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We have generated frequency combs spanning 0.5 to 20 GHz in superconducting λ=2 resonators at
T ¼ 3 K. Thin films of niobium-titanium nitride enabled this development due to their low loss, high
nonlinearity, low frequency dispersion, and high critical temperature. The combs nucleate as sidebands
around multiples of the pump frequency. Selection rules for the allowed frequency emission are calculated
using perturbation theory, and the measured spectrum is shown to agree with the theory. Sideband spacing
is measured to be accurate to 1 part in 108. The sidebands coalesce into a continuous comb structure
observed to cover at least several frequency octaves.
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Frequency combs in the optical regime have become
extremely useful in a wide range of applications including
spectroscopy and frequency metrology [1–3]. Recently, it
was found that a strongly pumped, high-Q optical micro-
cavity made from a nonlinear medium generates sidebands
due to a combination of degenerate and nondegenerate
four-wave mixing (FWM) [4–6] that cascade into a broad-
band frequency comb of photon energies in the regime of
hundreds of THz. The peaks of these combs are extremely
narrow and appear at frequencies dictated by selection rules
for photon energy and momentum conservation. These
devices are attractive because they have very narrow
linewidths, are relatively simple, highly stable and con-
trollable [7–9], and can be divided down into the GHz
range to achieve very accurate frequency references. For
these microcavities, typically consisting of toroidal silica
structures [10], comb generation over much more than a
single octave in frequency is difficult to obtain due to
frequency dispersion from material and geometric factors,
which make the modes nonequidistant.
These Kerr combs continue to be the focus of extensive

theoretical analysis to understand the nonlinear dynamics
that give rise to their threshold of stability, mechanism of
cascade, amplitude of responsiveness, and maximum spec-
tral bandwidth [11–15]. Generation of these combs directly
in the 1–20 GHz range would further simplify the instru-
mentation and potentially elucidate the dynamics involved
by making them more accessible to direct measurement.
In the current Letter, we transfer the nonlinear pumped

cavity concept to the microwave regime in superconducting
resonators and demonstrate broadband frequency comb
generation over multiple octaves. This is achieved using
niobium-titanium nitride (NbTiN) thin films and exploiting
(i) the high quality factor Q > 107 for a strong drive
[16,17], (ii) the large nonlinear kinetic inductance, and
(iii) the lack of frequency dispersion [18]. The kinetic
inductance, LrðtÞ ¼ L0f1þ ½IðtÞ=I��2g, where L0 is the
geometric inductance and I� a normalization constant

comparable to the critical current, arises from the stored
kinetic energy of charge carriers.
The nonlinear kinetic inductance has been exploited

previously to make wideband traveling-wave amplifiers in
coplanar waveguide (CPW) transmission lines of NbTiN
[19]. In these devices, dispersion is geometrically engi-
neered because there is no intrinsic frequency dispersion
(within 5% measurement accuracy) up to fmax ≅ 2Δ=h ×
66% [20]. For NbTiN, this corresponds to frequencies on
the order of 600 GHz.
Half wave CPW resonators fabricated from 20 nm thick

NbTiN films were used, and comb generation was observed
up to T ∼ 6 K due to the high TC ∼ 13 K of the films. The
geometries used included both transmission, illustrated in
Fig. 1, and reflection, described in [21]. The unperturbed
fundamental resonant frequency for these resonators is
given by f0 ¼ ω0=2π ¼ c

ffiffiffiffiffiffiffiffiffiffiffi
1 − α

p
=ð2lneffÞ, where l is the

length, neff ¼ 2.6 is the effective index of refraction for a
CPWon Si, and α ¼ 0.93 is the kinetic inductance fraction
as determined from the frequency shift of a test resonator.
We were thus able to set f0 in the range of 15 MHz
up to 6 GHz with easily achievable lengths from 1 m down
to 2.5 cm. For clarity and brevity, the discussion here
is restricted to a single device, a 25 cm long NbTiN
resonator with f0 ¼ 59.738181ð1Þ MHz. The design, fab-
rication, and theoretical analysis are described in the
Supplemental Material [22].
Frequency comb emission is excited in these devices by

