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Abstract:  GPS disciplined oscillators (GPSDOs) are commonly used as references for 
frequency calibrations.  Over long intervals, a GPSDO is an inherently accurate source of 
frequency because it is continuously adjusted to agree with the Coordinated Universal Time 
(UTC) time scale maintained by the United States Naval Observatory (USNO).  However, most 
frequency calibrations last for intervals of one day or less, and it can be difficult for metrologists 
to determine the uncertainty of a GPSDO during a short interval, and even more difficult to 
prove their uncertainty claims to skeptical laboratory assessors.  This paper can serve as a guide 
to metrologists and laboratory assessors who work with GPSDOs as frequency standards.  It 
describes the relationship between GPS time and Coordinated Universal Time (UTC) and 
explains why GPS time is traceable to the SI.  It discusses how a GPSDO utilizes the GPS 
signals to control the frequency of its local oscillator.  It explains how to estimate frequency 
stability, and how to apply estimates of frequency stability to determine the uncertainty of a 
GPSDO used as the reference for a frequency calibration. 

1.  Introduction 
In calibration laboratories, frequency measurements generally focus on the electrical signals 
produced by oscillators.  For the purposes of this paper, an oscillator is a device that produces 
electrical signals at a specific frequency, typically in the form of a sine wave.  Several types of 
mechanical and atomic oscillators exist, but only one, the cesium oscillator, is currently defined 
as a primary frequency standard.  This is because the International System (SI) second (s), the 
base unit of time interval, has been defined as 9,192,631,770 energy transitions of the cesium 
atom since 1967 [1].  Frequency, expressed in units of hertz, is the reciprocal of time interval, 
and is measured by counting the number of repetitive events that occur during the SI second.   

 
National metrology institutes and primary standards laboratories often have sufficient 

resources to operate one or more cesium oscillators.  However, cesium oscillators have a limited 
life expectancy [2] and a high cost, and not every calibration laboratory wants, or can afford, to 
own one.  The major component of a cesium oscillator, the beam tube, typically lasts for five to 
ten years, and replacing the beam tube can cost nearly as much as replacing the entire device. In 
addition, cesium oscillators can require occasional adjustment. 

 
For these reasons, many, if not most, calibration laboratories now operate a Global 

Positioning System disciplined oscillator (GPSDO) as their frequency standard.  A GPSDO has 
many advantages.  For example, it costs much less than a cesium oscillator to initially purchase, 
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sometimes as much as 90 % less.  It also costs less to own, because there is no cesium beam tube 
to replace.  If desired, a calibration laboratory can buy multiple GPSDOs for less than the cost of 
a cesium standard, and use the additional standards for crosschecks and redundancy.  Unlike a 
cesium standard, a GPSDO can recover time by itself, meaning that it can decode time-of-day 
messages sent by GPS and synchronize an on-time pulse to Coordinated Universal Time.  This is 
important to laboratories that need time synchronization capability. The accuracy and stability of 
a GPSDO in the long-term can be superior to that of a cesium oscillator.  And finally, a GPSDO 
never requires adjustment, because its frequency is controlled by signals broadcast from satellites. 
 

There are, of course, some disadvantages.  For example, a GPSDO requires access to a 
rooftop location so that an outdoor antenna can be mounted, whereas a cesium oscillator can be 
operated anywhere where electric power is available.  In addition, cesium oscillators are 
autonomous and independent sources of frequency, which means they can operate without input 
from another source.  A GPSDO can operate properly only where signals from the GPS satellites 
are available, and are not suitable for applications that need an autonomous frequency source.  In 
most cases, however, calibration laboratories can easily mount an antenna and don’t need an 
autonomous frequency source.  Thus, the acquisition of a GPSDO as a practical, lower cost 
alternative to a cesium oscillator often makes sense, for both economic and technical reasons [3]. 

 
The widespread use of GPSDOs as frequency standards in calibration laboratories has 

created some confusion among laboratory assessors, who sometimes consider the device as a 
“black box” and doubt a laboratory’s traceability and uncertainty claims.  This confusion is 
understandable because the assessor has a hard task, they must determine whether or not a 
GPSDO establishes traceability to the SI, which, as a prerequisite, requires knowing the 
measurement uncertainty of the frequency produced by a GPSDO.  This paper attempts to 
eliminate this confusion by discussing how a GPSDO works.  It begins by describing the 
relationship between GPS time; Coordinated Universal Time (UTC); the UTC time scale 
maintained at the United States Naval Observatory, UTC(USNO); and the UTC time scale 
maintained at the National Institute of Standards and Technology, UTC(NIST). 

