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The classical-path approximation reduces the problem of pressure broadening of spectral

lines to the evaluation of matrix elements of the scattering operator.

If the intermolecular

potential is long range and the interaction volume is large, the broadening is caused by dis-

tant or weak collisions.

In this case, the scattering operator can be approximated by a sec-

ond-order expansion, and the perturber trajectories can be taken to be straight paths. For
neutral atoms or molecules, the intermolecular potential is short range and broadening arises

from close or “strong” collisions.

In this paper it is shown how classical trajectories, deter-

mined by a “scalar interaction” (i.e., one that does not depend upon the state of the radiator),
can be used to expand the scattering operator in the sum of operators characteristic of the

radiator’s internal states.

L. INTRODUCTION

The classical-path impact theory of pressure
broadening was developed by Anderson! for the case
of well-resolved lines. This theory was extended
by Ba.ramger2 to include the case of overlapping lines
as well as formulation of a quantum-mechanical
impact theory.® A similar theory was developed
simultaneously by Kolb and Griem,* who applied the
theory to a calculation of the Stark broadening of
plasma lines. However, the most general formula-
tion of pressure broadening is the relaxation theory
of Fano.® Most pressure-broadening calculations
are performed using a classical-path impact theory
where the quantities of interest are matrix elements
of the scattering operator. A great many line-shape
calculations use a second-order expansion of the
S matrix to describe those collisions whose impact
parameter is greater than some critical value p,
(i.e., weak collisions). The S matrix is assumed
to be effectively zero for collisions whose impact
parameter is less than p, (i.e., strong collisions).
This approximation is useful in treating the Stark
broadening of spectral lines emitted from plasmas
because the Coulomb forces are long range, and the
broadening is dominated by many distant or weak
collisions,

Since the forces between neutral atoms and mole-
cules are short range, the pressure broadening of
molecular lines is dominated by a few strong col-
lisions. Nonetheless, most calculations of mole-
cular lines follow Anderson’s approach, ® using
straight paths for the perturber trajectories and
treating the S matrix by the second-order expansion
approximation. This procedure is difficult to
justify for the cases where strong collisions make
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an important contribution, and calculations follow-
ing this prescription have had only moderate suc-
cess. In this paper an alternative treatment of the
scattering operator is proposed which retains a full
exponential form for the scattering operator and
employs classical trajectories for the perturbing
molecules. In this procedure, the scattering op-
erator is calculated for all values of the impact
parameter. The classical-path impact theory with
general classical trajectories for perturbers is de-
rived and compared with Fano’s expression for the
line shape. The results are equivalent to retaining
first-order terms in the density expansion of the
relaxation operator. Justification is presented for
using an un-time-ordered exponential for the scat-
tering operator. Finally, some practical methods
for evaluating S matrix elements are discussed.

A. Line Shape

The fraction of molecules in a gas actually radiat-
ing (emitting or absorbing) is assumed to be so
small that a bath of perturber particles can be as-
sociated with each radiator. The gas is regarded
as a number of statistically independent cells,” each
consisting of a single radiator and a bath of perturb-
ing particles which do not interact with the radia-
tion. The Hamiltonian H for a given cell is a sum of
of an unperturbed radiator Hamiltonian Hg, an un-
perturbed Hamiltonian for the bath of perturbers
Hg, and an interaction V between the radiator and
perturbers. The scalar part of the interaction Vo
(that part which does not operate on radiator states)
is added to H{ to form a “thermal-bath” Hamiltonian
H}. If the motion of the radiator is ignored (i.e.,
Doppler broadening), the remaining part of the inter-
action V=V - V; gives the total Hamiltonian as a
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sum of two independent unperturbed terms and a
coupling perturbation V;:
(1.1)

The spectral distribution of power radiated is
usually written in the form

P(w)= (40w*/3¢*)NF(w) ,

H=Hy+H)+V, .

(1.2)

where N is the number of radiators and F(w) is called

the spectrum or line shape. The spectrum? is given
as the Fourier transform of a dipole autocorrelation
function ®(s):

F(w)=7"! Re jow e'“5®(s) ds .

