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1.  Introduction

At timing laboratories, we require a time scale to be accurate, 
precise, and reliable [1]. By definition, a Cs fountain is natu-
rally accurate. However, a Cs fountain is typically noisier than 
a hydrogen maser (H-maser) for an averaging time of less than 
several days. Thus, those labs that run a Cs fountain continuously, 
such as the Observatoire de Paris in France and Physikalisch-
Technische Bundesanstalt in Germany, have formed a time scale 
composed of a Cs fountain and an H-maser [2, 3]. The short-term 
output of the time scale is determined by the H-maser, while the 
long-term output of the time scale is determined by the Cs foun-
tain. In this way, the time scale is both accurate and precise. To 
improve reliability, an additional back-up H-maser is added in the 
time scale [2, 3], to avoid the consequence of an H-maser failure.

In this paper, we propose a different architecture for a time 
scale. The time scale is composed of an occasionally oper-
ated Cs fountain and a clock ensemble. The clock ensemble 
is composed of several H-maser clocks and a commercial Cs 
clock. The commercial Cs clock is chosen as a reference clock 

for its reliability and for easy operation with existing data. 
The clock ensemble, forming a free-running time scale using 
a Kalman filter, is steered to the Cs fountain. Since we have 
several H-masers, the short-term stability of the time scale 
is better than a single H-maser due to averaging. Also, it is 
easier to detect and mitigate unobvious clock errors (such as a 
small frequency step, or a small frequency-drift step), which 
improves the reliability of the time scale. Besides, unlike 
Greenhall’s time scale [4–6] and Galleani and Tavella’s time 
scale [7, 8], the new Kalman-filter time scale presented in this 
paper uses three basic time-scale equations instead of only one 
equation. This characteristic gives the time scale a better long-
term stability, which allows the Cs fountain to stop working 
for tens of days without significant degradation.

In section 2, we will discuss the basic principle of the time 
scale. Section 3 will test the performance of the free-running 
time scale. In section 4, we will steer the free-running time 
scale to a Cs fountain and form the final time scale. Note, all 
the data used in this paper are real measurement data, except 
where mentioned specifically.

Measurement Science and Technology

JY1 time scale: a new Kalman-filter time 
scale designed at NIST

Jian Yao1,2, Thomas E Parker1 and Judah Levine1,2

1  Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO, United 
States of America
2  Department of Physics, University of Colorado at Boulder, Boulder, CO, United States of America

E-mail: jian.yao@nist.gov

Received 13 March 2017, revised 28 July 2017
Accepted for publication 2 August 2017
Published 17 October 2017

Abstract
We report on a new Kalman-filter hydrogen-maser time scale (i.e. JY1 time scale) designed at 
the National Institute of Standards and Technology (NIST). The JY1 time scale is composed of 
a few hydrogen masers and a commercial Cs clock. The Cs clock is used as a reference clock to 
ease operations with existing data. Unlike other time scales, the JY1 time scale uses three basic 
time-scale equations, instead of only one equation. Also, this time scale can detect a clock error 
(i.e. time error, frequency error, or frequency drift error) automatically. These features make the 
JY1 time scale stiff and less likely to be affected by an abnormal clock. Tests show that the JY1 
time scale deviates from the UTC by less than  ±5 ns for ~100 d, when the time scale is initially 
aligned to the UTC and then is completely free running. Once the time scale is steered to a Cs 
fountain, it can maintain the time with little error even if the Cs fountain stops working for tens 
of days. This can be helpful when we do not have a continuously operated fountain or when the 
continuously operated fountain accidentally stops, or when optical clocks run occasionally.

Keywords: time scale, Kalman filter, atomic clock, hydrogen maser, cesium fountain clock, UTC

(Some figures may appear in colour only in the online journal)

J Yao et al

Printed in the UK

115004

MSTCEP

© 2017 IOP Publishing Ltd

28

Meas. Sci. Technol.