 
2. GPS Frequency and its Relationship to the SI Second 
UTC, computed monthly by the Bureau International des Poids et Mesures (BIPM), is the 
official world time scale.  About 70 laboratories, a number that continues to gradually increase, 
participate in the calculation of UTC by sending data from their local time scales to the BIPM.  
They collect this data through local clock difference measurements and through international 
clock comparisons performed with various satellite time transfer techniques.  The BIPM 
publishes a monthly document called the Circular T that shows the time differences between 
each of the local time scales, known as UTC(k) where k designates the laboratory, and UTC itself.   
 

The BIPM collects and averages data from hundreds of clocks that contribute to the various 
UTC(k) time scales, and also from the primary frequency standards maintained by a few national 
metrology institutes, before calculating UTC.  As a result, UTC represents the best available 
realization of the SI second.  However, UTC is a post processed, virtual time scale that does not 
generate a physical signal.  Fortunately, the local UTC(k) time scales operate in real time and do 
generate physical signals that closely agree with the UTC calculation, often to within 10 ns in 
time and to within parts in 1015 in frequency.  The laboratories that contribute to UTC and have 
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their data appear on the Circular T are participants in a “key comparison”, currently designated 
as CTF-K001.UTC.  Participation in this key comparison is an internationally accepted method 
of establishing traceability to the SI.  There is no separate key comparison for frequency, thus the 
Circular T results provide traceability to both the second and the hertz [4]. 
 

GPS time is referenced to UTC(USNO), and the UTC(USNO) time scale appears on the 
Circular T, so the traceability chain between GPS time and the SI second is always intact.  In 
fact, the USNO contributes more clock data to the UTC calculation than any other laboratory.  
GPS time differs from UTC(USNO) because GPS is a continuous time scale, whereas all 
representations of UTC are corrected periodically with the insertion of leap seconds.  The zero 
time-point of the GPS time scale is defined as midnight on the night of January 5, 1980/morning 
of January 6, 1980, so GPS time has ignored the leap seconds that have occurred since 1980.  
There is also a small time difference (in nanoseconds) between GPS time and UTC(USNO).  
However, subframe 4 of the navigation message broadcast by the satellites includes a leap 
second correction and a UTC(USNO) time difference correction, and both corrections are 
applied by default by all modern GPSDOs (most models do not even allow the user to turn the 
corrections off).  Therefore, UTC(USNO) is the time scale distributed to users of GPS receivers 
and GPSDOs worldwide [5, 6]. 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 illustrates the close relationship between UTC and UTC(USNO) by showing the 

differences between the two time scales for a five year period (2008-2012).  These measurements 
were obtained from the Circular T (www.bipm.org), which provides data at five day intervals.  
Note that the time difference between UTC and UTC(USNO) was always within ±10 ns, and the 
average time difference was 1.7 ns.   The red trend line represents a linear least squares curve fit.  
The UTC(NIST) time scale also closely tracked UTC from 2008 to 2012, as indicated by the 

Figure 1.  Time differences between UTC and UTC(USNO) from 2008-2012. 
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Circular T and graphed in Fig. 2.  The time difference between UTC and UTC(NIST) was 
always within ±20 ns and the average time difference was 1.2 ns. 

 

 
 
 
The UTC(NIST) and UTC(USNO) time scales are continuously compared to each other 

using a variety of satellite time transfer methods, and can be considered as equivalent for nearly 
all metrological and calibration purposes [7].  Figure 3 shows the time difference between NIST 
and USNO for 2008 to 2012.  Again, the time differences always remained within ±20 ns and the 
average time difference was 0.5 ns. 

 

 
 

Figure 2.  Time differences between UTC and UTC(NIST) from 2008-2012. 

Figure 3.  Time differences between UTC(NIST) and UTC(USNO) from 2008-2012. 
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When the on-time pulse from a calibrated GPS receiver (with the UTC(USNO) corrections 
turned on) is compared to UTC(NIST), the resulting data are similar to Fig. 3 (slightly different 
due to receiver noise and because the data were collected at different sampling times).  Figure 4 
shows such a comparison for a five year interval (2008-2012), with values reported for each day, 
as opposed to the five day interval of Circular T.  The receiver is a low cost L1 band device 
maintained at NIST in Boulder, Colorado.  The time differences rarely exceeded ±20 ns and the 
average time difference was -1.8 ns (there appears to have been a bias of about 2 ns in the 
receiver delay calibration). 

