme presented in [32] which amounts to F = 89.2%. The stepwise scheme negates
the error caused by the unfavorable transition between |S}1) and |S,) by temporally separating the ground state
hyperfine transitions from the application of the repumper and also the sympathetic cooling. This strategy
ensures that population lost out of | S 1) into |S,1) has nowhere to go and, if precisely timed, is returned to |S 1)
after a full Rabi cycle. Essentially, the stepwise scheme lifts the requirement of balancing the rates at which each
transition can be driven, thereby overcoming the limitations associated with the time-continuous
implementation. In the following we will show that a continuously operated scheme can outperform both
variants for entanglement generation of [32] by exploiting a different combination of transitions.

4, Two-sideband scheme

Alternatively to the original scheme presented in (2.2), steady-state entanglement can be reached using other
combinations of continuously driven carrier and sideband °Be"-hyperfine transitions. We consider here a
scheme that features two sideband transitions: a blue sideband transition from || ) to | 1), and a second, red
sideband transition from |T) to |a). Note that we assume each sideband transition to be driven by its own pair of
stimulated Raman laser beams. It would also be possible to drive the two sideband transitions using only three
beams. This simply requires proper choice of the correct relative detunings. In addition, and as in the original
scheme, a repump transition between |a) and |e) is driven. In order for all states in the hyperfine subspace to be
connected to the target state |S| 1), a carrier transition between | | ) and | 1) is included as well. This choice is
similar to the combination of transitions utilized for the entanglement of two “0Ca™ jonsin [20]. It offers
numerous advantages over the original scheme as detailed below.

4.1. Entanglement mechanism and optimization parameters

Figure 6 illustrates the entanglement mechanism for this new combination of transitions. Crucially, the
unfavorable transition between |S;) ® |0)and |S,;) ® |0) due to the carrier connecting |a) and |T) in the
original scheme has been eliminated. Instead, the red sideband transition from 1) to |a) leads from |S;) ® |n,,)
to|S,)) ® |n,, — 1)onlywhen n,, > 0.Consequently, for this combination of transitions, in the absence of
leakage between hyperfine states and heating, |S;;) ® |n,, = 0) alone is the steady state of the dynamics. In the
presence of heating, populationin |S;) ® |0) can only escape due to an excitation of the utilized vibrational
mode v followed by a sideband transition from [S|7) ® |n,,)t0|S,|) ® |n,, — 1). Population in

[Sa;) ® |n,, — 1) can take multiple branching paths, all of which eventually lead back to |S};). As such, in
contrast to the original scheme, which relies on sympathetic cooling, this particular combination of transitions
inherently cools the utilized mode v, of the system during entanglement generation.

Without the need for sympathetic cooling, the 2Mg" ions can be removed. This leads notonly to a
simplification of the experiment but also reduces the number of motional modes of the ionic crystal. It thus
effectively eliminates the error due to off-resonant coupling to 1/, given by equation (8) in the original scheme.
As described in section 3, in the original scheme the carrier Rabi frequencies Q. 4,1 and 2y, 4 ., Which
determine the rate of effective decay out of |a), are limited by the maximum attainable fol’ue, 1,1- Incontrast, in
the current scheme the carrier Rabi frequencies 2¢,y, |, 1 and Qe 4, can be increased significantly, without
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410, @

Figure 6. Graphical overview of transitions for the two-sideband transition scheme. As in the original scheme, only the most critical
transitions for entanglement are shown and only states of the hyperfine subspace {a, |,1} and the ) motional mode are displayed.
Carrier transitions between | | ) and |1) at rate Q,,, |1 appear as black double-headed arrows. Theblue ||) — |T) sideband transitions
actatarate of Qifue, IR and appear as blue double headed arrows, whilst thered |1) — |a) sideband transitions acts at a rate fodm B
and appear as red double headed arrows. Effective decay out of |a) into the hyperfine subspace appears as orange snaking lines.
Sympathetic cooling is no longer incorporated into the mechanism and heating of the motional mode and leaking between hyperfine
states are not shown.

causing losses out of the target state and population trapping in | 7 7). By driving an additional sideband
transition, the graph of states in figure 6 is more connected, permitting population to reach |S; ;) by additional
paths. Comparing the graphs shown in figures 2, 6, the combined effect of additional paths into the target state
and the increase in cyr, o, which results in larger effective decay rates {, ; o QZ,:.a.0} should lead to much faster
entanglement preparation.

