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Amplitude and phase measurements of femtosecond pulse
splitting in nonlinear dispersive media
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Frequency-resolved optical gating is used to characterize the propagation of intense femtosecond pulses in a
nonlinear, dispersive medium. The combined effects of diffraction, normal dispersion, and cubic nonlinearity
lead to pulse splitting. The role of the phase of the input pulse is studied. The results are compared with
the predictions of a three-dimensional nonlinear Schrödinger equation.  1998 Optical Society of America
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Information about the electric field on a femtosecond
time scale is a valuable tool in the study of ultra-
fast phenomena. This has proved to be the case in
femtosecond-pulse generation, for which improvements
in measurement techniques have accompanied a
more comprehensive understanding of femtosecond
lasers.1 – 3 However, femtosecond pulse diagnostics
should not be limited to the study and optimization
of femtosecond sources. Knowledge of the amplitude
and the phase of the electric f ield can be a pow-
erful tool in the study of light–matter interactions
outside the laser, as was demonstrated recently in
the measurement of the nonlinear indices of various
materials4,5 and the characterization of nonlinear
propagation in optical fibers.6 Such experiments not
only elucidate light–matter interactions but also test
the measurement technique itself.

In this Letter we demonstrate the usefulness of
frequency-resolved optical gating (FROG) for studying
the nonlinear propagation of intense femtosecond laser
pulses. We record the evolution of the temporal f ield
of an intense femtosecond pulse as it splits into sub-
pulses, and we show that the initial phase of the f ield
plays an important role in this process. The evolution
of the complex amplitude Ẽ sr, z, td of a pulse in a non-
linear, dispersive medium can be described by the non-
linear Schrödinger equation
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where k0 ­ 2pn0yl0 and n0 is the linear index of refrac-
tion at the center wavelength l0. The group-velocity
dispersion (GVD) is determined by k0

00, which is the
second derivative of k evaluated at l0. The local time
t is in the frame moving at the group velocity, ='
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is the radial Laplacian, and n2 is the nonlinear in-
dex of refraction. The field can be normalized such
that jẼ j2 ­ I is the intensity in watts per square cen-
timeter. To lowest order, Eq. (1) includes the effects
of diffraction, spatial self-focusing, temporal self-phase
modulation, and dispersion, all of which act to give
complicated spatiotemporal dynamics. During propa-
gation in the regime of positive GVD sk0

00 . 0d and
positive n2, one anticipates that both dispersion and
temporal self-phase modulation (SPM) will act to con-
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tinuously separate the long- and short-wavelength
components of the pulse, thereby lengthening the pulse.
However, the inclusion of the spatial aspect of the f ield
(diffraction and self-focusing) can result in temporal
pulse splitting.7,8 We emphasize this process in con-
trast to nonlinear propagation in single-mode optical
fibers, where 1GVD and 1n2 exist but pulse split-
ting is not observed because of the spatial constraint of
the field.9 Recent intensity autocorrelation measure-
ments validate the predictions of pulse splitting in bulk
media10; however, a standard intensity autocorrelation
is always symmetric, hides detailed amplitude struc-
ture, and lacks phase information. The full field, as
provided by the FROG measurement, gives a more com-
prehensive picture of the dynamics and should allow us
to test the validity of Eq. (1) for describing nonlinear
pulse propagation.

We use the second-harmonic form of FROG (SHG
FROG)11 to characterize the propagation of intense
femtosecond pulses in fused silica. The SHG FROG
measurement is a spectrally resolved noncollinear
autocorrelation performed with a 100-mm piece of
b-barium borate. The measurement yields a two-
dimensional spectrogram from which the amplitude
and the phase of the electric field can be determined
with an iterative phase-retrieval algorithm.11 All
studies use the output of a 1-kHz regenerative ampli-
fier that yields sub-100 fs pulses, spectrally centered
near 800 nm. The delay stage in the correlator is
scanned with a stepper motor, and exposure times
are such that the signal from several hundred pulses
is integrated each step. The amplified pulses are
attenuated and focused with an f ­ 50-cm lens to
a measured beam waist of 70 mm (FWHM of inten-
sity) at the entrance face of the fused-silica sample
(2.54-cm length). The spatial beam profile is well
approximated by a Gaussian. We use an aperture
after propagation through the sample to select only
the on-axis portion of the beam for measurement.
Because of the complexity and large bandwidth of
the measured fields, we employ several checks to
validate the measurements and eliminate systematic
errors. The spectrum of the propagated fundamental
(corrected for instrument response) is recorded and
its autoconvolution is compared with the frequency
 1998 Optical Society of America
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marginal of the FROG measurement, thus correcting
for the bandwidth limitations of the SHG FROG ap-
paratus.12 The same spectrum is compared with the
spectrum recovered by the SHG FROG algorithm. We
also make a second SHG FROG measurement, letting
the initially measured field propagate through 5 cm
of BK-7 glass at low intensity. The information from
the second measurement is used to remove the time
ambiguity of the initial measurement.