Since the interaction of perturbers with the radiation
is ignored, ®(s) can be expressed in terms of the
radiator dipole moment d and the density operator
for the cell p°:

&(s)=Tr{d-D(s)} , (1.4)
D(s)= e #(pd)e’ s . (1.5)

The trace is taken over states of the cell (radiator
and perturber states), and the operator D(s) will
satisfy an Heisenberg equation of motion. The
equation for D(s) can be formally simplified by in-
troducing an Hermitian Liouville operator defined by
its operation on an arbitrary operator A:

(1.3)

LA=[H,A] . (1.8)
It is easy to verify that
D(s)=e-¥5(pd) (1.7)

by differentiating (1.5) and using (1.6). The Fourier
transform (1. 3) can be performed:

F(w)=7" 1m Tr{d(w - L)"pd} ,

giving a formal solution for the line shape.

(1.8)

B. Fano’s Relaxation Theory

The Liouville operator is an example of a tetradic
operator which is discussed in some detail in the
Appendix, Because of the linear property of com-
mutators, L can be written as a sum analogous to
the Hamiltonian :

LA=[H}, Al+[H}, Al+[ vy, Al

=(L{+ L+ L)A= (Ly+ LA (1.9)

Fano’s method assumes that the density operator

can be written in a product form

p~exp(=7iH/ET)

~exp(—- nHS/kT) exp(~ BHY /RT) ~p°p® . (1.10)

This is called “neglect of back reaction in the den-
sity matrix” since the effect of V; on the statistics
is ignored. The trace can be factored into traces
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over radiator and bath states. Introducing the op-

erator M(w) by

(w=L)"=(w =Ly [1+Mw)w- Ly (1.11)
simplifies the line-shape expression
Flw)=7"Im Tra{a(w - L{)!
X [14 MM - LE) 1] p@d} . (1.12)

The angular brackets denote the thermal-bath aver-

e (M(w)y = Tr{M(w)p®} (1.13)

The line shape is written in terms of a relaxation
operator (M.(w)) obtained by “reentangling” (M(w))
and L{?,°

(w = L) 1+ (M(w)) (w = L)1)

=[w = L = (M )] . (1.14)
This gives an equation for (M (w))
(M) =1+ M)(w - LE) UM (w)) ,  (1.15)

which Fano uses to obtain a solution by performing
an expansion of (M(w)) in powers of gas density.

The interaction term V; is given as the sum of
interactions V! between the ith perturber and the
radiator, and so L, is given as a sum of L{. Re-
taining only terms first order in gas density » gives
the relaxation operator as n{m(w)},, where the av
denotes a one-body thermal average and m(w) is
given as the solution of a Lippmann-Schwinger equa-
tion,

mlw)=Li(w - Li- L) (w - L{)
=(w=L)w=Li- LYo - L) - (w-Lj) ,
(1.16)

Flw)=1"Im Tr{d[w - L&~ nimlw)}, ] pd ]} .

(1.17)
Fano obtains a solution of these equations in a time-
independent formalism. In Sec. II the relaxation
operator is obtained from a more familiar time-
dependent formulation.

II. TIME-DEPENDENT FORMULATION

The line shape is given (1.8) by the thermal-bath
average of (w— L), which can be written as the
Fourier transform of the tetradic time-evolution
operator, e-*’*, Since the average ((L{)"'A) vanishes
for arbitrary operators A, it is possible to trans-

form e-Lt to the interaction picture, e~*0'U(¢;0):
[w - L§— (M ()] =((w - L))

=—i | " explilw - LE)U(; 0 at . (2.1)

The tetradic U(¢; 0) satisfies the familiar differential



2 SEMICLASSICAL TREATMENT OF STRONG -

equation
i %‘—: (t;0)= e'LotL e Lot u(s; 0) = L)U(t; 0) , (2.2)

which can be written as an integral equation
lt;0)=1-14 jot L(s)u(s,0)ds . (2.3)

Since L, is given as a sum of N, single-particle

Li’s, the operator U (¢; 0) is given as a time-ordered

product of single perturber U‘(¢; 0),
Ny

wt;0)=0 1'11 u(t;0) . (2.4)
i=
If the collisions are statistically independent,

there is nothing to distinguish between perturbers

when an average over-all possible perturber motion

is performed. Usingu’=1+ ¢!, we obtain

Ny
(Ui 0) =0 IT (1+ ¢'(£; 00
341
=0[1+n{0(t;0)},,/N,]"

iy~ = O expln{U'(;0)-1},],  (2.5)
where the one-body spatial distribution® n/N, was
factored out of the one-body average to give the one-
body thermal average {- - },.. The integral relation
(2. 3) and the identity® U(¢; 0) = e* Lot (0, - ¢) e~ Lot
give