 

 

 
3. The Accuracy of GPS Frequency 
The graphs shown in Figs. 1 through 4 are known as phase or time difference graphs, and utilize 
the standard Cartesian x/y format.  The x-coordinate indicates elapsed time.  The values plotted 
as the y-coordinate represent the change in phase, ∆Φ, between the two electrical signals that are 
being compared to each other.  However, phase changes are usually measured with an instrument, 
in this case a time interval counter; that displays results in units of time and not in radians or 
degrees. Thus, the y-coordinate in Figs. 1 through 4 is labeled to show the change in time, or ∆t. 

 
Graphs of phase or time difference can be used to obtain the difference in frequency, often 

called the frequency offset, between two signals.  The equation for estimating frequency offset in 
the frequency domain is 

 

                           𝑓𝑜𝑓𝑓 =
𝑓𝑚𝑒𝑎𝑠 − 𝑓𝑛𝑜𝑚

𝑓𝑛𝑜𝑚
 ,                                                            (1)                                                                           

Figure 4.  Time differences between UTC(NIST) and UTC(USNO) from GPS receiver, 2008-2012. 
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where foff is the frequency offset, fmeas is the actual frequency in hertz reported by the 
measurement, and fnom is the nominal frequency in hertz that the oscillator would ideally produce.  
The nominal frequency is usually listed on the label next to the oscillator’s output connector, for 
example, “10 MHz.”  Note that fmeas always has an associated measurement uncertainty, but that 
fnom does not; it is an ideal (theoretical) value with no uncertainty.  Note also that the nominal 
frequency is included in both the numerator and the denominator of Eq. (1).  Thus, the unit of 
hertz cancels and the value for foff is dimensionless and will always be relative to the nominal 
frequency.  For example, if foff is 1 × 10-6 then the frequency offset would be 1 Hz for an 
oscillator with a nominal frequency of 1 MHz, or 10 Hz for an oscillator with a nominal 
frequency of 10 MHz. 
 

Eq. (1) is often simplified in the literature as 
 

                                              𝑓𝑜𝑓𝑓 =  
∆𝑓
𝑓

 

 

,                                                           (2)                                                                              

where foff is the dimensionless frequency offset, ∆f is the difference between the measured and 
nominal frequency in hertz, and f is the nominal frequency in hertz.   
 

Even though the measurements shown in Figs. 1 through 4 (Section 2) were made in the time 
domain by measuring the time interval difference between two clocks, they can still be used to 
obtain the frequency offset, foff.  This is because frequency is the reciprocal of period, which is 
expressed as a time interval.  A mathematical definition of frequency is 

 

                                                      𝑓 =
1
𝑇

 
 

,                                                      (3)                                                      

where T is the period of the signal in seconds, and f is the frequency in hertz.  This can also be 
expressed as  
 

                                            𝑓 =  𝑇−1 
 

.                                                          (4)                                                                                 

By performing mathematical differentiation on the frequency expression with respect to time 
and substituting in the result, it can be shown that the average dimensionless difference in 
frequency is equivalent to the average dimensionless difference in time, or that ∆f / f is 
equivalent to −∆t / T [8].  For example, 

 

       ∆𝑓 = −𝑇−2∆𝑡 =  −
∆𝑡
𝑇2

= −
∆𝑡
𝑇
𝑓 

 

,                                                            (5)                                                                           

 
therefore 
 

                                   𝑓𝑜𝑓𝑓 =
∆𝑓
𝑓

= −
∆𝑡
𝑇

 ,                                                            (6)                                                                               

 
where ∆t is the change in time, and T is the duration of the measurement.  If there were only two 
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time interval measurements (TI1 and TI2), then T would be the interval between the two 
measurements and frequency offset in the time domain could be expressed as   
 

                      𝑓𝑜𝑓𝑓 =
𝑇𝐼2 −  𝑇𝐼1

𝑇
=  −

∆𝑡
𝑇

 

 

.                                                     (7) 

To keep the sign correct and in agreement with the slope of the phase graph, note that the 
first reading must be subtracted from the second reading. 

