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GLOSSARY OF SYMBOLS 

B1 (N, r,  PI ,  B p ,  PI Bias function for variances based on finite 
samples of a process  with a power-law 
spectral  density. (See [ 131. ) 

A real  constant defined by (A15). 

c c  Real constants. 
0’ 1 

C ( t )  A real ,  deterministic function of time. 

w 
f E -  

2 n  

N 

r 

Expected value of the squared second 
difference of x( t )  with lag time 7 .  See 
(B8). 

Fourier  frequency variable. 

High frequency cutoff of a n  idealized infinitely 
sharp cutoff, low-pass fi l ter .  

Low frequency cutoff of an  idealized infinitely 
sharp cutoff, high -pa s s fi l ter .  

A rea l  function of time. 

Q! Positive, rea l  coefficient of f in a power 
ser ies  expansion of the spectral  density of 
the function y(t). 

Integers, often a dummy index of summation. 

Positive integer giving the number of cycles 
ave rage d. 

Positive integer giving the number of data 
points used in obtaining a sample variance. 

A non-deterministic function of time. 

Autocovariance function of y(t). See (A3). 

Positive, real  number defined by r E T/T. 

V 



T 

t 

0 
t 

tk 

0 
V 

or  V 

v(t)  

An intermediate t e rm used in deriving (23). 
The definition of S i s  given by (A9). 

One-sided (power) spectral  density on a p e r  
her tz  basis  of the pure real  function g( t ) .  
The dimensions of S (f) a r e  the dimensions 
of ga ( t ) / f .  g 

A definitionfor the measure of frequency stability. 
One -sided (power) spectral density of y ( t )  
on a p e r  her tz  basis. The dimensions of 
S ( f )  a r e  Hz -1 . 

Y 

Time interval between the beginnings of 
two successive measurements of average 
f r e quency . 
Time variable. 

An arbi t rary,  fixed instant of time. 

The time coordinate of the beginning of the 
k-th measurement of average frequency. 

t k t l  k By definition, = t t T, k = 0, 1, 2.0 . .  

Dummy variable of integration; u 1Tf 7. 

Instantaneous output voltage of signal 
generator.  See (2). 

Nominal peak amplitude of s igna l  generator 
output. See (2). 

Instantaneous voltage of reference signal. 
See (40). 

Peak amplitude of reference signal. See (40). 

Voltage output of ideal product detector. 

Low-pass filtered output of product detector. 

Real function of time related to the phase of 
the signal V(t) by the equation 

x(t) 3 cpo 
2nu 

0 

vi 
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1 

A predicted value for x(t).  

Fractional frequency offset of V( t )  f r o m  
the nominal frequency. See (7). 

'k 

Y 

6 ( r -1)  k 

Ave ra ge f ra c ti o m  1 frequency off s e t during 
the k-th measurement interval. See ( 9 ) .  

The sample average of N successive values 
of yk. See (34) .  

Non-deterministic (noise) function with 
(power) spectral density given by (25) .  

Exponent of f for a power-law spectral  
density . 
Positive, real  constant. 

The Kronecker 6-function defined by 
1, if r = 1 
0, if otherwise. t ( r - 1 )  i 1 

Amplitude fluctuations of signal. See (2) .  

Exponent of 7 .  See (29).  

Instantaneous frequency of V(t). Defined by 
1 d  

2n dt V ( t )  = - - @ (t) . 
Nominal (constant) frequency of V(t). 

The Fourier  transform of n(t). 

Sample variance of N averages of y(t), 
each of duration 7 ,  and spaced every T 
units of time. See (10). 

Average Mlue of the 
sample variance o ~ ( N ,  T, 7 ) .  

Y 
A second choice of the definition for the measure 
of frequency stability. Defined by 
0 ( 7 )  ( U a ( N  = 2, T = 7 ,  7 ) ) .  

2 

Y Y 
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Time atability mearure defined by 
P(r )  * e a". 

Y e 

Duration of averaging period of y(t) to 
obtain jTk. See (9). 

Instantaneous phase of V(t). Defined by 
4(t) 2w t t cp(t). 

0 

Instantaneous phase fluctuations about the 
ideal phase, 2W t. See (2). 

Mean square time error for Doppler radar. 
See (B10). 

0 

Angular Fourier frequency variable. 
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CHARACTERIZATION OF FREQUENCY STABILITY 

J .  A. Barnes, A. R .  Chi, L. S. Cutler, 
D. J. Healey, D. B. Leeeon, T. E. McGunigal, 
3. A. Mullen, W. L. Smith, R. Sydnor, 
R.F.C. Vessot, andG.M.R.  Winkler 

ABSTRACT 

Consider a signal generator whose instantaneous output voltage V(t) 

may be written a s  

! 

where V 

of the output. 

for  a l l  time 

deviation f r o m  nominal by the relation 

and V o  a r e  the nominal amplitude and frequency respectively 
0 

Provided that <( t )  and $( t )  = - a r e  sufficiently small dt 
t, one may define the fractional instantaneous frequency 

I 

A proposed definition f o r  the measure of frequency stability is the 

spectral density S ( f )  of the function y(t)  where the spectrum is con- 

sidered to be one-sided on a per  hertz basis. 
Y 

An alternative definition for the measure of stability is the infinite 

time average of the sample variance of two adjacent averages of y(t); 

that is, i f  
- 1 p Y ( t W  2 

Yk = s;: 
tk 

I t T, k = 0, 1 , 2 * * * ,  t is tktl = tk 0 
where 7 is the averaging period, 

arbitrary,  and T is the time interval between the beginnings of two 

successive measurements of average frequency; then the second measure 

I 



of stability is 

where ( ) denotes infinite time average and where T = T .  