(u(t; 0)) = 0 exp[- in j: exp(iL3s)

x {Li(0)U (0, - s)},, exp(~iLls)ds] , (2.6)

which is equivalent to Fano’s result (1.16). The
impact approximation assumes that the quantity
{Lia(0; - s)},, increases to a constant value
{LiUyi(0; =)}, in a time 7 such that

{L{‘u‘(oi - 00)}“1'<< 1 (2. 7)

Assuming that ¢>>7, we replace {L{u'(0, = $)}a
by the constant {Liu(0, - «)},,. Equation (2.6) thus
becomes

(u(t;0)) = exp(iLg 1) exp(~ i L&+ n{L}U*(0; )}, 2) .
(2.8)

If this result is substituted into (2.1) and compared
with Fano’s result it can be seen that m is simply
L{u(0,- «). The same result is obtained by Fourier
transforming (1.16), using the interaction picture
and noting that (Z{()u'(z; 0)L} 0), is an autocorrela-
tion function with a correlation time 7 on the same
order as the correlation time for (L(£)Li(0)),.

The one-body thermal average can be expressed
as integrals over the classical variables X and ¥V
which denote the position and velocity of the per-
turber at the time #=0.7 The position #(¢) of the
perturber at time ¢ isauniquely determined function

1841

of X, V, and ¢£. For distant (weak) collisions the
perturber trajectory is taken to be a straight line
T(#)=%X+V#; however, for close (strong) collisions
the perturber trajectory is determined by the scalar
part of the interaction V;. The instantaneous radial
velocity # for a particle moving under the influence
of a central potential is'®

. dr [2 2 2
SRR

where u is the reduced mass, / is the angular mo-
mentum, and E is the total energy. The position of
a particle is determined by two integral equations

t=t,= j;;‘“ ar/v (2.10)

(2.9)

8(6)=6,= [7 (t/ur'P)ar (2.11)
0
and the azimuthal angle is a constant ¢., since
scattering occurs in a plane. The point of closest
approach 7, is a root of the equation #=0. It is
convenient to write X in cylindrical coordinates
where d°%X is given as - vpdpdt,da; the velocity is
written in spherical coordinates so that d°v becomes
#sinBdvdBdy.' These are the familiar collision
variables, where p is the impact parameter for the
collision (provided the perturber is outside the
range 7,,, of V; at time ¢#=0). If the perturber tra-
jectory was a straight line, ¥(¢)=p5+V(t~¢,), the
“time of closest approach” would be ;. The differ-
ence between the actual “time of closest approach”
t. and ¢, is simply the constant X,

K=t,=ly= (huy= 0% /v= [™=ar/i . (2.12)
0

It can be seen from (2. 10) that » and therefore 6,

V,(v), and L{(r) depend upon time only in the com-

bination (¢ - #,) making it easy to show that

{i;(O)mi (0; - °°)}av= {Lli (tc)‘ui(tc; - °°)}av .

The integration over £, can be performed explicitly
using the change of variable ¢,= K+ #;:

® .. w dW (F  —
f i i, - <) dt,=i f ”—lT(fﬂLi)dtc
; o ¢

= i[‘ui(co’- = oo) = 1] Eﬁl(a: B} Y5 Py 7)) . (2- 13)

The average over angles (a, 8, y) is equivalent to
averaging over values of the magnetic quantum num-
bers of the radiator states!? so that the thermal
average is given by integrals over p and ». It is
shown in the Appendix that U(e; ~ ) is given simply
as a direct product of scattering operators, S.S,.

If it is assumed that the scattering matrices will

be averaged over magnetic quantum numbers, we
have

nimla= J7 avo’f vz ST pdolsis,-1] , (2.14)
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where the one-body velocity distribution f(v) is a
Maxwellian,

Flv)= (u/2nRT)2 g~ V*/12kT

The resulting line shape (1. 17) is equivalent to the
result of Baranger and reduces the problem of line
shape to calculating matrix elements of the scatter-
ing operator.