 
In practice, not just two, but instead a large number of time interval measurements are 

usually recorded to estimate frequency offset.  In that case, T is simply the interval between the 
first and last measurement.  It is common practice to fit a linear least squares line to the phase 
data, and to use the slope of the least squares line to estimate Δt.  Therefore it is also common for 
metrologists, and only a slight oversimplification, to state that frequency offset is equivalent to 
the slope of the phase.   

 
Table 1 shows the frequency offset, foff, of UTC(USNO) and UTC(NIST) with respect to 

UTC, and for UTC(NIST) with respect to UTC(USNO) as obtained from Circular T, and for 
UTC(NIST) with respect to UTC(USNO) as obtained from a GPS receiver.  The frequency offset 
values were obtained from Figs. 1 through 4 by estimating Δt with a linear least squares line.  
The frequency differences between the various time scales are very small when measured over a 
long interval, parts in 1017.  These numbers indicate that a GPSDO is inherently accurate, at least 
three orders of magnitude more accurate in the long term than commercial cesium standards.  
The accuracy of a cesium standard with respect to UTC is usually no better than a few parts in 
1014, because they do not have the benefit of being steered to agree with UTC. 

 
Table 1.  Frequency comparisons between UTC, UTC(USNO), and UTC(NIST). 

 
Comparison  Frequency  

Offset 
Data Source 

UTC – UTC(USNO) 0.9 × 10-17 Fig. 1 
UTC – UTC(NIST) 4.5 × 10-17 Fig. 2 
UTC(NIST) – UTC(USNO) -3.6 × 10-17 Fig. 3 
UTC(NIST) – UTC(USNO) from GPS receiver output -1.4 × 10-17 Fig. 4 

 
 

4. Basic Principles of a GPS Disciplined Oscillator 
 

Disciplined oscillators allow accurate frequency and time signals, controlled by an external 
reference, to be simultaneously generated at multiple sites.  A disciplined oscillator has at least 
three parts:  a local oscillator (LO), a receiver that collects data transmitted from a reference 
source, and a frequency or phase comparator.   The comparator measures the difference between 
the LO and the reference, and this difference is converted to a frequency correction that is 
periodically applied to the LO.  By continuously repeating this process, the LO is disciplined so 
that it replicates the performance of the reference.  No manual adjustment is ever necessary. 
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In the case of a GPSDO, the external reference consists of signals from the GPS satellites, 
and the information contained in these signals is used to control the frequency of a local quartz 
or rubidium oscillator.  As noted in Section 2, GPS signals are kept in agreement with 
UTC(USNO).  Nearly all GPSDOs use the coarse acquisition (C/A) code on the L1 carrier 
frequency (1575.42 MHz) as their incoming reference signal.  Frequency and time are 
byproducts of GPS, because the system’s main purpose is to serve as a positioning and 
navigation service.  It is for this reason, however, that the frequency and time signals from GPS 
can be trusted.  They must be accurate and stable to within parts in 1014 over a 12-hour averaging 
period in order for GPS to meet its positioning and navigation specifications.  The best GPSDOs 
transfer as much of the inherent accuracy and stability of the satellite signals as possible to the 
signals generated by the LO.  
 

GPSDO manufacturers seldom disclose how their products work, but a few basic 
mechanisms are found in most designs.  The GPS signals are typically received with a small 
receiver and antenna.  The receiver outputs a 1 pulse per second (pps) signal.  A phase detector 
measures the difference between the 1 pps signal from the GPS receiver and a signal from the 
LO.  The LO typically has a nominal frequency of 10 MHz, so its signal is divided to a lower 
frequency (often to 1 pps) prior to this phase comparison. A microcontroller reads the output of 
the phase detector and records the phase difference.  It then sends this difference to a control 
loop, which is often some variation of a proportional-integral-derivative (PID) controller [9] that 
is typically implemented in software.  The PID serves as the control portion for a phase locked 
loop (PLL) that keeps the device locked to GPS by issuing frequency corrections to the LO [10, 
11].  The correction interval can be either fixed or variable, depending upon the design and time 
constant of the PID.  If the GPSDO is properly designed, corrections should be issued before the 
before the uncorrected LO becomes less stable than the GPS reference.  As a result, the 
correction interval is usually less than one hour, and in cases where the LO is not particularly 
stable, it could be just a few seconds.    

