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Cross-spectral analysis is a mathematical tool for extracting the power
spectral density of a correlated signal from two time series in the pres-
ence of uncorrelated interfering signals. A set of conditions is demon-
strated and explained where the detection of the desired signal using
cross-spectral analysis fails partially or entirely in the presence of a
second uncorrelated signal. Not understanding when and how this
effect occurs can lead to dramatic under-reporting of the desired
signal. Theoretical and simulated demonstrations of this effect are
presented.
Introduction: The detection of a signal in the presence of interfering
noise always presents a challenge. The power spectral density (PSD)
of an ergodic and stationary signal can be determined from the cross-
spectrum even in the presence of interfering noise. If we can create
two reproductions of a desired signal, and the interfering noise in
each copy is not correlated, the average of the cross-spectrum can be
used to estimate the PSD of the desired signal even when the intensity
of the interfering noise is dominant. Cross-spectral analysis has been
used to improve the sensitivity of the measurements in the field of
modulation noise metrology for nearly 50 years [1–4]. The past 20
years have seen extensive use of cross-spectral analysis in the laboratory
[5–7]. It is generally understood that when a desired signal has some
level of correlation with an interferer, occasionally some level of cancel-
lation of signals can be observed. In this Letter, we demonstrate and
explain a set of conditions where the detection of the desired signal
using cross-spectral analysis collapses partially or entirely in the pres-
ence of a second uncorrelated interfering signal.

Cross-power spectral density: The cross-spectrum of two signals x(t)
and y(t) is defined as the Fourier transform of the cross-covariance func-
tions of x and y. However, from the Wiener-Khinchin theorem, it can be
implemented far more practically by the metrologist as

X (f ) = F{x(t)}

Y (f ) = F{y(t)}

Syx(f ) = 1

T
kY (f )X ∗(f )l

(1)

where X( f ) and Y( f ) are the Fourier transforms of x(t) and y(t) and 〈 〉
denotes an ensemble average. The cross-PSD Sxy( f ) can thus be deter-
mined from the ensemble average of the product of X( f ) and the
complex conjugate of Y( f ). T is the measurement time normalising
the PSD to 1 Hz and ‘*’ indicates the complex conjugate. Unlike a
normal PSD, the cross-PSD is a complex quantity. An excellent detailed
description of the cross-spectrum can be found in [8]. Although
two-sided Fourier transforms and spectra are typically preferred for
theoretical discussions, we will be using single-sided representations
exclusively in this Letter. Suppose, we have two signals x(t) and y(t),
each composed of four statistically independent, ergodic and random
processes a(t), b(t), c(t) and d(t) such that

x(t) = a(t)+ c(t)+ d(t)

y(t) = b(t)+ c(t)+ d(t)
(2)

We consider c(t) and d(t) to be the desired signals that we wish to
recover, and a(t) and b(t) are the uncorrelated interfering signals. The
Fourier transforms of these signals are represented by the corresponding
capitalised variables as

X (f ) = A(f )+ C(f )+ D(f )

Y (f ) = B(f )+ C(f )+ D(f )
(3)

and the corresponding cross-PSD is represented by

Sxy(f )
∣∣ ∣∣ = 1

T
kX (f )Y ∗(f )l
∣∣ ∣∣ = Sc(f )+ Sd(f ) (4)

The cross-terms in (4) average to zero and the cross-spectrum results in
the addition of Sc( f ) and Sd ( f ). In practice, when the cross-spectrum is
calculated, the contributions of a(t) and b(t) are reduced by the square
root of the observation time. The cross-PSD is unable to discern
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between the two correlated signals and converges to the combination
of both. However, if c(t) is correlated in x(t) and y(t) and d(t) is
anti-correlated (phase inverted) in x and y as in (5), an unexpected
outcome occurs

x(t) = a(t)+ c(t)+ d(t)

y(t) = b(t)+ c(t)− d(t)
(5)

The corresponding Fourier transforms and the cross-PSD are rep-
resented by

Sxy(f ) = 1

T
kCC∗(f )l− kDD∗(f )l
[ ] = Sc(f )− Sd(f ) (6)

What (6) tells us is that at any frequency f where the average magnitude
of signal C( f ) is equal to that of signal D( f ), the magnitude of the cross-
spectrum collapses to zero. Any contribution of the desired signal c(t),
or the interferer d(t), to the cross-spectral density is eliminated. This
occurs even though signals c(t) and d(t) are completely uncorrelated.
If the PSD of the two signals are exactly equal, the amount of observed
cancellation is limited to √N, where N is the number of averages. If
C( f ) and D( f ) have the same shape or slope against frequency, entire
octaves or decades of spectrum can be suppressed and be grossly under-
reported. If the PSD of C and D are not exactly equal, a partial cancella-
tion still occurs.

Simulation results: Mathworks Simulink simulations of the collapse of
the cross-spectral function were created using the block diagram shown
in Fig. 1. Two noise generators that can create white or frequency
dependent noise slopes were summed and connected to both inputs of
the cross-spectral density function. Two switches were provided to
allow for the negation (gain =−1) of either one or both signals to one
input of the cross-spectrum. Placing only one or the other switch, but
not both, into negation creates the collapse of the function (Fig. 2b).
If none or both signals are negated, a normal cross-spectrum occurs
(Fig. 2a). Finally, the collapse due to the interaction of two differently
sloped noise types creates a notch as shown in Fig. 3.
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Fig. 1 Block diagram for Mathworks Simulink simulation

Negation (gain =−1) is switch selectable for creating correlated and
anti-correlated inputs to cross-spectrum

–130
–140
–150

S
(f

),
 d

B
/H

z Sx(f)
Sy(f)
|Sxy(f)|

S
(f

),
 d

B
/H

z

–160
–170
–180

–130

0 0.1 0.2
offset frequency, Hz

b

a

0.3 0.4 0.5

–140
–150
–160
–170
–180

Fig. 2 Mathworks simulation results for the addition of two completely inde-
pendent noise sources, c(t) and d(t), each with PSD of −153 dB/Hz relative
to unity

a Cross-spectrum occurs when x(t) = y(t) = c(t) + d(t) and all three traces coincide
b Cross-spectrum occurs when x(t) = c(t) + d(t), and y(t) = c(t)− d(t)
Both Figures are for 1024 point fast Fourier transform (FFT) and 1000 averages.
The amount of cancellation is 15 dB and is proportional to the square root of the
number of averages
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Fig. 3 Mathworks simulation results for addition of two independent noise
sources, c(t) and d(t), with different frequency dependence

Signal Sc( f ) has PSD of −153 dB/Hz relative to unity
Signal Sd( f ) has f

−1 slope and intersects signal Sc(f) at frequency of 0.164 Hz
Cross-spectrum is calculated with x(t) = c(t) + d(t), and y(t) = c(t)− d(t). Both
figures are for 1024 point FFT and 1000 averages
Conclusion: We demonstrate and explain a condition where the detec-
tion of a desired signal in cross-spectral analysis fails partially or
entirely. If two time series, each composed of the summation of two
fully independent signals, are correlated in the first time signal and
anti-correlated (phase inverted) in the second, and have the same
average spectral magnitude, the cross-spectrum power density
between the two time series collapses to zero. These two conditions
may occur only at localised offset frequencies or over a wide range of
frequency of the cross-spectrum. The anti-correlation of one of the
signals relative to the other may be caused by phase inversion, negation,
time-delay or some other mechanism. In the future, we will report in
detail the effect of this phenomenon in phase noise metrology and
propose solutions for its mitigation.
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