Figure 1 shows the results of successive SHG
FROG measurements for increasing input powers.
The intensity and the phase in the time domain
are shown at the left. Independently measured
spectra and the spectra recovered from the SHG
FROG measurements are shown at the right. The
top row [Fig. 1(a)] is the measured input field, with
an intensity FWHM of 92 fs. The time–bandwidth
product is 0.6, and some uncompensated second- and
third-order phase variations are evident. Moving
down the rows of Fig. 1, we see the pulse undergo
an initial splitting and then multiple splittings. The
fully split pulses of Figs. 1(c) and 1(d) have FWHM
durations of the order of 50 fs, nearly 23 shorter
than the input. With the instanteous frequency
defined as vinst ­ v0 2 dfydt, the predominant
negative curvature of the temporal phase implies
upchirped pulses. The calculated critical power for
self-focusing is Pcrit ­ s0.61l0d2pys8n0n2d ­ 2.6 MW ,
where n0 ­ 1.45, n2 ­ 2.5 3 1016 cm2yW , and
l0 ­ 800 nm.13 The measured peak powers
for Figs. 1(b), Fig. 1(c), and Fig. 1(d) are then
given by 1.7Pcrit, 1.9Pcrit, and 2.3Pcrit, respec-
tively. The associated spectra of the right-hand
column of Fig. 1 show pronounced broadening and
modulation, with the characteristic modulation fre-
quency being equal to the inverse of the time spacing
between the pulses. Agreement between the mea-
sured and the recovered spectra is considered good
in view of the complicated structure. The spectra of
Figs. 1(c) and 1(d) have wings characteristic of weak
continuum generation, and at the highest power weak
orange-red light was visible by eye. The advantage
that the SHG FROG measurement brings to this study
is further illustrated by Fig. 2, where we present
the measured intensity autocorrelation for the f ield
given in Fig. 1(d). As seen, the intricate amplitude
features of Fig. 1(d) are lost in the correlation.

From a simple physical standpoint, we understand
the process of pulse splitting as follows: Initially,
strong self-focusing moves off-axis energy toward the
peak of the pulse and compresses it in both space and
time.14 As the peak intensity increases, the process of
SPM also increases, thereby generating new frequency
components. The combination of the SPM-induced up-
chirp and 1GVD then act to push the energy away
from t ­ 0, initiating the pulse splitting. As this
process continues, the peak intensity drops, stopping
the collapse at t ­ 0. However, off-axis energy con-
tinues to focus at t fi 0 such that two pulses are
resolved.8

Numerical solutions of Eq. (1) have been performed,
and a typical result is shown in Fig. 3. The initial
field, Ẽ sr, z ­ 0, td, is taken to be a real hyperbolic
secant in time and a real Gaussian in space. All
parameters of the model are set equal to the ex-
perimental values given above, with the FWHM
of the temporal and spatial profiles being 92 fs
and 70 mm, respectively. In addition, a value of
k0

00 ­ 360 fs2ycm is used for the GVD in fused
silica.15 The peak power is 4.9 MW, in good agree-
ment with the experimental conditions that led to
clear pulse splitting [see Fig. 1(c)]. As Fig. 3 shows,
the predicted output is symmetric, as expected from
Eq. (1) when it is solved with symmetric initial
conditions. The inset of Fig. 3 is the corresponding
surface plot of the intensity, showing that the energy

Fig. 1. Left, recovered electric-f ield intensity (thin solid
curves, left axes) and phase (points, right axes). Right,
corresponding measured (solid curves) and recovered
(points) spectral intensities. The top row shows the input
field, and the descending rows show the propagated f ields
for input peak powers of 4.5, 5.0, and 5.9 MW, successively.

Fig. 2. Measured intensity autocorrelation for the field
presented in Fig. 1(d).
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Fig. 3. Calculated on-axis intensity (solid curve) and
phase (dashed curve) of split pulses. Inset, corresponding
surface plot of the intensity as a function of both time (t)
and radius (r).

Fig. 4. Measured fields for (a) upchirped and (b)
downchirped input. Left, recovered intensity (solid
curves, left axes) and phase (points, right axes). Right,
corresponding measured (solid curves) and recovered
(points) spectral intensities.

remains well localized in space, although small oscil-
lations do occur at larger radii. It is not yet clear
what causes the temporal asymmetry in the corre-
sponding experimental data. It could be the result of
an asymmetric input, or it could be that Eq. (1) does not
include phenomena such as third-order dispersion, self-
steepening, and nonlocal mechanisms. We anticipate
that further measurements and additions to the theory
will provide understanding of which physical mecha-
nisms are most important in this process.

The data of Fig. 4 illustrate that variations in the
phase of the input can strongly affect the output.
Here we present retrieved fields from the SHG FROG
measurement after propagation of an input that is up-
chirped, Fig. 4(a), or downchirped, Fig. 4(b). We add
the mostly linear chirp by varying the length of the
compressor stage after the amplif ier, and the time–
bandwidth product of the input pulse in both cases is
,0.8. With the appropriate peak power, both situa-
tions result in pulse splitting; however, we see that for
the upchirped input the split pulses are broader than
for the downchirped input. In addition, the spectrum
corresponding to the downchirped input has less modu-
lation and is narrower than that of the upchirped in-
put. On a basic level we can understand this situation
by noting that both 1GVD and SPM (with 1n2) act to
produce positive, linear chirp over the central portion
of the pulse. Thus the propagation-induced upchirp
adds to the initial upchirp and results in broader pulses
with enhanced oscillations on the spectrum. However,
the downchirp on the input negates the propagation-
induced upchirp, except in the pulse wings. The re-
sult is narrower pulses at the output s,2.53 less than
input), with less spectral ringing.9

In conclusion, these measurements demonstrate the
value of SHG FROG for the study of complex propa-
gation problems. We have shown that pulse splitting
in a nonlinear, dispersive medium leads to subpulses
that are almost 23 shorter than the input and that the
process is not generally symmetric. In addition, we
present measurements to demonstrate the important
role that the input phase can play. We anticipate that
these and similar measurements will lead to a more
comprehensive picture of nonlinear pulse propagation
in the high-intensity regime and the theories used to
describe it.
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