  

 
Figure 5. A GPSDO where the local oscillator is adjusted through voltage corrections. 
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If the LO is a voltage controlled oscillator (VCO), the frequency correction is sent by varying 
the control voltage sent to the VCO, to keep the phase difference within a given range (Fig. 5).  
The GPSDO is locked when the phase of the LO has a constant offset relative to the phase of the 
GPS signals.  Ideally, the control loop must be loose enough to ignore the short-term fluctuations 
of the GPS signals, reducing the amount of phase noise and allowing the LO to provide 
reasonably good short-term stability.  However, the loop must be tight enough to respond rapidly 
to conditions when the LO is unlocked, and to allow the GPS signals to control the LO frequency 
so that it is accurate and stable in the long term.  The control software often compensates not 
only for the phase and frequency changes of the LO, but also for the effects of aging, 
temperature and other environmental parameters.  
 

Another type of GPSDO design does not correct the frequency of the LO.  Instead, the output 
of a free running LO is sent to a frequency synthesizer and corrections are applied to the output 
of the synthesizer (Fig. 6).  A high resolution direct digital synthesizer (DDS) allows for very 
small frequency corrections.  For example, 1 μHz resolution at 10 MHz allows instantaneous 
frequency corrections of 1 × 10-13.  In addition, allowing the local oscillator to free run often 
results in better short-term performance than the VCO method, where unexpected shifts in the 
control voltage can produce unwanted adjustments in the output frequency.   
 
 

 
Figure 6. A GPSDO where the output frequency is synthesized. 

 
 
5. The Stability of Frequency Produced by a GPSDO 
 
Sections 2 and 3 demonstrated that the frequency produced by a GPSDO is inherently accurate 
when measured over a long interval, because GPS time is constantly adjusted to agree with UTC.  
Therefore, if a GPSDO is used as the reference for a frequency calibration that lasts for days or 
weeks, it should be sufficiently accurate to calibrate any device that a calibration laboratory is 
likely to encounter, including any cesium oscillator.  
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In practice, however, a frequency calibration doesn’t last for days or weeks.  The actual 
duration might be as short as one second and will seldom exceed one day.  Therefore, 
determining the uncertainty of a frequency calibration requires knowledge of the GPSDO’s 
stability over a period that equals the period of the calibration.  In other words, if our frequency 
calibration lasts for one hour, we need to know how stable our reference GPSDO is during a one 
hour period.   

 
Frequency stability differs from frequency offset or accuracy.  Frequency stability indicates 

how well an oscillator can produce the same frequency offset over a given time interval.  Any 
frequency that stays the same is a stable frequency, regardless of whether the frequency is "right" 
or "wrong" with respect to its nominal value.  It is important to realize that the accuracy of an 
oscillator over a given interval can never be better than its stability over that same interval.  
Several techniques for measuring stability are described in [12], and GPSDO manufacturers 
normally include stability estimates in their specifications.   

 
Frequency metrologists generally rely on non-classical statistics to estimate the frequency 

stability of oscillators.  The most common statistic employed for stability estimates is often 
called the Allan variance in the literature, but because it actually is the square root of the 
variance, its proper name is the Allan deviation (ADEV), expressed mathematically as σy(τ).  
Similar to the standard deviation, ADEV is better suited for frequency metrology because it has 
the advantage of being convergent for most types of oscillator noise [12, 13, 14].  The equation 
for ADEV using frequency measurements and non-overlapping samples is 

 

             𝜎𝑦(𝜏) =  �
1

2(𝑀− 1)
�(𝑦�𝑖+1 −  𝑦�𝑖)2
𝑀−1

𝑖 =1

 
,                                                    (8) 

 
where yi is the ith in a series of M dimensionless frequency offset measurements averaged over a 
measurement or sampling interval designated as τ.  Note that while standard deviation subtracts 
the mean from each measurement before squaring their summation, ADEV subtracts the 
previous data point.  Since stability is a measure of frequency fluctuations and not of frequency 
offset, the differencing of successive data points is done to remove the time-dependent noise 
contributed by the frequency offset [13]. Also, note that the y  values in the equation do not refer 
to the average or mean of the entire data set, but instead imply that the individual measurements 
in the data set can be obtained by averaging. 
 

