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Determination of the 5d6s 3D1 state lifetime and blackbody-radiation clock shift in Yb
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The Stark shift of the ytterbium (Yb) optical clock transition due to room-temperature blackbody radiation
is dominated by a static Stark effect, which was recently measured to high accuracy [J. A. Sherman et al.,
Phys. Rev. Lett. 108, 153002 (2012)]. However, room-temperature realization of the clock at 10−18 uncertainty
requires a dynamic contribution to this static approximation. This dynamic term largely depends on a single
electric dipole matrix element for which theoretically and experimentally derived values disagree significantly.
We determine this important matrix element by two independent methods, which yield consistent values. Along
with precise radiative lifetimes of 6s6p 3P1 and 5d6s 3D1, we report the clock shift due to an ideal 300 K blackbody
environment to 0.05% precision.
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Alkaline-earth-metal-like atoms, such as Yb [1],
Sr [2–4], and Hg [5], feature intrinsically narrow 1S0 ↔ 3P0

optical transitions capable of serving as stable and accurate
frequency references [6] when laser cooled and held in an
optical lattice trapping potential [7,8]. Accurate realization
of optical clock transition frequencies advances timekeeping
technology and enables new tests of physics [9,10].

Atomic frequency references are defined by ideal systems:
atoms at rest in a null-field, zero-temperature environment
[11]. Where physical realizations deviate from ideality, re-
searchers must correct measured transition frequencies and,
importantly, establish the uncertainty present in these correc-
tions. Here we explore an optical clock correction important
to many atomic species [12] arising from room-temperature
blackbody radiation (BBR), specifically treating the case of
Yb.

The polarizing effect of BBR largely mimics that of a static
electric field due to the low frequency of BBR relative to optical
transitions coupling to the clock states (see Fig. 1). Writing the
BBR clock frequency shift [13]

�νBBR = −1

2

�α(0)

h
〈E2〉T [1 + ηclock(T )], (1)

highlights its similarity to a static Stark shift, where
�α(0) is the differential static polarizability between
clock states |g〉 ≡ |6s2 1S0〉 and |e〉 ≡ |6s6p 3P0〉, 〈E2〉T ≈
(8.3193V/cm)2(T/300K)4 is the time-averaged electric field
intensity of BBR at absolute temperature T [14], and a small
dynamic factor ηclock accounts for the frequency dependence
of �α(ω). The differential static polarizability has recently
been measured to high accuracy [15] (a.u. indicates atomic
units [16]),

�α(0) ≡ αe(0) − αg(0) = 145.726(3) a.u. (2)

In practice, an imprecise thermal environment adds uncertainty
to �νBBR; an effective temperature uncertainty of 1 K due to
nonuniformity sets a clock uncertainty of 3.3 × 10−17. But this
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uncertainty is readily reduced by enclosing the atomic sample
in a radiation shield at a well-defined temperature [3,17], a
technique being developed for room-temperature or cryogenic
operation.

Here we focus on a critical limitation set by the dynamic
term ηclock. As one may infer from Fig. 1, this factor depends
strongly on a single electric dipole matrix element, the
6s6p 3P0 ↔ 5d6s 3D1 coupling [13]:

D ≡ |〈6s6p 3P0||D||5d6s 3D1〉|.
However, a measurement [18] and recent precise calculation
[19] yield significantly different values for D, resulting in
a 1 × 10−17 clock uncertainty. Here we present two distinct
determinations of D. First, we describe a semiempirical tech-
nique that combines existing polarizability data with atomic
theory to constrain D. Then we describe a 5d6s 3D1 radiative
lifetime measurement. 5d6s 3D1 decays predominantly to
the 6s6p 3PJ manifold, so D is readily extracted. Finally,
we discuss how these determinations reduce the ultimate
uncertainty of �νBBR at room temperature by an order of
magnitude.