Optimization of the field strengths and polarizations for the two-sideband scheme has been carried out
according to the same principle as described in section 3, with the slight complication of having to address
additional degrees of freedom. In the specific case of the two-sideband combination, the corresponding form of
the target functional for the polarization optimization, equation (24), becomes

Jinner [Eél)) Er(l)) 521)) E(rl)a Agl), Eb(z), E,(Z), 5572), 552), Agz)]
= T no22e M) 202 (2)
- Z lerlf - OZ( )leue,l,T - Oé( )Qred,T,a‘ (26)
if
As in the original scheme and described in detail in section 3, optimization of the polarization can be accomplished

without having to simulate the dynamics in each iteration. A single inner optimization step determines both

Qi’fue(}f‘T = Qifue()lf‘T(Er(l), EN, e, e, AY)and fod,(ﬁ)u = fod’(Tz)L(E,(Z), EP, P, e?, AD),inaddition to
{Ly = FEJ})(E}”, EM, e, e, Ay + I‘Efz) (EP, E?, €@, e, AP)}, the set of scattering rates due to each

sideband transition. As in section 3, the outer optimization is performed directly on the fidelity F of the dynamics
]outer [Qcar,l,T) Qcar,u,ea Acar,i,T) Ablue,l,T) Ared,T,m 04(1)) a(2)] = l1-F=e. (27)

The set Tyyer now consists of the carrier Rabi frequencies ey, |1, Qcar,a,e the detunings A,y | 1, Agﬁle, L1 and
Agé o of the microwave carrier, first and second sideband transitions, and the weights a® and o®. Since the
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Figure 7. Population of the target state |S| ;) over time obtained with by optimization of the peak fidelity at final times T, for the two-
sideband scheme with different assumed heating rates. The plot shows curves for the heating rates ry, of 2 x 1 57! (solid line)
leading to a fidelity of F = 98.3%, 27 x 10 s~! (dashed line)leading to F = 96.7% and 27 x 100 s~! (dotted line) leading to
F = 90.3%.

scheme now involves a second sideband combination, an additional weight is required to balance the
maximization of its two-photon sideband Rabi frequency against the sideband photon scattering rates in
equation (26). In order to make sure that both Rabi frequencies are maximized without one dominating the
other, however, the left-hand side of equation (26) can be modified slightly, such that

Tonee E, ED, e, <0 AD, EO) EO), (0 O A@)
2p (1) 2 2) 2p (1) 2 2)
= Z cir Ty — Qe 11 + i) + Bt — Qe touls (28)

where o now balances the maximization of the sum of two-photon Rabi frequencies against the I';s whilst 3is a
parameter controlling how strictly the two-photon sideband Rabi frequencies should be matched. For simplicity
itisassumed that E{" = E® and E{" = E* and that each field strength is limited to the maximum value
allowed during the optimization of the original scheme.

In the absence of sympathetic cooling, the primary source of heating, caused by spontaneous emission
during the stimulated Raman sideband transition driven on the *Mg" ions, is eliminated. The remaining
sources of heating are photon recoil from the spontaneous emission out of |e) after repumping and electric field
noise associated with the ion trap [32]. Since the heating rate influences the system dynamics and therefore the
obtained fidelity, the result of the optimization depends on the specific heating rate assumed, which can vary,
depending on the motional mode utilized for the sideband transition.

4.2. Influence of trap heating rates

Figure 7 compares the reached peak fidelity for different values of the heating rate x;, of vibrational mode v,. For
an assumed heating rate of k;, = 27 x 1 571, optimization leads to a peak fidelity of F = 98.3%, whilst

kn = 2m X 10 s~!isamore realistic heating rate for modern traps leading to a peak fidelity of F = 96.7%.
Finally, when xj, = 27 x 100 s~!, the peak fidelity is reduced to F = 90.3%. For each considered heating rate,
the parameters leading to optimal entanglement are listed in table 2. As the heating rate x}, is increased,
recovering population lost from the target state |S| ;) requires an increase in the Rabi frequencies of all driven

transitions. For all reported heating rates, however, the ratios Q. |1 o< Qifue(}f’T ~ fod’(ﬁ)a o 2, ., remain