MST

10.1088/1361-6501/aa8373

Paper

11

Measurement Science and Technology

IOP

2017

1361-6501

1361-6501/17/115004+8$33.00

https://doi.org/10.1088/1361-6501/aa8373Meas. Sci. Technol. 28 (2017) 115004 (8pp)

mailto:jian.yao@nist.gov
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6501/aa8373&domain=pdf&date_stamp=2017-10-17
publisher-id
doi
https://doi.org/10.1088/1361-6501/aa8373


J Yao et al

2

2.  Kalman-filter H-maser time scale

The Kalman filter has been widely used to make predictions based 
on real-time measurements. The fundamental assumption in a 
Kalman filter is that the noise type in both the measurement and 
physical quantity is white. Although the clock behavior is only 
approximately white, the Kalman filter still works well [4–10].

In the Kalman filter, there are two basic equations, i.e. 
equations (1) and (2). Equation (1) is called the system model, 
which describes what the predicted state of the system will be 
at epoch k  +  1, based on its state at epoch k. Here, X(k) is the 
estimated state vector of the system at epoch k, and X(k  +  1|k) 
is the predicted state vector of the system at epoch k  +  1. Φ is 
called the transition matrix, which links X(k) and X(k  +  1|k). 
Φ is determined by the physical property of the system. u is 
the process noise, which is characterized by the Q matrix. 
Equation (2) is called the measurement model. The H matrix, 
called the observation matrix, gives the relation between the 
state vector X and the measurement vector Z. v is the measure-
ment noise, which is characterized by the R matrix

X (k + 1|k) = Φ · X(k) + u, u ∼ N(0, Q),� (1)

Z (k + 1) = H · X (k + 1|k) + v, v ∼ N (0, R) .� (2)

Based on the principle of a Kalman filter, the estimated state 
vector of the system at epoch k  +  1 should be

X (k + 1) = X (k + 1|k) + K · (Z (k + 1)− H · X (k + 1|k)) ,
� (3)

where K is called the Kalman gain matrix. An intuitive under-
standing of equation (3) gives that the estimated state vector 
is equal to the predicted state vector plus the correction from 
the measurement. The Kalman gain matrix K reveals the ratio 

of the measurement to the prediction. The formula for calcu-
lating K is as follows:

K = P (k + 1|k) · HT ·
[
H · P (k + 1|k) · HT + R

]
,� (4)

where P (k + 1|k) = Φ · P(k) · ΦT + Q, and P (k + 1) = 
[I − K · H] · P(k + 1|k).

Thus, K depends on the process noise matrix Q, the meas-
urement noise matrix R, the initial error covariance matrix 
P(0), the transition matrix Φ, and the observation matrix H. 
The derivation of equations (3) and (4) can be found in chapter 
4 of [11] and is beyond the scope of this paper.

Next, we build a new Kalman-filter time scale (i.e. JY1 time 
scale), following the above discussion. The JY1 time scale is 
composed of M clocks, where one clock is a commercial Cs 
clock and the rest M  −  1 clocks are H-masers. The Cs clock 
is chosen as a reference clock to ease operations with existing 
data. Each clock is characterized in terms of three parameters—
time, fractional frequency, and fractional frequency drift, with 
respect to the JY1 time scale. We model the evolution of these 
parameters from epoch k to epoch k  +  1 for clock i [12], by

xi (k + 1|k) = xi(k) + fi(k)∆t +
1
2

di(k)(∆t)2
+ ξi,� (5.1)

fi (k + 1|k) = fi(k) + di(k)∆t + ηi,� (5.2)

di (k + 1|k) = di(k) + ζi,� (5.3)

where x is time, f is fractional frequency, and d is fractional fre-
quency drift. xi(k) is the time estimate of clock i with respect to 
the JY1 time scale at epoch k, and xi(k + 1|k) is the predicted 
time of clock i with respect to the JY1 time scale at epoch k  +  1. 
∆t stands for the time interval between epoch k and epoch k  +  1, 
and is 12 min for the JY1 time scale. ξ, η, ζ are the noise terms 
in time, fractional frequency, and fractional frequency drift. 
According to [5, 7, 12], ξ and η represent the white frequency 
noise and the random-walk frequency noise, respectively, which 
can be determined by the Allan variance of the clock. ζ represents 
the random-run frequency noise, which is typically very tiny, or 
even not observed, for an H-maser. Thus, we set the variance of 
ζ to a small value (e.g. 3.3  ×  10−8 (ns d−2)2) for all H-masers.