applying a pump tone at frequency fP. With fP ¼
Nf0 þ δf, power is coupled into the resonator at both
fP and f0 when the detuning, δf, is decreased. The value of
N is selected by adjusting the pump power prior to fine-
tuning δf. Moreover, in addition to output at the funda-
mental and pump frequencies, the nonlinear resonance is
characterized by a new set of subharmonic states, distinct
from natural modes of the resonator cavity, that form at odd
harmonics of both the resonance and pump frequencies.
Unlike the case of linear response, proximity of fP to f0 is
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not a requirement. Quite the contrary, fP can be spectrally
distant from f0, i.e.,N ≫ 1, with strong nonlinear response
elicited as δf is decreased.
In particular, for constant pump power, as δf, and hence

fP, is decreased, the current induced in the resonator
renormalizes f0 downward due to the dependence of the
kinetic inductance on current [23]. As δf approaches zero,
state bifurcation invariably occurs and the resonator jumps
back to a quiescent state at some critical frequency fP ¼
fcrit [24]. However, prior to this event, enough power may
be coupled into the resonator to cross the parametric
oscillation threshold wherein the gain exceeds cavity
losses. This condition permits steady-state generation of
a full range of frequency sidebands and FWM products
[24], seeded by pump-harmonic states.
To explain our results, we introduce a simple LC

transmission-line model, as in (a) of Fig. 2. The model
neglects higher normal modes of the resonator cavity
because our investigations with two-tone spectroscopy
have shown that higher normal modes are inert. Instead,
observed resonances are of extremely narrow linewidth,
indicative of states that do not couple readily to a
dissipative reservoir. When the circuit of the figure is
analyzed, the output current IoðtÞ satisfies

d2AðtÞ
dt2

þ ωð0Þ2
0 AðtÞ þ 1

3

d2AðtÞ3
dt2

¼ F cosωPt; ð1Þ

with AðtÞ ¼ IoðtÞ=I�, undressed fundamental ωð0Þ
0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðCi þ Co þ CxÞ=LoðCi þ CxÞCo

p
, pump frequency

ωP ¼ 2πfP, and effective driving term F ¼ ωPV̄=I�Lo.
Here, V̄ is the amplitude of an effective voltage drop across
the line. Details of the model derivation may be found in the
Supplemental Material [22]. Equation (1) is similar to that
of a Duffing oscillator [25], which is known to exhibit
subharmonic generation [26].
Successive approximation perturbation theory [27] is

applied to Eq. (1) to demonstrate important characteristics
of the observed nonlinear response, including (i) the
existence of nonlinear states, (ii) the frequency spacing
between them, (iii) the selection rule of their allowed
occupation, and (iv) the renormalization of the fundamental
frequency. The procedure is to expand both the dressed
fundamental frequency ω0 ¼ 2πf0 and the amplitude AðtÞ
in powers of mathematical device ϵ, apply the expansions
to Eq. (1), equate terms of same power of ϵ, remove secular
terms at each order that would otherwise lead to divergence,
and set ϵ ¼ 1 at the end of calculation. Secular terms are
associated with the fundamental frequency; setting these to
zero at each successive order in ϵ defines the renormaliza-
tion corrections of ω0.

Specifically, we write ω0 ¼ ωð0Þ
0 þ ϵωð1Þ

0 þ ϵ2ωð2Þ
0 þ � � �

and AðtÞ ¼ Að0Þ
0 ðtÞ þ ϵAð1Þ

0 ðtÞ þ ϵ2Að2Þ
0 ðtÞ þ � � �, and as-

suming a strong pump such that the zero-order amplitude
is of the form

Að0Þ
0 ðtÞ ¼ Co cosω0tþ

F
ω2
P − ω2

0

cosωPt; ð2Þ

FIG. 1 (color). Photograph of superconducting frequency comb
chip. The 25 cm long, λ=2 resonator is made in a coplanar
waveguide (CPW) geometry with input (output) port at top left
(bottom right). The CPW has a 2 μm wide center strip and 2 μm
wide gap and is coupled to ports by interdigitated capacitors. The
device is made from NbTiN (Au color) on a 2 cm × 2 cm
intrinsic Si (> 20 kΩ) substrate.