car,a,e
approximately constant. Here, the repumper Rabi frequency 2.,. , . enters squared, since the effective decay
rates in equation (11) are proportional to 2, , .. This observation can be understood, since the target state
should be reachable as directly as possible from any given state. Scaling all transition rates equally is necessary in
order to prevent the flow of population from being bottlenecked throughout the entanglement generation. The
optimized peak fidelities are again significantly higher than the average fidelity of F ~ 0.4 (or F ~ 0.5 with the
fixed scaling of Rabi frequencies mentioned above) obtained from simulating the dynamics with random
polarizations e, el e?and e(bz) of the sideband laser beams and assuming k, = 27 X 1 s~L. For the two-
sideband scheme it is much more difficult to randomly select a near-optimal polarization, due to the increased
number of degrees of freedom, which also causes the peak fidelity to strongly vary depending on the polarization.
Furthermore, an optimization to minimize the time taken to reach a target state population of F = 85% was
performed for the heating rates xy, € {27 X 157}, 27 x 10s7}, 2 x 100 s~'}, leading to a preparation time
of t &~ 0.3 ms for all assumed heating rates.

For each increase in the heating rate, the optimization results in a different set of polarizations '", r-:(bl), e?

and e{?). As the heating rate is increased, the minimization of leakage rates { I}s } becomes less important. A given
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Table 2. Optimized parameters for the two-sideband scheme. As for the original scheme, each field strength is limited to a
maximum value of 7520 V. m 1, Qiﬁ’ue(}fj and Q2 d)(ﬁ)a are both determined by equation (7) with individual polarizations (",
efV, € and f?). Optimization of the two-sideband scheme leads to fidelities of F = 98.3%, 96.7% and 90.3% for heating
ratesof s, = 27 x 157, 27 x 10s~'and 27 X 100 s~!, respectively. The sideband detunings A" and A{ are defined as
in (2.3) with the same assumed fine structure splitting f, = 197.2 GHz.

Parameter Kh= 21 x 1s7! 27 x 10571 27 X 10057}

E, 7520 Vm™! 7520 V. m™! 7520 V m™!

E, 7520 V. m~! 7520V m! 7520 V. m~!

e (—0.752, —0.220, —0.621) (—0.620, —0.500, —0.605) (—0.741, —0.338, —0.581)
efl (0.440, 0.759, 0.480) (0.536, 0.644, 0.545) (0.408, 0.802, 0.435)

e? (—0.413, —0.204, —0.888) (—0.453, —0.854, —0.257) (—0.479, —0.824, —0.303)
e (—0.415, —0.883, —0.218) (—0.451, —0.250, —0.857) (0.493, 0.261, 0.830)

Qear, 1,1 2w X 2.24 kHz 21 x 2.91 kHz 21 X 6.67 kHz

o, 27 x 4.96 kHz 21 X 6.47 kHz 21 x 14.92 kHz

@ 21 x 4.96 kHz 271 x 6.47 kHz 21 x 14.92 kHz

Qearae 21 x 691 kHz 27 x 802 kHz 27 x 1233 kHz

AD 624 GHz 245 GHz 318 GHz

AP 464 GHz 372 GHz 206 GHz

I'ysis determined by the polarization of each stimulated Raman laser beam and scales with the squared
magnitude of the field strength |E|* whilst scaling inversely with the squared detuning from the excited state A,
(equations (14), (15)) of the considered laser beam. Instead, the maximization of the two-photon stimulated
Raman sideband transition rates sz‘l’u e()lf)T and fo d’(ﬁ)a (equation (7)) is prioritized. The two-photon stimulated
Raman sideband transition Rabi frequencies depend on the polarizations €, and g, of both laser beams, the
product of field strengths E,E;, and the detuning of both stimulated Raman laser beams from the excited state A..
Larger sideband two-photon Rabi frequencies ensure that population can flow back into |S;) ® |0) much faster
than the heating can allow it to escape.

Increasing all of the transition rates has the side effect of speeding up the entanglement but limits the
attainable fidelity, with an increased error due to population leaking outside of the hyperfine subspace {a, |,T}.
The behavior of the A{" and A{” is non-monotonic and appears to be strongly dependent on the particular
polarization profile. As in the original scheme, each of the A,y | 1, Apiue,|,1 and Aeq,1,, becomes smaller as the
optimal fidelity is reached.