Because we have M clocks in the time scale, we generalize 
equations  (5) and (6). Note, the left side of equation  (6) is 
actually X(k  +  1|k) in equation (1), and the matrix on the right 
side of the equal sign is actually the transition matrix Φ.




x1(k + 1|k)
f1(k + 1|k)
d1(k + 1|k)
...

xi(k + 1|k)
fi(k + 1|k)
di(k + 1|k)
...




=




1 ∆t 1
2 (∆t)2

0 1 ∆t O
0 0 1

. . .

1 ∆t 1
2 (∆t)2

0 1 ∆t
O 0 0 1

. . .




·




x1(k)
f1(k)
d1(k)
...

xi(k)
fi(k)
di(k)
...




+




ξ1

η1

ζ1

...

ξi

ηi

ζi

...




, where




ξ1

η1

ζ1

...

ξi

ηi

ζi

...




∼ N(0, Q).

� (6)

Since our measurement vector Z (k + 1), a (M  −  1)  ×  1 
vector is the measured time differences between each 
H-maser and the reference clock at epoch k  +  1, the H 
matrix (note, the H matrix is a (M  −  1)  ×  3M matrix) should 
be as follows:

H =




1 0 0 −1 0 0 0 0 0 · · · 0 0 0
1 0 0 0 0 0 −1 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

. . .
...

...
...

1 0 0 0 0 0 0 0 0 · · · −1 0 0


 .

� (7)
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According to equation  (3), we need to update the predicted 
clock state using the measurements at epoch k  +  1 (i.e. 
Z (k + 1)). Thus, we have



x1(k + 1)
f1(k + 1)
d1(k + 1)
...

xi(k + 1)
fi(k + 1)
di(k + 1)
...




=




x1(k + 1|k)
f1(k + 1|k)
d1(k + 1|k)
...

xi(k + 1|k)
fi(k + 1|k)
di(k + 1|k)
...




+ K ·




Z(k + 1)− H ·




x1(k + 1|k)
f1(k + 1|k)
d1(k + 1|k)
...

xi(k + 1|k)
fi(k + 1|k)
di(k + 1|k)
...







,

� (8)
where K is the Kalman gain matrix, which can be calculated 
using equation (4).

Although the above Kalman-filter time scale is quite straight-
forward, our clock-ensemble system is not a completely observ-
able system because we lack an absolute time reference. Instead, 
we only have measurements of the time difference between each 
H-maser and the non-ideal reference Cs clock. Thus, we still 
have three degrees of freedom: the reference clock’s time, fre-
quency, and frequency drift. To limit the freedom of the reference 
clock’s time, we require that the weighted sum of the differences 
between the current time estimates and their predicted values is 
zero, which is called the basic time-scale equation [5, 7]:

M∑
i=1

wi(k + 1) · xi(k + 1) =
M∑

i=1

wi(k + 1) · xi(k + 1|k),� (9)

where wi(k + 1) is the weight of clock i at epoch k  +  1, based 
on the statistics of prediction error. This constraint limits 
the freedom of the reference clock’s time. Equation  (9) has 
been applied to other time scales, such as the ‘Kalman Plus 
Weights’ algorithm proposed by Greenhall [4, 5] and Galleani 
and Tavella’s time scale (see equation (58) of [8]).

However, these time scale algorithms do not limit the 
freedom of the reference clock’s frequency and frequency 
drift. The freedom of the reference clock’s frequency can be 
viewed in this way: suppose the reference clock’s frequency 
is changing in a specific pattern, our measurement results Z(k) 
(i.e. the time difference between each H-maser and the ref-
erence clock) are still the same as long as the other clocks’ 
frequencies change accordingly. Thus, the reference clock’s 
frequency can be any value, and therefore is a degree of 
freedom. The freedom of the reference clock’s frequency drift 
can be viewed similarly. To limit the freedom of the reference 
clock’s frequency and frequency drift, we need to extend the 
basic time-scale equation to three equations:

M∑
i=1

wi_x(k + 1) · xi(k + 1) =
M∑

i=1

wi_x(k + 1) · xi(k + 1|k),

� (10.1)

M∑
i=1

wi_f (k + 1) · fi(k + 1) =
M∑

i=1

wi_f (k + 1) · fi(k + 1|k),

� (10.2)