FIG. 2 (color). Panel (a) depicts model circuit while (b) shows
sideband spectrum predicted by second-order perturbation
theory. Illustrated are fundamental f0 and pump fP frequencies,
as well as initially generated sideband frequencies, spaced 2f0
apart, as dictated by the selection rule.
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the expansion is applied to Eq. (1). Results are summarized
here to second order in ϵ using initial conditions Að0Þ ¼ 0

and _Að0Þ ¼ 0, with details of the algebra provided in the
online supplement. Our calculation shows the second-order
AðtÞ sketched in (b) of Fig. 2, with fundamental frequency
approximated as

ω0 ≅ ωð0Þ
0

�
1 −

3

8

F2

ω4
P
þ 745

768

F4

ω8
P

�
; F ≪ ω2

P: ð3Þ

Panel (b) of Fig. 2 depicts how nonlinear states form
within sidebands as a consequence of beating between the
two frequencies f0 and fP, and how these states are
separated in frequency by 2f0, in accordance with a
selection rule that arises from the from of the kinetic
inductance, and ultimately, the symmetry of the film
geometry. In particular, Eq. (3) indicates that the funda-
mental frequency is downshifted, as is, therefore, the
spacing between states, which we have observed exper-
imentally. Sideband states, at least in the precascade
regime, may be summarized as follows:
(i) odd harmonics of the pump, MfP, where

M ¼ 1; 3; 5;…, are permitted as principal teeth of
the comb,
(ii) sideband teeth spaced at 2f0 are generated around the

odd pump harmonics,
(iii) even harmonics of the pump, with M ¼ 0; 2; 4;…

are forbidden, and
(iv) sideband teeth spaced at 2f0 are generated around

the absent even pump harmonics.
For integer M ≥ 0, the allowed frequencies of these rules
are

f0; 3f0; 5f0;…;M ¼ 0;

MfP;MfP � 2f0;MfP � 4f0;…;M odd;

MfP � f0;MfP � 3f0;…;M even: ð4Þ

Measurements of the frequency emission spectrum were
conducted at low temperature, T ¼ 3 K, in a magnetically
unshielded copper box. An rf signal generator was con-
nected to the input to excite the system and a spectrum
analyzer was connected to the output. The experiments
described here used pump powers of −28ð1Þ dBm with
detuning δf ∼ 100 kHz.
Figure 3 shows a typical evolution of the spectrum as fp

is decreased to the point of bifurcation. For convenience,
we define Δf ¼ fP − fcrit. Far from bifurcation, above
ΔF ¼ 1200 kHz, we see predominantly odd multiples of
the pump in the spectrum, i.e., just the principal teeth of odd
sidebands. Some emission at 2fP and 4fp is observed,
albeit at −25 dB relative to the odd harmonics and can be
accounted for by distortion in the amplifier and/or parasitic
slot-line modes. The amplifiers also had a low frequency

cutoff below 500 MHz, thereby filtering out the response
at f0 ≅ 60 MHz.
As ΔF approaches 1200 kHz, sideband teeth spaced by

2f0 are first observed around the 2fP location, shown in the
top spectrum of Fig. 3. At ΔF ¼ 1;060 kHz, sideband
teeth begin to appear around both even and odd multiples of
the pump, as described by Eq. (4). The full width at half
maximum (FWHM) of the sideband peaks is the same
across the spectrum and measured to be 1.1(0.1) Hz,
limited most likely by the resolution bandwidth of the
spectrum analyzer. This is nearly an order of magnitude
less than that expected from a Q ¼ 107 resonator, con-
sistent with states that do not couple to a dissipative
reservoir. These sidebands continue to develop down to
ΔF ¼ 520 kHz. As ΔF continues to decrease and the
system is pushed closer to bifurcation, the sideband
structure undergoes a sudden transition, coalescing into a
continuous, broadband comb structure at ΔF ¼ 500 kHz.
This structure can persist to well above 20 GHz, depending
on the specific fP and power used. The upper limit of the
response readout is currently limited by the connectors
(SMA) used on the system, but even with this configura-
tion, we see cascades spanning at least six octaves in
frequency.
The system undergoes two more transitions as it nears