The error due to heating can only be reduced by increasing the flow of population into the target state
IS;1) ® ]0), since there is no straightforward way to compensate for heating. This comes at the cost of increasing
s ci Ly and thus the error due to leakage between the hyperfine states, as explained above. Assuming optimal
polarization and balancing of the driven rates, the only way to reduce one error without compounding the other
error is by increasing the maximum field strengths E", E{V, E® and E{?. This explains why the field strengths
take their maximal allowed value in table 2.

4.3. Comparison to the original scheme
The two-sideband scheme represents a promising alternative to the original scheme even with optimized
parameters, as discussed in section 3. In terms of fidelity, the two-sideband scheme outperforms the original
one, regardless of the assumed heating rate xy,. Even in the worst case considered, with x, = 27 x 100 s7%, the
resulting error is under 10% after optimization. In comparison, the previously best fidelity, reached by the
stepwise scheme in [32], corresponds to an error of about 11%. The corresponding errors for the original
scheme in section 3 are slightly larger for the polarization optimized case and two and a half times as large for the
non-optimized case. In terms of speed, the two-sideband scheme outperforms the original scheme. Given traps
with sufficiently small heating rates, entangling speed can be sacrificed in order to maximize fidelity. The lowest
regarded heating rate , = 27 X 1 s}, can be optimized over 3 ms, attaining a fidelity of F = 98.3%, or
optimized over 6 ms, in order to increase the fidelity to F = 98.7%. In contrast, the original scheme peaks after
approximately 6 ms but at the much lower fidelity F = 76%.

To summarize, when considering the experimental modifications necessary to go from the protocol in [32]
to the two-sideband scheme, the overall complexity is reduced. Instead of a four ion setup consisting of two
%Be" and two 2*Mg" ions, with their respective sympathetic cooling laser beams, now only the two *Be" to be
entangled need to be trapped without sympathetic cooling laser beams. Given sufficient power, the four laser
beams required for both of the stimulated Raman sideband transitions can all be derived from the same 313 nm
laser and frequency shifted using acousto-optic modulators. The only further complication is the ability to
independently manipulate the polarization of each individual stimulated Raman sideband transition laser beam.
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Figure 8. Bell state error € = 1 — Fasa function of the sideband laser beam strengths E, /;, allowed during optimization. The red
(orange and gray) points correspond to an ion trap with 3, = 0 (k, = 27 x 1s 'and sy, = 27 x 10 s~!, respectively). The blue
points correspond to a three-beam configuration and x, = 0. For all points, the detuning and carrier transition field strengths are
chosen such that the fidelity peaks after an entangling duration of 1 ms. For zero heating, attaining a maximal error of e < 0.001
requires field strengths of 100 kV m™, or a combined power of 4 x 8.3 mW goingintoa20 pm beam waist, whereas ¢ < 0.0001 is
reached when the optimization allows for amplitudes up to 325 kV m~!, or a corresponding power of 4 X 89 mW.

One may wonder of course how sensitive the Bell state fidelity is with respect to small deviations from the
optimized polarizations. We have found fluctuations in the polarization components of up to 5% to only have a
neglible effect on the entanglement error, whilst fluctuations above 10% will noticeably reduce the fidelity.

4.4. Fundamental performance bound

Given the superior performance of the two-sideband scheme compared to the original protocol [32], one may
wonder whether there are ultimate limits to the fidelity of a Bell state realized in this way. There are two main
sources of error that limit the fidelities in this dissipative state preparation scheme—anomalous heating and
spontaneous emission. As discussed above, the obtainable fidelity is determined by a trade-off between utilizing
fast enough sideband transitions in order to beat trap heating, and minimization of the spontaneous emission
rates associated with the sideband transitions. While anomalous heating can in principle be made arbitrarily
small by improving the ion trap, undesired spontaneous emission is an inherent and unavoidable loss
mechanism accompanying the desired spontaneous emission at the core of the dissipative state preparation. In
order to explore the fundamental performance bound posed by spontaneous emission, we assume a realistic trap
with k, = 27 x 10 s71,aclose to perfect trap, with x, = 2 x 1 s~!orno heatingatall (x;, = 0 s~!),and
investigate how much laser power is needed to achieve a certain fidelity, or error.