M∑
i=1

wi_d(k + 1) · di(k + 1) =
M∑

i=1

wi_d(k + 1) · di(k + 1|k),

� (10.3)

where there are three sets of weights, wi_x for time, wi_f  for 
frequency, and wi_d  for frequency drift. In 2003, Senior et al 
also realized that equation (9) does not work well. Therefore, 
they replaced equation (9) with equation (10.2), and formed 
the so-called ‘frequency scale’ that has served as the IGS time 
scale for more than a decade [10]. Compared with K. Senior’s 
time scale, the JY1 time scale uses all the three equations in 
equation (10) to generate the ensemble clock. wi_x is deter-
mined by the uncertainty of the next-epoch time prediction 
error, wi_f  is determined by the uncertainty of the frequency 
after a deterministic linear fitting, and wi_d  is determined 
by the uncertainty of the frequency drift. The weights wi_x, 
wi_f , wi_d  are automatically updated every epoch, using an 
exponential filter. We need to choose proper time constants 
in the exponential filter, so that the weights do not change too 
quickly but can also be updated to reflect reality. For example, 
the time constant of wi_d  is set to 400 d. Typically, we need 
at least one month to estimate the frequency drift of a maser. 
Because wi_d  is determined by the statistics of the frequency 
drift, a time constant of a few hundred days is a reasonable 
value. To be more specific:

wi_d(k + 1) ∝ 1

(σi_d(k + 1))2 , and (σi_d(k + 1))2

= (1 − α) · (σi_d(k))
2
+ α · (di (k + 1)− di(k))

2
,

�
(11)

where σi_d(k + 1) denotes the standard deviation of the fre-
quency drift of clock i, di(k) denotes the average value of the 
frequency drift of clock i, and α = 1

400×24×5, which corre-
sponds to the time constant of 400 d.

A simple mathematical operation can transform equa-
tions  (10)–(12). Equation  (12) provides a different represen-
tation of the basic time-scale equations. Here, r refers to the 
reference clock, which is the commercial Cs clock for our case. 
e refers to the ensemble (i.e. the time scale). In equation (12.1), 
xer(k + 1) is the estimated ensemble time with respect to the 
reference clock. xir (k + 1) is the time difference between 
clock i and the reference clock, which is measured by the 
measurement system. Remember that xi(k + 1|k) is the pre-
dicted time difference between clock i and the ensemble time. 
Thus, [xir (k + 1)− xi (k + 1|k)] gives the estimation of the 
ensemble time with respect to the reference clock, via clock 
i. Equation (12.1) shows that the final ensemble time is equal 
to the weighted sum of the ensemble-time estimation via each 
clock. Similarly, equations (12.2) and (12.3) show that the final 
ensemble frequency/frequency-drift are equal to the weighted 
sum of the ensemble frequency/frequency-drift estimation via 
each clock. From this interpretation, equation  (10), which is 
equivalent to equation (12), not only provides the constraints 
to the system, but also provides the weighted method of calcu-
lating the ensemble time, frequency, and frequency drift:

xer(k + 1) =
M∑

i=1

wi_x (k + 1) · [xir (k + 1)− xi(k + 1|k)],

� (12.1)

fer(k + 1) =
M∑

i=1

wi_f (k + 1) · [ fir (k + 1)− fi(k + 1|k)],

� (12.2)
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der(k + 1) =
M∑

i=1

wi_d (k + 1) · [dir (k + 1)− di(k + 1|k)].

� (12.3)
Because we calculate the ensemble frequency and frequency 
drift based on the weights of each clock, the time scale 
should have better long-term stability than if we only use 
equation (9). As an extreme example, if a clock frequently 
has a large frequency drift variation or a frequency drift 
jump, it will pull the whole ensemble significantly if we only 
use equation (9). However, if we use equation (10), we can 
give this clock a very small weight in wi_d , so that it has a 
small impact on the long-term stability of the time scale. We 
will show a real example and discuss this issue further in 
sections 3 and 4.