(2.15)

III. S MATRIX

The scattering operator is represented by a time-
ordering exponential denoted by

S=oexpl-i [ " w(t)at] , 6.1

where

V() = expGHE )V, exp( - iHEt) . (3.2)

For weak collisions the average interaction strength
V is much less than the inverse of the collision
duration time 77!, and the scattering operator can

be approximated by the first few terms in its series
expansion, This approximation sacrifices the
unitarity of the scattering operator and necessitates
lower-limit cutoffs on the impact parameter, This
approach is useful for Stark broadening, a process
dominated by weak collisions, but it provides a poor
approximation for strong collision processes. Gases
of neutral particles interact via short-range forces,
and the pressure broadening is dominated by strong
collisions. In this case it is desirable to guarantee
unitarity of the scattering operator and avoid cutoffs
on the impact parameter. To develop such an alter-
native approximation, consider the following identity
for S-matrix elements:

(a]S[b)=(a|b>—iZcf_: g et

x (a| Vy| M| Ut; = <)o)t . (3.3)

The contribution to the S matrix from the interme-
diate states [c) for which w,7> 1 can be neglected
because of the rapid oscillation of the exponential
in the integral. For intermediate states such that
w,T~1, assume that the interaction is weak (i. e.
{a| V;1¢)T<< 1), so they can also be ignored. This
assumption is not generally valid but is useful for

i

f eV di=2 KQ(—;)—‘!ZG’%
oo o
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a great many cases of interest. Intermediate states
for which w,,7<<1 are the only ones that contribute
to (3.3), hence the exponential can be replaced by
unity. These conditions can be stated formally by
defining a projection operator!® which selects only
those intermediate states which will contribute:

<al(PVIC>=<a|V1(C> for wacTc<<1’

alov,| =0 (3.4)

for w,7.21

The scattering operator can now be written in the
form

S=oexp(-i [~ ®Vydt) , (3.5)
where time ordering is retained since in general
®V, does not commute with itself at all times

A review article by Buckingham!* gives intermole-
cular potentials for many common cases in terms
of molecular moments and the variables #(f) and
x(#) shown in Fig. 1. The situations are such that
one angle-dependent term dominates the intermole-
cular potential which is given by a first- or second-
order Legendre polynomial (a caret is used to denote
an operator on radiator states):

V=1 Vor)+ V(B (cosx(t) (3.6)

The factors V,(») and V,(») are scalar quantities on
the rotational and vibrational states of the atom.
The terms 7, and 7, contain time-independent mole-
cular moments which are scalar quantities on rota-
tional states but in general are operators on vibra-
tional states. The moments can be expressed as
sums of a scalar part 7’ and an operator part 7, 1

o ~ -

no=m§+Z(——‘ln> Qp=Tg+1y 3.7)
an eq

where @k is the kth normal coordinate. The op-

erator ®V,(») is
®V,(r)= Vo(r)®Tig+ Vy(r)®ma+1,)P (cosx(t)) , (3.8)

and the scalar part V, is given as Vy(»)n,.

The classical expression for #, (2.9), can be used
to change the variable of integration in (3.7) from
tto7:

Mi+7,) . (3.9)

v
0

The geometry of Fig. 2 and the addition theorem
for spherical harmonics give

. @f‘” v, (r)[ P (cosx(t))+ B (cosx(- 1)) dr

r

~ 4 & N
P(cos()= 57 20 Yi(6(0), 070y, 0)
- (3.10a)
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FIG. 1. Geometry of a collision.
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mz==n

B, (cosx(-1)=

X P On, o) (3. 10b)

where 65 and ¢y are angles of molecular orientation,

However, for small n, P, (cosy(+¢)) varies slowly
compared to the factor V,(#)7!, which is sharply
peaked at 7, where # vanishes. The main contribu-
tion to the integral (3.9) occurs when 6(¢)=4,.