Method I: Semiempirical technique. Accurately measured
experimental parameters, such as the differential static polar-
izability [Eq. (2)], also depend on electric dipole coupling
between 6s6p 3P0 and 5d6s 3D1 and subsequently can be used
to constrain the value of D [20]. The dynamic polarizability
of clock state n is

αn(ω) = 1

h̄

2

3

∑
n′ �=n

|〈n′||D||n〉|2 ωn′n

ω2
n′n − ω2

, (3)

where ω/2π is the frequency of the perturbing radiation,
〈n′||D||n〉 is a reduced electric dipole matrix element, and
ωn′n/2π is the corresponding transition frequency. The sum
over intermediate states n′ implicitly includes integration over
continuum states. Taking ω → 0 recovers the familiar static
polarizability expression.

The so-called magic trapping frequency ω∗, which balances
the polarizabilities of the clock states [6],

�α(ω∗) ≡ αe(ω∗) − αg(ω∗) = 0, (4)
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FIG. 1. (Color online) Most of the room-temperature BBR energy
spectrum (thick red line) is far infrared of transitions involving the
clock states. The states’ polarizabilities [see Eq. (3)], largely constant
over much of the BBR spectrum, are balanced at the “magic” trapping
frequency ω∗.

has also been measured to high accuracy [1,21]. Equations (2)
and (4) may be combined to yield

�α(0) + b �α(ω∗) = 145.726(3) a.u., (5)

where b can be freely varied, as seen below, to enhance
or suppress relative contributions of individual terms in
Eq. (3). Choosing b to maximize the 6s6p 3P0 → 5d6s 3D1
contribution while simultaneously minimizing the contribution
of all poorly known terms allows a precise determination of
D. Using Eq. (3), the left-hand side of Eq. (5) can be written
explicitly for each clock state as

αn(0) + b αn(ω∗) = 1

h̄

2

3

∑
n′ �=n

|〈n′||D||n〉|2 1

ωn′n

×
(

1 + b
ω2

n′n

ω2
n′n − ω∗2

)
. (6)

The parameter b enters only in the term in parentheses; this
term acts as a “scale factor” weighting the contribution of
each intermediate state in the summation. One develops an
intuition with the choice b = −1: the scale factor tends to zero
for ωn′n � ω∗ because high-lying transitions contribute nearly
identically to both αn(0) and αn(ω∗). We find an advantage
in choosing a value b ≈ −1 such that both higher-lying and
certain low-lying transitions are suppressed in the linear com-
bination �α(0) + b �α(ω∗). Table I presents contributions to
Eq. (6) for both clock states using an optimal value b = −0.75
as well as a pedagogically interesting value b = 0. In each
case, we write the 6s6p 3P0 → 5d6s 3D1 contribution in terms
of an unspecified matrix element D. Contributions from other
low-lying transitions are derived from experimental lifetimes
[22–24]. 6s6p 3P0 → 6p2 3P1 is an exception, as experimental
data are lacking; this contribution is estimated with combined
configuration interaction and many-body perturbation theory
(CI + MBPT) calculations similar to Ref. [19]. This calcu-
lation does not account for potentially strong configuration
mixing between 6p2 3P1 and nearby core-excited states (see
[19]), leading to a relatively large uncertainty. However, the
choice b = −0.75 renders details of this mixing unimportant,
as the suppressing scale factor in Eq. (6) becomes 0.004.
Table I also displays contributions from all other transitions,
including those to continuum states. While uncertainty in these
contributions is also relatively large, we again benefit from
substantial suppression with b = −0.75. The scale factor in
Eq. (6) is nearly zero for the lowest of these transitions (for

TABLE I. Contributions to the static polarizability αn(0) and
linear combination αn(0) − 0.75αn(ω∗) [refer to Eq. (6)] for the
Yb clock states (a.u.). The linear combination slightly enhances the
6s6p 3P0 → 5d6s 3D1 contribution while suppressing contributions
of several other transitions.

n n′ αn(0) αn(0)−0.75αn(ω∗)

6s2 1S0 6s6p 3P1 2 −1
6s6p 1P1 100 −4

(4f 13)5d6s2 ( 7
2 , 5

2 )1 21 1
all others 16a 3a

6s6p 3P0 5d6s 3D1 20.3D2 26.8D2

6s7s 3S1 37 −65
6s6d 3D1 22 −3
6s8s 3S1 2 0
6p2 3P1 39b 0b

all others 27b 3b

aEstimated from experimental bounds on polarizability [25].
bPresent CI + MBPT, with core polarizability from [19].

which ωn′n ≈ 2 ω∗), rising to just 0.25 for the highest-lying,
least important transitions.