In addition to the above feature, the new Kalman-filter 
time scale JY1 has another new feature in comparison to the 
AT1 algorithm [12]. It can detect a clock time/frequency/
frequency-drift error automatically. For example, for the 
frequency-drift error detection, if a clock’s frequency drift 
at an epoch is more than four sigma of its frequency drift, 
we determine that the clock has a frequency-drift error. When 
the clock’s frequency drift returns to less than two sigma, we 
add this clock back to the ensemble and give this clock its 
normal weights. This algorithm is good for detecting short-
term outliers in the frequency drift. Some H-masers have a 
small long-term linear change in the frequency drift, and the 
above algorithm does not work well for such a clock error. 
To detect this type of frequency-drift error, we do a linear fit 
of the frequency drift over tens of days. If the ratio of the 
slope to the uncertainty of the slope is greater than 5, then 
we determine that this clock does have a long-term change in 
frequency drift and remove it from the ensemble. As for the 
frequency error detection, we do a similar four-sigma error 
detection. Thanks to the 12 min interval for the estimation of 
time, frequency, and frequency drift, we can find a clock error 
quickly and remove the bad clock from the ensemble before it 
pulls the ensemble too much.

These two novel features make the new time scale stiff and 
less likely to be affected by a bad clock. We will test the per-
formance of this time scale in the next section.

3.  Performance of free-running time scale

We ran the JY1 time scale for Modified Julian Date (MJD) 
56 650.0–56 950.0. For test purposes, we only used four 
H-masers in the time scale, so that it was less complicated. At 
56 650.0, we initialized the time scale, by estimating the clock 
states (time, frequency, and frequency drift) with respect to 
UTC (Coordinated Universal Time). In this way, the time 
scale was well aligned with UTC at the very beginning. Then 
we let the time scale completely free-run. The result is shown 
in figure 1. We can see that after 100 d of free running (i.e. 
at 56 750.0), the time scale is only ~3 ns away from UTC. 
This illustrates that the new time scale is quite stiff. Because 
the time scale is composed of H-masers and an H-maser can 
exhibit some small change in frequency drift, the time scale 
typically has a non-zero frequency drift in the very long term 
(>100 d), as indicated in figure  1. The frequency drift is 
approximately 2.5  ×  10−22 s s−2, in this case.

Figure 2 shows the frequency drift of the H-masers with 
respect to the time scale. Overall, all four H-masers have 
quite stable frequency drift. The mean values of the fre-
quency drifts are  −3.5  ×  10−22 s s−2, −34.8  ×  10−22 s s−2, 
−167.8  ×  10−22 s s−2, and  −7.4  ×  10−22 s s−2, for ST0005, 
ST0006, ST0007, and ST0022, respectively. However, we can 
still see some abnormal behavior in the frequency drift from 
time to time. For example, there is a spike in ST0005 around 
MJD 56 868.7. Checking the ST0005 environmental chamber 
temperature data, we found a temperature spike around MJD 
56 868.6. This confirms that our estimation of frequency drift 
is done properly and can reflect the actual physical change of a 
clock. For another example, there is a change in the red curve 
of figure 2 (ST0005), starting from around MJD 56 915. By 
checking the chamber temperature for ST0005, we found that 
this clock change corresponds to a temperature change from 

Figure 1.  Free-running JY1 time scale with respect to UTC.
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25.3 °C to 25.2 °C at around 56 914. We should mention that 
the change in the chamber temperature is small (only 0.1 °C) 
and there is some delay for the whole H-maser to change to 
25.2 °C. Also, the Kalman filter, as a low-pass filter, causes 
some delay in the updates of a clock’s state. Thus, we have a 
1 d latency in clock error detection in this case.

As we have mentioned in section 2, once a clock error is 
detected, we give the clock 0 weights in the three equations of 
equation (10), no matter what the physical reason is. In this 
way, the time scale is not affected by an abnormal clock. If 
the clock error disappears later, it regains its normal weights.

From figure  2, it is clear that an H-maser is not always 
well behaved. If we steer a single H-maser to the Cs foun-
tain, it is quite likely to have a large timing error when the 
fountain stops working. In contrast, if we have an ensemble of 
H-masers, we can detect a bad clock and mitigate its impact. 
In this way, we may have still a small timing error, but we can 
avoid a large timing error.