perfect tuning. The second transition, at ΔF ¼ 380 kHz,
occurs where it switches back into a modulated broadband
comb, and the final, third transition, at ΔF ¼ 60 kHz, sees
it coalesce again into a smooth spectrum with a modified
spacing between sidebands of 1 × f0. The comb then
collapses as ΔF → 0, and the system goes past a bifurca-
tion point.
The change in the sideband spacing is consistent with

period doubling that typically occurs in nonlinear systems

FIG. 3 (color). Evolution of emission spectrum as difference,
ΔF ¼ fP − fcrit, between pump frequency fP and critical bi-
furcation frequency, fcrit ¼ 1254.7 MHz, is decreased. The pump
is close to the N ¼ 21 multiple of the resonator fundamental, f0.
Sample is held at T ¼ 3 K, with pump power of feedline held
constant at −28 dBm. Traces are offset vertically for clarity.
Signal has been amplified by 30 dB. (Finer detail as ΔF → 0may
be found in successive frames of the video of the Supplemental
Material [22], where each frame is equivalent to a trace of above
stack plot.)
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as they go through bifurcations [28]. This interpretation is
supported by data taken for varying values of pump power,
where period doubling is always observed just before
bifurcation, even at low power. This observation rules
out other effects such as amplifier saturation or power-
dependent modes in the CPW. This evolution of behavior is
repeated, albeit in a slightly modified nature, for pumps
with different subharmonic matching. We also note that for
phases with continuous, coalesced sidebands (around
ΔF ¼ 500 and 60 kHz), multiple satellite peaks appear
around the comb teeth with frequency spacing ∼δf. This
indicates that separate sidebands from the various multiples
of the pump are beating together, owing to the many-octave
extent of the entire broadband structure.
In order to accurately measure the spacing of the side-

bands, a nonlinear mixing process is employed. In this
measurement, the output signal is split into two compo-
nents. One component is amplified and applied to the local
oscillator (LO) input of a wideband mixer. The other
component is then applied to the rf input, where each
tooth of the comb is compared to the inputs. Each comb
tooth therefore acts as a reference for all other teeth, giving
an output that reflects the overall comb periodicity. Using
this technique, the FWHM of the periodicity was measured
to be less than 1 Hz, corresponding to frequency resolution
better than one part in 108. Drift in the periodicity on the
order of 10 Hz occurs on the 10 to 100 second time scale,
with characteristic jumps consistent with flux trapping in
the CPW gap.
Another exciting aspect of these devices is that it is

possible to measure the signal in both the time and the
frequency domain for devices with reasonably low f0. To
accomplish this, the same device was pumped with a much
higher frequency. A low pass filter was then used to
separate the signal from the pump. A graph of the resulting
time domain response from a pumping near 147 × f0 is
shown in Fig. 4. Full movies of both the time and spectral
response are available either from the authors or in the
Supplemental Material [22]. While the response from
pumping close to different harmonics gives different
results, qualitatively, we observe behavior similar to that
described above. At this particular harmonic, we first see a
3 × f0 component as the comb lights, at about 12.6 MHz
from the bifurcation point. The 1 × f0 and 2 × f0 behaviors
appear to compete as the detuning is decreased, and the
system begins pulsing strongly just before the comb
collapses. An important aspect of these curves is that they
conclusively show that the comb frequencies are phase
locked. This is most clear around 7.4 MHz detuning, where
the evidence of both the first harmonic and multiple higher
harmonics are superimposed on the 2 × f0 oscillation.
In conclusion, we have demonstrated and theoretically

modeled broadband frequency-comb generation in highly
nonlinear superconducting resonant cavities. We have
fabricated and tested multiple devices with different

materials and free-spectral ranges and find highly repro-
ducible and reliable behavior. The stability of the comb
generation is expected to improve as magnetic shielding
and multiple-octave feedback is added [9]. The low loss
and lack of dispersion allow for multiple decades of comb
generation. Since the temperatures needed are achievable
with a closed cycle He compressor, we expect that these
devices will allow for relatively low-cost, frequency-agile
devices in the near future. The simplicity of these devices,
their low dispersion, high nonlinearity, and the fact that they
can be easily measured with standard rf techniques make
them an exciting platform to study nonlinear phenomena.
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