Since the Z axis in Fig. 2 was 'chosen parallel to
the impact axis 6(«)=0, the orbit equation (2. 11)
can be used to evaluate 6, and the variable °,

P,,(COSXO)= [477/(27‘ +1)] Zm Y:m(gc, ‘pc)f}nm(eN’ (pN):

(3.11)

which is independent of time. The scattering op-
erator is now given by an un-time-ordered expo-
nential

S=exp[ - iK®7, - iK,® )+ 71,)P,(cosx®)] , (3.12)

since there are no time-dependent operators. The
integrals K; are simply

K;=2 f: arv;(»)/v . (3.13)
This approximation works best for close or strong
collisions where 6(¢) varies slowly compared with
Vi(#)7 . Even for the worst case of distant or
weak collisions, comparison with the straight-path
approximation shows the discrepancy to be less
than 25%. Since the contribution of weak collisions
is small (for neutral particles), this error is un-
important.

If V,(#) is a polynomial in 1/ (i.e., Lennard-
Jones), the K; are hyperelliptic integrals and the
quadratures are straightforward (the root 7, can be
factored out of the denominator and removed by a
change of the integration variable).

For rotational lines, both 7, and 7, vanish and
the scattering operator can be expanded as a sum
of Legendre polynomials:
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S=exp[- iK,n,®P,(cosx’)]= 2, 7@ P (cosy’) .
(3.14)

This relation gives a differential equation for S in
terms of the variable x=cosy’:

ds . ’ dP"(x)
o=~ e S (3.15)
or
% e i) _ iy ntp S 7 mp )
7 dx dx 7
(3.16)

Multiplying by P,(x)(x* - 1) and integrating over x
from -1 to 1, we obtain a recursion relation for
the 7’s:

w(C=D1\  _fC+1)+2)\ . l+1)@1+1)
"‘<(zz-1))' '*1)< (21+3) >"’K1""< (2n+1) )

XY 7im [(?l+1 1 j)z +(n—l 1 j>2:|
b 0 00 0 00

In practice we are concerned with first- and second-
order Legendre polynomials in the exponential. In
these cases it is easier to obtain a recursion rela-
tion by direct application of the orthogonality re-
lation

$M=3(2j5+1) /3 Py(x) exp[- ik, P, (x)]dx .
(3.18)

A recursion relation can be obtained from integra-
tion by parts. For a first-order polynomial the
scattering operator is

(3.17)

S=exp{- ik\n{®P,(x)}= 2. 7{PeP,(x) ,  (3.19)
i=0

»
>

Molecular
Axis

FIG. 2. Geometry for the addition theorem.
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T=78)25+1)/(25~-3) - iri)(2j+ VEm] , (3.20)

(1) (1)
1

where 75"’ and 7,"’, needed to generate the recursion
relation, are obtained by direction integration:

A0 _ Sin(gm;)
0 K1771’ )

3 . ’
T§1)= __Zﬁ_ <COS(I{1’I’]1' _ sm(K,lTll))

Kym Km (8.21)

A second-order polynomial can be expanded in
terms of even-ordered polynomials only,

S=exp[- iKM,0P,(x)]=2.; T3®P,,(x) , (3.22)

o @ir1D@Ej-1) < @j=3) @
2i 4j (4j -5)aj-7) %

1 e i e
’ (4j-5)45-1) T2j-2 2K1772' Tz;r-z) , (3.23)

where 7’

tegration:

@23 [} exp[- iK% - 1)] dx

and 7§

are again obtained by direct in-

=exp(i3 Kymy)(1/3Km)*F(3Kmy) . (3.24)
The Fresnel integral defined by
Flx)= [ dte™!/(2m) (3.25)

is given by a polynomial approximation'” with an

accuracy of better than 10”°, and 752’ is obtained by

integration by parts:

780 =8[(i/Kng) exp( - iKynz) ~ G/Kyma)To = 7o) .
(3. 26)

All of these recursion relations are unstable for
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small values of |K;7,|, but in that region a power-
series expansion of S will converge rapidly since
IP,(x)| <1. The case for a second-order Legendre
polynomial is treated explicitly:

N n
exp( - iKn,®P,(x))=2. (= iKm,)" (P[f:g' (%)] +Ry
n=0 H
(3.27)
where
'RN| <9Xp(’K17lzl)lenz‘”*‘/(N,L1)! (3.28)

and for |3K,7m,|<1 and N=10 the error |Ry| is less
than 10", Since any power of P,(x) can be expanded
as a sum of even-ordered Legendre polynomials!®:
n
[Pz(x)]nzz0 Cy; Py,(v) (3.29)
i

the sum in (3. 27) can be rearranged to give

N I\_I‘ Cn
expl - iKn,0R(x)] = Z(L (= iKm,) —zj-) ®Py;(x)

320 \nej n!
(3.30)
or the following expressions for the 7's:
N
T8 =2 (= iKm;)"Cy; /!, 0SSN
n=j (3.31)
=0, j>N .