Next, we simulate a frequency jump and a frequency-drift 
jump in a clock, and see how much the output of the JY1 
time scale changes due to these jumps. Ideally, we want to 
detect the frequency/frequency-drift errors and remove the 
clock from the ensemble immediately when the errors occur. 
Practically speaking, the filtering process, as a kind of a low-
pass filter, will lead to some time delay in reflecting the actual 
jump in frequency or frequency drift (because a jump contains 
all frequencies in the frequency domain). Also, we determine 
if there is a frequency/frequency-drift error based on the cri-
teria that the frequency/frequency-drift at the current epoch is 
greater than four times the standard deviation of the frequency 
or frequency drift. Thus, it is difficult to completely eliminate 
the impact of the frequency/frequency-drift error of a clock. 
Nevertheless, by giving the clock 0 weights in equation (10), 
once we determine that the clock is bad, we can still mitigate 
the impact significantly.

Figure 3 shows an example. We artificially add a frequency 
jump of 6.8  ×  10−15 s s−1 in ST0006 at MJD 56 700.0. This fre-
quency jump corresponds to around a 2 °C H-maser chamber 
temperature change [13]. Because of this frequency jump, 

ST0006 would be 147 ns away from what ST0006 should 
be, at MJD 56 950.0. Thanks to the advanced error-detection 
algorithm and the three basic time-scale equations (i.e. equa-
tion  (10)), the JY1 time scale is pulled by only ~3.5 ns at 
MJD 56 950.0 (see the red curve in figure 3). Similarly, we 
artificially add a frequency-drift jump of 5.36  ×  10−21 s s−2 
in ST0006 at MJD 56 700.0. Because of this frequency-drift 
jump, ST0006 would be 1250 ns away from what ST0006 
should be, at MJD 56 950.0. We want to address that this jump 
value is very big and rarely happens in practice. The blue 
curve in figure 3 shows the performance of the JY1 time scale 
in such an extreme situation. We can see that the JY1 time 
scale is pulled by only ~23.6 ns at MJD 56 950.0.

From the above analysis, the new time scale JY1 is stiff and 
relatively immune to abnormal clock behaviors, especially 
when the clock error is not large.

4.  Steering the time scale to a Cs fountain

In section 3, we have demonstrated that the new time scale 
JY1 is stiff and cannot easily be pulled by a bad clock. Thus, 
it can serve as a good flywheel. If it is steered to a Cs fountain, 
the final output can be accurate, precise, and reliable.

At NIST, we have run the NIST F1 Cs fountain [14]  
during MJD 57 264.9–57 287.8, 57 360.0–57 374.0, and 
57 420.8–57 439.0. The fountain-operation periods are labeled 
by red rectangles in figure  4. Here, we run the time scale 
during MJD 56 980.0–57 500.0, and steer it to the Cs fountain. 
Note, the steering algorithm corrects both the frequency and 
the frequency drift of the free-running time scale, using the 
Cs fountain.

The free-running time scale is composed of six H-masers 
and a reference commercial Cs clock. The H-masers are 
ST0005, ST0006, ST0007, ST0010, ST0012, and ST0022. 
At MJD 56 980.0, the time scale is aligned with the UTC. 
The blue curve in figure  4 shows the result of the free- 
running time scale. We can see that the free-running time 
scale has a very good match (<±1 ns) with UTC during 
MJD 56 980.0–57 080.0. This again confirms that the time 

Figure 2.  Frequency drift of H-masers.
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scale is good at keeping time for approximately three 
months once it is initially aligned with the UTC or a Cs 
fountain. After MJD 57 080.0, the time scale starts to have 
a small positive frequency drift. Because of this frequency 
drift, the time scale starts to depart from UTC, and at ~MJD 
57 230 it is ~10 ns away from UTC. Then its frequency drift 
slowly becomes negative, and at MJD 57 500 it is ~  −15 ns 
away from UTC. As a comparison, the orange curve shows 

the free-running time scale using equation  (9), instead of 
using equation  (10). Clearly, the time scale using equa-
tion  (9) diverges from UTC after about 20–30 d. At MJD 
57 500.0, it is about  −270 ns away from UTC. Thus, it is 
not as stiff as the JY1 time scale.

Next, we steer the JY1 time scale to the first Cs fountain 
period (i.e. MJD 57 264.9–57 287.8). The result is shown by 
the black curve. By comparing the black curve with the blue 

Figure 3.  Response of the JY1 time scale to a frequency jump (red curve) or a frequency-drift jump (blue curve). For the red curve, we 
artificially add a frequency jump of 6.8  ×  10−15 s s−1 in ST0006 at MJD 56 700.0. For the blue curve, we artificially add a frequency-drift 
jump of 5.36  ×  10−21 s s−2 in ST0006 at MJD 56 700.0.