Tallying all contributions, we find

�α(0) − 0.75�α(ω∗) = 26.8D2 − 64(8) + 0(6). (7)

The first term on the right-hand side accounts for the
6s6p 3P0 → 5d6s 3D1 contribution. The second term, −64(8),
accounts for other low-lying transitions in Table I; its uncer-
tainty is dominated by that of the 6s7s 3S1 lifetime [24]. The
third term, 0(6), accounts for all other transitions. Equating
the right-hand side of (7) to experimental result (5) gives
D = 2.80(7) a.u. Choices of b ranging over (−1, − 0.5)
yield similar D, but with uncertainties up to 40% larger. As
b → −1, uncertainty from the 6s7s 3S1 lifetime dominates,
whereas for b → −0.5, uncertainty from high-lying 6s6p 3P0
transitions dominates. We compare this result for D with other
determinations and new data below.

Method II: Radiative lifetime. Alternatively, measurement
of the 5d6s 3D1 radiative lifetime τa yields D by the traditional
relation D2 = (3πε0h̄c3ζ0)(2J ′ + 1)/(ω3

0τa), where J ′ = 1;
ω0/2π ≈ 2.1587 × 1014 Hz and ζ0 = 0.64(1) are the radiated
frequency and branching ratio to 3P0, respectively. Configu-
ration mixing is small in these states [26], allowing ζ0 to be
accurately computed from LS coupling. We measure τa by
observing population decay through the cascaded sequence
5d6s 3D1 → 6s6p 3P1 → 6s2 1S0 [see Fig. 2(a)]. The second
decay yields a 556-nm photon that is technically easier to
detect than the first radiated (infrared) photon [18]. If atoms
are excited at time t0 to 3D1, fluorescence from 3P1 follows a
double exponential [18,27],

y(t) = A × �(t − t0)[e−(t−t0)/τa − e−(t−t0)/τb ] + y0, (8)

where τb is the radiative lifetime of 3P1 (τb > τa), A is a scaling
factor, and y0 accounts for stray light. The Heaviside unit step
�(t − t0) models instantaneous excitation at t0. Other states
populated by the decay (3P0 and 3P2) are long-lived. Branching
to 3P0,2 affects only the normalization of Eq. (8), not its time
dependence [28].
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FIG. 2. (Color online) The 5d6s 3D1 radiative lifetime via cascade
decay. (a) Key lifetimes are labeled τa and τb. Double-arrowed lines
indicate laser transitions. Wavy lines are important decay channels.
(b) A representative pulse-timing diagram. (c) Fluorescence data
taken at relatively high atomic density, fit (red line) to Eq. (8).
The inset highlights the signal and fit near an excitation time
t0 = 523.3(6) ns. (d) Observed lifetimes vary with atomic density
ρ. Lines are linear-regression fits. Plotting the data on a logarithmic
axis emphasizes data at low ρ with negligible interaction effects.
Error bars represent standard uncertainties obtained from nonlinear
fits and uncertainty in ρ estimates.