The coefficients (C3; /n!) are given in Table I. A
prescription has been given for expanding the scat-
tering operator as a sum of Legendre polynomials
and has reduced the problem of calculating S-matrix
elements to the calculation of matrix elements of
spherical harmonics.'® For finite rotational quantum
numbers, the triangle condition will truncate the
apparent infinite series (3.14). The case of vibra-
tional lines can be handled in a fashion completely

TABLE I. Table of C3;/x!.

nj 0 1 2 3 4 5
0 1,000 000 +0
1 0.000 000 +0 1.000 000 +0
2 1.000000 -1 1.428571-1 2.571428 -1
3 9,523803 -3 7.142857 -2 4,675323 -2 3.896 103 — 2
4 3.571428 —3 1.082251 -2 1.528 471 -2 7.792204 -3 4,195804 -3
5 4.329004 — 4 2,206127 -3 2.397 602 — 3 2.062 642 — 3 8.833267 -4 3.507328 — 4
6 7.325979 -5 2,913753 — 4 4,010694 — 4 3.176389—4 2,050581 — 4 7.624 626 ~ 5
7 8.325 008 — 6 2.876841 -5 5.056 861 — 5 4,724 3775 3.063298 -5 1.616421—-5
8 9.692103 —7 4,231233-6 5.992 458 — 6 5.637785~6 4,194888 -6 2.338219 -6
9 1.076 900 -7 4.701370-7 6.658286—17 6.264206—"17 4,660987—17 3,006 030 —7
10 8.645034 — 9 3.923429 -8 5,749 567 ~ 8 5.914 5758 4,870324—8 3.253 965 — 8
nj 6 7 8 9 10
6 2.396311-5
7 5.325 135—6 1.384535-6
8 1. 055 846—6 3.125369-7 6.930377-8
9 1.480 8507 5.887321-8 1.584 086—8 3.060166-9
10 1.809 554-8 8.023768—9 2.863128-9 7.061921-10 1.208798~10
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analogous to the rotational case. In this case a
normal-mode displacement coordinate appears in
the exponential. This is a first-order Hermite poly-
nomial, and a recursion relation can be derived for
the expansion coefficients of S as a sum of Hermite
polynomials. Again for finite vibrational quantum
numbers, the apparent infinite series will truncate.
A final remark is in order here since in general
there will be a term in the potential characteristic
of the perturber orientation. If this term is a sep-
arate additive term, it can be neglected since in
that case S will factor into the product of an S op-
erator which depends on the radiative states s@
and an S operator which depends on the perturber
states S':

S=§Ig® (3.32)

However, since only matrix elements of the product
SST need to be computed, the contribution will be a
‘factor

z (a] 8| BXB| S| @) | p2] @)
=Y (a| SPS a)a|pym] @) =1,

which is trivial.

(3.33)

APPENDIX

Comparison of matrix elements of (1.6) and in-
terpretation of L as a tetratic or four-index operator
on a vector space of two-index matrices gives

[LA]mn= Z Lmn;m'n’Am'n' ’ (Al)
m'n’
where
Lmn;m’n' =Hmm' 5nn’ - 6mm' :;I' (AZ)

Each of the terms in (A2) has the form of a direct
product of a matrix H with a unity matrix . A
doubled or “dual” space is defined as a product
space

(A3a)

and “left” and “right” operators are defined as di-
rect products of operators with the unit operator

(A3Db)
(A3c)

[mn)) = |m)|n)

0,=08®1 ,
0,=I®0* .