Figure 4.  Steering the free-running JY1 time scale to the NIST F1 Cs fountain. We compare the time scale with the UTC. Note, the black, 
green, and red curves are the same as the blue curve during MJD 56 980.0–57 264.9; the green and red curves are the same as the black 
curve during MJD 57 264.9–57 360.0; the red curve is the same as the green curve during MJD 57 360.0–57 420.8. The blue curve shows the 
completely free running using equation (10), while the orange curve shows the completely free running using equation (9). The clock-error 
detection function described in section 2 has already been used in the blue curve and the orange curve.

Meas. Sci. Technol. 28 (2017) 115004



J Yao et al

7

curve during MJD 57 264.9–57 500.0, we find that because of 
using the Cs fountain, the frequency drift in the free-running 
time scale is removed. Also, the large frequency offset at 
57 264.9 in the blue curve is corrected by the Cs fountain. The 
black curve departs from the UTC by less than ~5 ns for the 
first 90 d (i.e. 57 287.8–57 377.8) after the time scale is steered 
to the fountain.

The green curve is the result of steering the free-run-
ning time scale to the two Cs fountain periods (i.e. MJD  
57 264.9–57 287.8, and MJD 57 360.0–57 374.0). Note, 
the green curve is the same as the black curve during MJD 
57 264.9–57 360.0. Again, the green curve drifts from the UTC 
by less than ~5 ns for the first 90 d (i.e. 57 374.0–57 464.0) 
after the time scale is steered to the fountain.

Lastly, the red curve shows the result of steering  
the free-running time scale to the three Cs fountain periods 
(i.e. MJD 57 264.9–57 287.8, 57 360.0–57 374.0, and 
57 420.8–57 439.0). During 57 264.9–57 500.0, the red curve 
has a change of less than 4 ns with respect to the UTC. 
Figure  5 shows a frequency-stability analysis of the free-
running time scale and the time scale using three fountain 
periods, during 57 264.0–57 500.0. Figures 4 and 5 show that 
the improvement from steering to the Cs fountain is signifi-
cant in both time and frequency stability. Note that the Cs 
fountain was operated for only 55 d over the whole 235 d 
duration of the test. In other words, with the Cs fountain 
running for less than 25% of the time, we successfully main-
tain the time within 4 ns. This opens a new possibility for 
designing a time scale. To achieve less than 5 ns of error, 
we only require the Cs fountain to be operated occasionally, 
instead of having a continuously-operated Cs fountain. This 
can be helpful when we do not have a continuously oper-
ated fountain. Also, a continuously operated fountain may 
accidentally stop. By using our new time scale algorithm, 
we allow ~3 months for repairs. During the three months, 
the timing error is at most 5 ns, according to the tests shown 

here. Most importantly, nowadays NIST has many excellent 
optical clocks under active development. However, it is dif-
ficult to run optical clocks for a long time (>a few days), 
due to engineering obstacles. Because of this, it is believed 
that an optical clock cannot contribute to the time scale for 
the time being. However, from this example we can imagine 
that occasional optical-clock operation (e.g. 4 h every week) 
could be very helpful for the long-term (e.g.  >20 d) perfor-
mance of the time scale. Thus, instead of waiting until all 
engineering obstacles are solved, we should consider incor-
porating an optical clock into the time scale now.

5.  Summary

This paper discusses a new Kalman-filter hydrogen-maser time 
scale JY1 developed at NIST. The JY1 time scale is designed 
to be stiff and nearly immune to abnormal clock behavior. 
Tests show that when the time scale is initially aligned to UTC 
and then is free running, it deviates from the UTC by less 
than  ±5 ns for ~100 d. Thus, it is a good flywheel. Once the 
time scale is steered to a Cs fountain, it can maintain the time 
with little error (<4 ns) even if the Cs fountain stops working 
for tens of days. Thus, an occasionally operated Cs fountain is 
good enough to significantly improve the accuracy of the time 
scale. This time scale algorithm also makes incorporating an 
occasionally operated optical clock into the clock ensemble 
possible.

Contribution of NIST—not subject to U.S. copyright.
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