The equation for ADEV using phase measurements and non-overlapping samples is 
 

    𝜎𝑦(𝜏) = �
1

2(𝑁 − 2)𝜏2
�(𝑥𝑖+2 − 2𝑥𝑖+1 + 𝑥𝑖)2
𝑁−2

𝑖 = 1

   

 

,                                                      (9) 

where xi is the ith in a set of N phase measurements spaced by the measurement interval τ.  
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To improve the confidence of a stability estimate, ADEV is normally used with overlapping 
samples that allow estimating stability with all possible combinations of the data set.  This is the 
form of ADEV most widely found in the frequency metrology literature.  The equation for 
ADEV using frequency measurements and overlapping samples is 

 

      𝜎𝑦(𝜏) = � 1
2𝑚2(𝑀− 2𝑚 + 1)

� � � [𝑦𝑖+𝑚  −  𝑦𝑖

𝑗 + 𝑚 − 1

𝑖=𝑗

]�

2𝑀−2𝑚 + 1

𝑗=1

 

 

.                      (10) 

The equation for ADEV using phase measurements and overlapping samples is 
 

                     𝜎𝑦(𝜏) = �
1

2(𝑁 − 2𝑚)𝜏2
� (𝑥𝑖+2𝑚 − 2𝑥𝑖+𝑚 + 𝑥𝑖)2
𝑁−2𝑚

𝑖 =1

   

 

.                    (11) 

The overlapping versions of ADEV add an averaging factor, m, that is found in both Eq. (10) 
and Eq. (11).  To understand the averaging factor, consider that τ0 is the shortest interval at which 
data are taken.  For example, if the stability of the device was estimated by measuring its 
frequency or phase every second, then τ0 = 1 s.  To obtain stability estimates for longer intervals, 
τ0 is simply multiplied by m, thus τ = mτ0.  Even though the overlapping samples are not 
statistically independent, the number of degrees of freedom still increases, thus improving the 
confidence in the stability estimate [12, 14]. 

 
One important advantage of ADEV over standard deviation is its ability to estimate stability 

over different intervals from the same data set.  A typical ADEV graph plots log τ on the x-
coordinate to indicate the averaging period, and log σy(τ) on the y-coordinate to indicate 
dimensionless frequency stability.  These graphs are often referred to colloquially as “sigma-tau” 
graphs.  

 
Most ADEV graphs found in the literature were generated using the octave method, where 

each successive value of τ is twice as long as the previous value.  This method saves 
computational time, but as computers have become faster it has become more common to 
estimate ADEV for all possible values of τ.  An “all-tau” plot can thus be used to estimate the 
frequency stability at any interval, making it possible to exactly match the period of the 
calibration where the GPSDO was used as the reference.   

 
Figure 7 shows an “all tau” graph from a GPSDO that was calibrated at NIST.  The device 

was stable to less than 2 × 10-12 at all averaging periods (τ0 = 1 minute).  This indicates a stable 
LO, which is this case was a rubidium device.  The initial “bump” in the red line indicates the 
correction interval described in Section 4 when the LO is being adjusted to agree with the GPS 
signals.  The correction interval appears to be near 1000 s.  Smaller “bumps”, which have been 
attenuated by averaging for longer intervals, appear at multiples of the correction interval.   This 
type of structure is typically found in frequency stability plots of disciplined oscillators. 
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Figure 7.  Overlapping ADEV plot (“all-tau”) from a GPSDO calibration at NIST. 

 
 

 
Figure 8.  Determining the type of oscillator noise from a frequency stability graph. 

 
In addition to estimating stability, ADEV can help identify the types of oscillator noise by 

taking the slope of the line on an ADEV graph (Fig. 8).  Five noise types are commonly 
discussed in the frequency metrology literature: white phase and flicker phase (both have a slope 
of τ-1 when used with standard ADEV), white frequency (a slope of τ-1/2), flicker frequency (τ0, 
no slope), and random walk frequency (a slope of τ1/2).   For both types of phase noise, the 
stability is improving at a rate proportional to the averaging period.  For white frequency noise, 
the stability is still improving, but the rate of improvement has slowed down and is now 
proportional to the square root of the averaging period.  When the flicker frequency region of an 
ADEV graph is reached, the oscillator has reached a noise floor that shows its best possible 
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stability (often called the “flicker” floor).  When this point is reached, there is nothing to be 
gained by more averaging.  In fact, if you continue to average, the stability will start to get worse 
because the noise type becomes random walk, meaning that the oscillator is now producing 
successive random steps in frequency [12]. 