Laser cooling collects 171Yb atoms (Nat ≈ 104, Tat ≈
10 μK) in a one-dimensional optical lattice [1]. A resonant “π
pulse” of 578-nm light [29] coherently transfers atoms from
1S0 to long-lived 3P0 [see Fig. 2(b)]. Then, a brief (τe = 25
ns) resonant 1388-nm pulse excites more than half of these
atoms to 3D1. As atoms spontaneously decay to 1S0, an event
counter accumulates the arrival times of radiated 556-nm
photons into 5-ns bins. To increase the decay signal, this
excitation and decay process can be repeated hundreds of times
on the cold, lattice-trapped atoms. Though excitation occurs
in the Lamb-Dicke regime, photon scattering causes heating.
This heating, background gas collisions, and accumulation
in 3P2 limit the repetitions per loading cycle to ∼200. We
typically collect 1.5Nat × 10−5 photons per excitation [30].
Photon “pileup” in counter bins is negligible. Between 106–107

excitations yield satisfactory decay profiles [Fig. 2(c)].
We fit fluorescence signals to Eq. (8) with a Levenberg-

Marquardt routine assuming Poissonian statistical weighting.
Although covariance in A, τa , and τb can be sizable, sim-
ulations establish that fitting biases become negligible with
sufficiently high count totals. A maximum-likelihood method
also assuming a Poissonian distribution yielded statistically
similar fits.

Atomic interactions (e.g., collective emission via super- or
subradiance and radiation trapping) may influence radiative
decay. We probed these effects by varying the atomic density
ρ undergoing decay [42]. Results [Fig. 2(d)] indicate non-
negligible shortening of τa at the highest densities; however,
the effect is negligible over the lowest decade of examined den-
sities. In the limit of slow dipole dephasing [43], superradiance
may shorten an observed lifetime as τ = τ0(1 + ρLλ2/4)−1,
where τ0 is the single-atom value, L is the length of a
pencil-shaped atom cloud, and λ is the radiated wavelength
[44]. For ρ ≈ 109cm−3 and L ≈ 0.1 mm, the modification in
this simple model is about 5%. We also saw the opposite trend
in the 3P1 decay, an increase of τb at high ρ. We explored both
effects by varying 578- and 1388-nm pulse areas, altering the
populations of 1S0, 3P0, and 3D1, but we observed no clear
trends. For the relevant densities and time scale, quenching
due to cold collisions and lattice photon scattering is expected
to be negligible.

Potential systematic effects arise from nonzero 1388-nm
pulse duration τe and spurious excitation during the cascade
decay caused by poor extinction of the 1388-nm laser. There-
fore, we strived for fast actuation and high (60 dB) extinction
of the 1388-nm light. First, a single-mode fiber-coupled
mechanical shutter (500-μs rise time) precedes a fiber-coupled
acousto-optic modulator (AOM). Then, a second (free space)
AOM, driven with a tuned delay, aids in pulse shaping and
extinction. This AOM detunes scattered light from resonance,
increasing the effective extinction. With 1 mW of incident
1388-nm light focused to 30 μm (I ≈ 7 × 105 W/m2), we
attain a Rabi frequency � ∝ √

ID exceeding 1 GHz. We
detected no changes to τa and τb when varying 1388-nm
intensity by 4 dB to test for dependence on � and stray
light intensity. Likewise, we observed no systematic effect
by varying τe from 25 to 90 ns.

We selectively excited atoms to either of the hyperfine
components 3D1(F ′ = 1

2 , 3
2 ), which are split by 3.07(7) GHz.

We observed no hyperfine interference beats [45] due to the
large splitting and selective laser excitation. We observed no
Zeeman interference oscillations [18] or significantly different
results when an applied magnetic field �B was varied from
0.01 to 0.1 mT. The 1388-nm light propagated along the
lattice axis and was polarized perpendicular to �B. We detected
556-nm photons ≈45◦ from the lattice axis with largely

TABLE II. Uncertainty in τa and τb from atomic interactions is
largely statistical as we extrapolate to zero density. We estimate fit
biases and distortions due to Zeeman oscillations from Monte Carlo
simulations. Uncertainties due to 1388-nm pulse duration and stray
light are statistically limited.

u(τa) (ns) u(τb) (ns)

Atomic interactions 4.3 3.3
Fit biases 0.9 1.5
Zeeman quantum beats 3.0 3.0
1388-nm finite excitation 3.3 4.3
1388-nm stray light 3.4 4.6
Event counter timing 0.2 0.4