In the absence of all heating, the optimization will favor slow sideband transitions that are detuned far below
the P, s, and P, levels with laser beams polarized such that there is minimal spontaneous emission. Identifying
the conditions under which it is possible to reach Bell state fidelities of F = 99.9% or even F = 99.99% allows us
to benchmark the performance of the current dissipative scheme. For comparison, [42] examines the
dependence of fidelity on laser power for gate-based entanglement creation for various ion species. Of all
observed ion species, the gate error of *Be" entanglement was lowest for a given power P, related to the laser field
strength E by

pP= %E%vgceo, (29)

where wy is the laser beam waist, c the speed of light and €, the vacuum permittivity [42]. We assume here an
(idealized) beam waist of wy = 20 pm, to directly compare to [42].

During optimization, the highest regarded threshold, F = 99.99% was reached after 0.33 ms using field
strengths of E, /, &~ 752 kV m™! per beam and detunings up to 25 THz. For the sake of comparison with [42],
and for the case of negligible heating, the timescale in the master equation (1) can be changed, t — 7 = i In

order to match the same entangling speed and duration of 10 s as reported in [42], we require 4.4 MV /m per
beam, corresponding to a total power of 4 x 16 W at the same detuning. For this very fast entanglement, the
negative effects of heating are limited, leading to errors of ¢ = 6.5 x 107%,¢ = 1.0 x 10 *and
€ = 4.47 x 10 *forheatingrates of kj, € {27 x 1571, 27t x 10s~Y, 2 x 100 s~'}, respectively.

If we fix the available field strength to the value E, s, ~ 200 kV, corresponding to a total power of
4 x 36 mW,asreported in [42], the target fidelity is reached after 4.6 ms. Again, despite the much lower field
strengths, the detuning remains unchanged. It should be noted here, that an entangling duration of 4.6 ms is still
faster than that of the original entanglement scheme [32]. At this lower extreme in field strengths, the effects of
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heating are more noticeable, since heating is allowed to act for almost 500 times longer relative to the 10 us case.
Figure 8 shows the Bell state, i.e. entanglement error, obtained when rescaling the duration to 1 ms, for
different field strengths E, ;, and heating rates (shown in red, orange, and gray, respectively). A fidelity of
F = 99% is reached for all regarded heating rates, requiring field strengths between E, , = 31 kV m™!
(kn =27 x 0s Hand E,;, = 38kV m™! (5, = 27 x 10 s7!). The next threshold, F = 99.9%, is only
crossed for i, = Oand k, = 27 x 1 s 'atfield strengths of E,/, = 100 kV m~'and E,, = 125kV m™,
corresponding to total powersof P =~ 4 x 8.3 mW and P &~ 4 X 13 mW, respectively. Obtaining this fidelity
requires detunings on the order of 6 THz. The highest threshold, F = 99.99%, is reached for rj, = 2 X 057!
whilst requiring field strengths of the order of E, /, ~ 325 kV m ! corresponding to a total power of
4 x 89 mW. This is about two and a half times more power than for the gate based approach in [42]. For
neglible heating, the required field strength per beam can be reduced by using three instead of four beams to
drive the two sideband transitions (blue curve in figure 8). This finding illustrates that parameter optimization is
prone to trapping in local optima, in particular for a larger number of optimization parameters [46]. We
attribute the improvement to the fact that omission of one beam reduces the inadvertent scattering. More
specifically, the extra constraint on the beam detunings appears to aid the optimization algorithm in finding a
configuration for which the contribution of each beam towards the scattering error is distributed in a more
favorable way than in the four beam setup.

5. Conclusions

We have addressed the problem of additional noise sources that limit fidelity and speed of dissipative
entanglement generation. Combining quantum optimal control theory [2] with the effective operator approach
[41], we have shown how to improve both fidelity and speed for the example of entangling two hyperfine qubits
in a chain of trapped ions [32]. The detrimental noise source in this case is undesired spontaneous decay brought
about by the sideband laser beams that are necessary for coupling the qubits [32]. This decay leads to the
irrevocable loss of population from the hyperfine subspace of interest. Whilst the undesired spontaneous decay
cannot be eliminated entirely, an optimal choice of the experimental parameters increases the fidelity from 76%
to 85%, with minimal changes to the setup. Key to the improvement is optimization of the sideband laser beam
polarizations which enter the decay rates of each individual hyperfine level. Due to their interdependence, the
various parameters of the experiment need to be retuned when changing the polarization. The two-stage
optimization process that we have developed here can easily resolve this issue, demonstrating the power of
numerical quantum control.