 
The noise analysis shown in Fig. 8 is commonly found in the literature, but it is important to 

know that the intended use of ADEV was to estimate the frequency stability of free running, 
rather than disciplined oscillators.  The flicker frequency region of an ADEV graph will never be 
reached with a GPSDO because its frequency is continuously being corrected to agree with 
UTC(USNO), which, as indicated in Table 1, is essentially equivalent to UTC and UTC(NIST).  
Notice, for example, that the stability in Fig. 7 has dropped below 1 × 10-13 at τ = 1 day, and 
would continue to get smaller indefinitely if more data were collected. There are periods when 
this rate of improvement will slow down, and other periods where the stability temporarily gets 
worse due to frequency corrections or very low frequency noise sources such as sunrise and 
sunset, but in theory a GPSDO will not reach a noise floor.  Its stability, and therefore its 
frequency uncertainty, will continue to get smaller if the calibration period gets longer.  This 
means, for example, that if a cesium oscillator were calibrated over the course of a year, it should 
make little difference which make or model of GPSDO was used as the reference.  All models 
would produce similar results (with very small uncertainties) if they were operating properly and 
remained locked to the GPS satellites during the entire calibration. 

 
There can be, however, significant differences in the uncertainty of a GPSDO during a 

frequency calibration, which usually lasts for one day or less.  The short-term stability of a 
GPSDO, at intervals shorter than the correction interval, should be identical to the short-term 
stability of its free running LO.  Its medium-term stability, at intervals longer than the correction 
interval but shorter than one day, is design dependent and influenced by many factors.  These 
factors include the quality of the receiver and antenna, the stability of the LO, the resolution of 
the comparator, the correction method, the correction uncertainty, and the correction interval.   

 
Table 2 shows the frequency stability of ten GPSDOs calibrated at NIST, where τ is equal to 

one second (when data were available), one minute, one hour, and one day.  The ten devices 
were each manufactured by different companies, but are provided only as an example, and of 
course do not represent all available models. 

 
As Table 2 indicates, a number of GPSDOs are stable to within parts in 1012 at τ = 1 s.   Even 

so, some GPSDOs have low cost local oscillators that are not particularly stable at short 
averaging periods, and there are advantages in collecting more data, so it is best if a frequency 
calibration lasts for at least a few seconds, regardless of the measurement requirements.  Each 
GPSDO reached a stability of at least 1 × 10-11 at τ = 1 minute and of at least 6 × 10-12 at τ = 1 
hour.  A good metric to use when evaluating GPSDO performance is their frequency stability at 
τ = 1 day.  Stability of 1 × 10-13 or less at τ = 1 day normally indicates an instrument of high 
quality, and six of the ten devices tested reached or exceeded this specification.   It is interesting 
to note that a few GPSDOs even approach the stability of the best commercially available cesium 
standards at τ = 1 day, which, according to their manufacturer’s specification, is about 0.3 × 10-13. 
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Table 2.  Frequency stability of various GPSDOs at intervals of one day or less. 
 

GPSDO 
 ID Code 

 Overlapping Allan Deviation, σy(τ) 

 GPSDO Local 
Oscillator 

Type 

1 second 1 minute 1 hour 1 day 

SYX Rubidium NA 1 × 10-11 7 × 10-13 0.5 × 10-13 
ET6 Rubidium NA 1 × 10-12 4 × 10-13 0.6 × 10-13 
ERT Rubidium 6 × 10-12 1 × 10-12 6 × 10-13 0.7 × 10-13 
AR1 Quartz 6 × 10-12 1 × 10-11 1 × 10-12 0.9 × 10-13 
BR8 Quartz 5 × 10-10 4 × 10-12 4 × 10-12 1 × 10-13 
GD3 Quartz NA 6 × 10-12 3 × 10-12 1 × 10-13 
PT1 Quartz 4 × 10-12 1 × 10-11 4 × 10-12 3 × 10-13 
HPZ Quartz 1 × 10-12 2 × 10-12 1 × 10-12 4 × 10-13 
TS6 Rubidium 6 × 10-12 8 × 10-13 6 × 10-12 4 × 10-13 
FL9 Rubidium 7 × 10-12 3 × 10-12 3 × 10-13 7 × 10-13 