Total (quadrature sum) 7.1 7.4
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FIG. 3. (Color online) The present measurement (∗) and semiem-

pirical result (†) are compared to other determinations. Measurements
a–j are from, respectively, [31–38], [18], [39]. Points k–m are
calculations from [40], [19], and [41]. When necessary, we infer
lifetimes from matrix elements or natural linewidths. We assign an
error bar to the τa from l using the authors’ uncertainty estimate of a
highly correlated polarizability.

polarization-insensitive optics. We observed a slight depen-
dence on the number of excitations per trap cycle but attribute
this effect to atomic interactions since scattering progressively
reduces the atom number. Varying the lattice laser intensity
over 50% yielded no significant change in observed lifetimes.

We report the radiative lifetimes τa = (329.3 ± 7.1) ns and
τb = (866.1 ± 7.4) ns; Table II lists measurement uncertain-
ties. Figure 3 plots our results; τb agrees with prior measure-
ments, and τa lies between the only other measurement [18]
and recent calculation [19]. Our semiempirical determination
(method I) agrees well with our experimental measurement
(method II). Table III lists the results as inferred matrix
elements.

BBR clock shift. The BBR Stark shift to the clock frequency
is found from the expression

�νBBR = − 1

2hε0

∫ ∞

0
uT (ω) �α(ω) dω, (9)

where uT (ω) is the BBR spectral energy density corresponding
to temperature T , given by Planck’s law. A static approxima-
tion neglecting the slight frequency dependence of �α(ω)
over the BBR spectrum (see Fig. 1) is formally obtained
by substituting �α(ω) → �α(0) in Eq. (9). An improved
approximation adds the lowest-order frequency dependence
of the differential polarizability due to the 6s6p 3P0 →
5d6s 3D1 transition: �α(ω) → �α(0) + (2/3h̄)(D2/ω3

0)ω2.
Integrating over ω analytically, we interpret the additional
shift as ηclock(T ) ≈ 80π2

63
D2

(h̄ω0)3
(kBT )2

�α(0) ≈ 0.017( T
300K )2 from

Eq. (1), where kB is Boltzmann’s constant. A thorough account

TABLE III. The present results, expressed as reduced matrix
elements (a.u.), are compared with selected literature values.

D |〈6s6p 3P1||D||6s2 1S0〉|
Experiment 2.77(4) 0.542(2)
Semiempirical 2.80(7)
Experiment [18] 2.58(10) 0.547(16)
Calculation [40] 2.61(10) 0.54(8)
Calculation [19] 2.91(7) 0.587
Calculation [41] 2.58(23) 0.41(1)

of small contributions from all other transitions, including 1S0

and next-order terms (∝T 4) yields [46]

ηclock(T ) = 0.0173(5)

(
T

300 K

)2

+ 0.0006

(
T

300 K

)4

.

Uncertainty in the second term here is negligible. Higher-order
terms (∝T 6,T 8, . . .) may be omitted at our level of accuracy.
We estimate that magnetic dipole coupling to the BBR
field gives a negligible (∼1 × 10−5) contribution to ηclock at
room temperature, with higher multipolar contributions being
suppressed further [13].

A semiempirical analysis and radiative lifetime measure-
ment, techniques generally applicable to all atomic species
including alkaline-earth-metal-like clock atoms, has yielded
atomic structure information relevant to the BBR shift in
the Yb optical frequency reference. In an ideal 300 K BBR
environment, we use the present results to calculate �νBBR =
−1.2774(6) Hz. This determination of ηclock allows for high-
accuracy clock operation at room temperature, contributing
1.1 × 10−18 to the clock uncertainty. To match this accuracy,
the effective temperature of the environment needs to be known
to 35 mK. Alternatively, cryogenic clock operation would
reduce the uncertainty contribution of ηclock to negligible levels
while also reducing the need for high-accuracy temperature
control.

Note added. We recently became aware of works presenting
ηclock for Yb [47] and Sr [48]. The ab initio theoretical
treatment [47] agrees with the present results.
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