The usual rules for forming matrix elements in a
direct product space give

mn|0,|mn=(m|o|m"Yn|n") , (Ada)
{mn|o,|mn’))=(m|m"Yn|o|n")* , (Adb)

from which it is clear that
L=H,-H, . (A5)

If the dual space is formed from eigenvectors of the
Hamiltonian, L will be diagonal with eigenvalues
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corresponding to transition frequencies w,,. Since
the Hamiltonian is given as a sum, the Liouville
operator is also a sum,

L=L{"+ L+ Ly=Ly+ L; . (A8)

In practice matrix elements are evaluated in the
dual space formed from eigenvectors of the unper-
turbed Hamiltonian H,. In this case L, is diagonal
with eigenvalues corresponding to observed transi-
tion frequencies, and this dual space is frequently
referred to as “line space”. We shall recall some
basic properties of direct products,? and use them
to prove some useful relationships for tetradic op-
erators:

(A®1)1©®B)=(1©B)A®1)=A®B , :%))
(A®1)=4"91 , (A8)
e?l=et®1 (A9)
dA®1) dA
Tdx " dx (A10)

The relation (A7) says that all left operators com-
mute wi!:_h all right operators which gives an expres-
sion of L,(t)

Ly ()= exp{ilHo, - Ho, 1t} (Vy, - Vy,) exp{ - i[H,, - Hy, )t}
=exp(iHyt), exp(iHyt),(Vy; = Vy,)
X exp( - iHyt), exp(—iHt),

= ﬁl(t),— f}l(t)r . (All)

This relationship allows us to show that u(z;¢’)
obeys the same equation as U(t;¢"),U(t;t),:

ia%‘u(t;t')=il(t)‘u(t;t') ) (A12a)
za% Ul ¢ = 7,00t . (A12b)

Application of (A10) gives

za% (u@; ", u@;t),]
= [z gat_ U(t;t'),] Ult; 1", + Ult; 1, [z 9% U(t;t'),]
= [V () ut; "), Ut 1)), - Ul e[V, (OUE; 9],

=[V, @), - 7,@®),JU@; ", U(t; ¢,

=L,Uu;t"ut;th, (A13)
wlt; t")=Ult; " Ult;t", (A14)
which has the special case

U(e0; - w)=S,S, . (A15)
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The problem of electron-atom scattering in the energy range where both high- and low-
energy methods are unreliable is considered. A previously proposed equation is made trac-

table by a separable approximation on the electron-electron correlation function.

This results

in a pair of coupled equations in which all inelastic channels are lumped into one effective one.
The equations are then reduced to a tractable form by some drastic approximations and solved

by an eikonal approximation.

The results are good in a restricted angular range, and the

restrictions are shown to be due to the “drastic approximations” and the eikonal approximation,

neither of which is really necessary.

When a particle is scattered by a target with in-
ternal degrees of freedom, the energy scale can be
set in terms of an average excitation energy of the
medium, When the incident energy is smaller than,
or of the order of, this excitation energy, so that

only a few channels are open, then there are reliable

calculational methods for obtaining scattering am-
plitudes.
atom scattering the close coupling method® or its
modifications? gives good results with a reasonable
expenditure of computing effort when only a few
channels are open. As the energy goes up and the
number of open channels increases, the amount of
computing time necessary for any given accuracy
of the results becomes prohibitively large.

At high energies the Born approximation or its
modifications® give good results, but as the energy
is lowered approaching, say, ten times the scale
energy, these methods also become less reliable.
There is then a large energy region where there is

For example, for the problem of electron-

a need for more reliable methods.

Chase® seems to have been the first to have sug-
gested an approximation in which the target parti-
cles are frozen in a given configuration, and then
the amplitude for scattering from this configuration
is calculated, If we denote this amplitude for scat-
tering from P; to P; by f(P;, P;; X), where X rep-
resents the (fixed) coordinates of the target parti-
cles, then the theory gives a result for the inelastic
(or elastic) scattering amplitude:

fn'!n(PfaPi)=f(dX)(p:‘(X)f(PfyPi;X)(Pn(X)y (1)

where the ¢ (X) are the target wave functions. The
method has been generalized,® so that not all the
target degrees of freedom have to be treated by this
approximation. This is particularly useful in elec-
tron-molecule scattering where rotational and elec-
tronic degrees of freedom have widely different
time scales (or energy scales).
This is a high- or intermediate-energy method ,