 
6.  Proposed Method for Uncertainty Estimation 
 
The uncertainty analysis of frequency measurement referenced to GPS is much simpler than the 
uncertainty analysis of a time measurement.  This is mainly because equipment delays (the 
delays through cables, antennas, GPS receivers, and so on) do not have to be calibrated if they 
are known to be constant.  The uncertainty of the antenna survey is also much less of a problem.  
The survey of the antenna position, usually done automatically by the GPSDO when first 
installed, is usually accurate to < 1 m for the determination of latitude and longitude.  The 
antenna survey can produce errors in altitude estimation that sometimes exceed 10 m.  This 
altitude determination error can contribute significant uncertainty to time measurements (> 30 ns 
in some cases), but does not impact frequency calibrations. 
 

Sections 2 and 3 demonstrated that GPS time is traceable to the SI and is inherently accurate.  
This accuracy is transferred to the LO with the techniques described in Section 4.  These 
techniques essentially “tune” the GPSDO frequency to agree with UTC, and we can assume that 
a GPSDO is accurate if locked.  However, as noted previously, the accuracy of an oscillator over 
a given interval can never be better than its stability over that same interval.  Therefore, Section 
5 described how to estimate the frequency stability of a GPSDO at various intervals by use of the 
Allan deviation.  Assuming that a GPSDO is locked and working properly, this stability 
information is all that is necessary to report the expanded uncertainty of the frequency produced 
by a GPSDO.  By international recommendation [15], expanded measurement uncertainty is 
reported in the form 
 

                                            𝑌 =  𝑦 ± 𝑈 
 ,                                                        (12)                                                                                 

where Y is the measurand or the quantity being measured (in this case frequency), y is the best 
estimate of the measurand (in this case the average frequency with respect to the SI), and U is the 
expanded measurement uncertainty.   
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As indicated in Table 1, the frequency offset of a GPSDO with respect to UTC is small, 
measured in parts in 1017 over a long interval, thus for all practical purposes y can be regarded as 
0.  The range from y – U to y + U is expected to “encompass a large fraction of values than 
reasonable be attributed to Y [15].”  This is what ADEV accomplishes; it shows the deviation in 
the average frequency at a given interval by encompassing nearly all types of oscillator noise.  
Thus, a convenient and robust way to estimate U for a GPSDO, is simply to multiply ADEV by 2 
to obtain a k = 2 coverage factor.  The value chosen for ADEV should be at τ = fcd, where fcd is 
the duration of the frequency calibration that utilized the GPSDO as its reference. 
 

The frequency stability of a GPSDO for periods from out to one day or longer can be 
obtained by having the device calibrated by a national metrology institute such as NIST, from 
laboratory measurements [12], or if available, from calibration data or specifications provided by 
the manufacturer.   

 
It is important for metrologists and for laboratory assessors to be able to distinguish between 

reasonable and unreasonable uncertainty claims.  For example, if a laboratory performs 
frequency calibrations over a one day interval with a GPSDO, a measurement uncertainty claim 
of 1 × 10-14 is probably not possible, and should be closely scrutinized.  On the other hand, an 
uncertainty of 1 × 10-13 is possible with the right device, and 1 × 10-12 should be achievable with 
any model of GPSDO, provided that it has been properly installed and is not malfunctioning.  
Calibrations performed over intervals of less than one day will, of course, result in larger 
uncertainties as indicated in Table 2.  Finally, all calibration laboratories should have procedures 
in place to determine whether a GPSDO is locked and working properly, and should be prepared 
to show those procedures to assessors [3].   

 
7. Summary 
Many, if not most, calibration laboratories now operate a GPSDO as their frequency standard, a 
decision that makes sense, for both economic and technical reasons.  GPSDOs produce signals 
that are inherently accurate and traceable to the SI, because the devices are continuously being 
adjusted to agree with UTC, the best possible realization of the SI second.  Even so, laboratory 
assessors are sometimes skeptical of the traceability and uncertainty claims made by calibration 
laboratories that employ GPSDOs as frequency standards, especially when the duration of a 
frequency calibration is one day or less.  To help alleviate this skepticism, this paper has 
described the relationship between GPS time and UTC, and provided a simple but robust method 
for determining the uncertainty of frequency measurements referenced to a GPSDO. 
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