Further limitations to fidelity and speed can be identified graphically, by visualizing the connections between
states due to the various field-driven transitions. This allows to qualitatively trace the flow of population and
shows that, depending on the relative transition rates, population can get trapped in states other than the target
state or be transferred out of the target state by an unfavorable transition. The latter in particular implies that the
target state does not fully coincide with the steady state of the evolution. In order to overcome this limitation, we
suggest to adapt the entanglement scheme presented in [20] to using two sideband transitions. Of course, adding
asecond sideband makes the suppression of the error due to detrimental spontaneous emission even more
important. Our optimization method had no difficulty to cope with this task, despite the increase in the number
of tunable parameters.

Analysis aided by the graph of connected states for the two-sideband scenario reveals that the limitations of
the original scheme of [32] can indeed be overcome, whilst providing additional advantageous properties such as
higher entanglement speed and inherent cooling. This offers the possibility of reducing the complexity of the
experiment by removing the need for sympathetic cooling and all sources of error that come with it. The
entangled, or, Bell state fidelity that we predict for the two-sideband scenario strongly depends on the heating
rate. It can be as high as 98% under conditions similar to those of [32], in particular in terms of the available laser
field strengths. The maximum attainable fidelity is primarily limited by the heating rate of the motional mode
that is used to couple the qubits. It dictates the timescale at which the sideband transitions must take place.
Weaker sideband transition rates in turn enable better suppression of spontaneous emission errors. Whilst a
fidelity of 98% represents an order of magnitude improvement over the originally obtained fidelity, execution of
most quantum protocols requires fidelities in excess of 99%. These could be achieved through experimental
refinements, such as ion traps with weaker anomalous heating, more powerful sideband lasers [42], or use of
optical instead of hyperfine qubits [36, 37].

Provided that heating rates can be made negligible, for instance by implementing the two-sideband scheme
on the stretch rather than the center of mass mode of the two ions, one may wonder whether spontaneous
emission ultimately limits the performance of dissipative Bell state preparation. Spontaneous emission can be
reduced by using larger detunings which in turn requires more laser power or longer durations. Compared to
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gate-based entanglement preparation [42], we find, for the same laser power of4 x 36 mW into 20 ysm beam
waist as in [42], the entangling duration to realize a Bell state fidelity of 99.99% to be increased from 10 ps to
4.6 msin an ideal trap. The advantages of the dissipative approach, in particular its inherent robustness against
noise, might easily outweigh this time requirement, making dissipative entanglement production a viable
resource for quantum information protocols. Consider, for example, carrying out primitives such as gate
teleportation. This could be driven by an entanglement machine that produces 200 pairs/s in serial mode (per
node) or output one pair per 10 s when run with 250 nodes in parallel. A further speed up is possible by using
more laser power.

Our study provides a first example for how to use quantum optimal control theory to push driven-
dissipative protocols to their ultimate performance limit, despite imperfections in a practical setting.
Performance limits include, in addition to maximal fidelity, also the highest speed. Here, we have obtained a
speed up of about a factor of four compared to [32]. Speed is of particular concern when scaling up entanglement
generation since some undesired decoherence rates are known to scale with system size [47]. Deriving the fastest
possible protocol is therefore key if dissipative generation of many-body entanglement [23] is to succeed. As we
have shown, optimal control theory is a tool ideally suited to tackle this task, and targeting a multipartite
entangled state is a natural next step.

The optimal control theory framework for dissipative entanglement generation that we have introduced
here is not limited to the specific example of trapped ions. In fact, our technique is applicable to generic multi-
level quantum systems in the presence of dissipation for which the time evolution can be obtained within
reasonable computation time®. This includes also systems with multiple steady states [48, 49] which would be
interesting for e.g. quantum error correction, or systems with non-Markovian dynamics such as solid state
devices [50]. In the latter case, the generalization requires the combination of the present optimization approach
with one of the methods for obtaining non-Markovian dynamics [51], such as partitioning the environment into
strongly and weakly coupled parts [52]. Non-Markovianity has been shown to assist entanglement generation in
coupled dimers subject to dephasing noise [53]. Our approach would allow to investigate, for more complex
systems and other types of dissipation, whether non-Markovianity is beneficial or detrimental to the speed and
overall success of entanglement generation.
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