In practice, data records a r e  of finite length and the infinite time 

averages implied in the definitions a re  normally not available; thus estimates f o r  

the two measures must be used. Estimates of S ( f )  would be obtained 

f r o m  suitable averages either in the time domain o r  the frequency domain. 

An obvious estimate for U a ( T )  is . 
Y 

Y 

Parameters  of the measuring system and estimating procedure a re  

of critical importance in the specification of frequency stability. 

practice, one should experimentally establish confidence limits for an 

estimate of frequency stability by repeated trials.  

In 

Key words: Allan variance; frequency; frequency stability; sample variance; 
spectral  density; variance. 
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CHARACTERIZATION O F  FREQUENCY STABILITY 

I. In t r oduc t i on 

The measurement of frequency and fluctuations in frequency has 

received such great attention for so many yea r s  that i t  is surprising that 

the concept of frequency stability does not have a universally accepted 

definition. 

readily described in the frequency domain and other uses in the time 

domain, a s  well a s  in combinations of the h o .  

complicated by the fact that only recently have noise models been presented 

which both adequately describe performance and allow a translation between 

the time and frequency domains. Indeed, only recently has it been recog- 

nized that there can be a wide discrepancy between commonly-used time 

domain measures  themselves. Following the NASA -1EEE Symposium on 

Short-Term Stability in  1964 and the Special Issue on Frequency Stability 

of the Proc.  IEEE of February 1966, i t  now seems reasonable to propose 

a definition of frequency stability. 

technical background for an eventual IEEE standard definition. 

At least  par t  of the reason has been that some uses  a r e  most 

This situation is further 

The present  paper is presented a s  

This paper attempts to present (as concisely as practical) adequate, 

self -consistent definitions of frequency stability. Since more than one 

definition of frequency stability is presented, an  important pa r t  of this 

paper (perhaps the most important pa r t )  deals with translations among the 

suggested definitions of frequency stability. 

definitions to the more  common noise models is demonstrated. 

The applicability of these 

Consistent with an attempt to be concise, the references cited have 

been selected on the basis of being of most value to the reader rather than 

on the basis of being exhaustive. 

the subject of frequency stability would itself be a voluminous publication. 

Almost any signal generator is influenced to some extent by its 

An exhaustive reference l is t  covering 

I 

1 

i environment. Thus observed frequency instabilities may be traced, for 

I 



example, to changes in ambient temperature, supply voltages, magnetic 

field, barometric pressure,  humidity, physical vibration, or  even ouput 

loading to mention the more  obvious. 

may be extremely important for many applications, the definition of f r e -  

quency stability presented he re  is independent of these causal factors. 

In effect, we cannot hope to  present  a n  exhaustive l i s t  of environmental 

factors and a prescription for  handling each even though, in some cases, 

these environmental factors  may be by far  the most important. Given a 

particular signal generator in a particular environment, one can obtain its 

frequency stability with the measures  presented below, but one should 

not then expect an accurate prediction of frequency stability in a new 

environment . 

While these environmental influences 

It is natural to expect any definition of stability to involve various 

statistical considerations such as  stationarity, ergodicity, average, 

variance, spectral  density, etc.  There often exist fundamental difficulties 

in rigorous attempts to bring these concepts into the laboratory. It is 

worth considering, specifically, the concept of stationarity since it i s  

a concept a t  the root of many statistical discussions. 

A random process  is mathematically defined as stationary if every 

translation of the time coordinate maps the ensemble onto itself. 

necessary condition, if one looks a t  the ensemble at one instant of time, 

t, the distribution in values within the ensemble is  exactly the same a s  

a t  any other instant of time, t’. 

of the ensemble a r e  constant in time, but, a s  one element changes value 

with time, other elements of the ensemble assume the previous values. 

Looking a t  it  in another way, by observing the ensemble a t  some instant 

of time, one can deduce no information as to when the particular instant 

was chosen. This same s o r t  of invariance of the joint distribution holds 

t and i t s  translation t t 7, t t 7 ,  . . . , for any set  of t imes t 

t t r. n 

A s  a 

This is not to imply that the elements 

1’ 2’ * * * ’  n 1 2 
t 

2 



It is apparent that any ensemble that has a finite past as well a s  a 

finite future cannot be stationary, and this neatly excludes the real world 

and anything of practical  interest. 

violence to concepts of causality since we implicitly feel that current 

performance (i. e. ,  the applicability of stationary statist ics) cannot be 

logically dependent upon future events (i. e. , i f  the process is terminated 

sometime in the distant future). Also, the verification of stationarity 

would involve hy-pothe tical measurements which a r e  - not experimentally 

feasible, and therefore the concept of stationarity is not directly relevant 

to experimentation. 

The concept of stationarity does 

Actually the utility of statist ics is in the formation of idealized 

models which reasonably describe significant obserwbles  of real systems. 

One may, for example, consider a hypothetical ensemble of noises with 

certain properties (such a s  stationarity) a s  a model for a particular real  

device. 

F i r s t ,  the model should be tractable; that is, one should be able to easily 

a r r ive  a t  estimates for the elements of the model; and, second, the model 

should be consistent with observables derived f rom the real  device which 

i t  is simulating. 

If a model is to be acceptable, i t  should have at  least two properties: 

Notice that one does not need to know that the device was selected 

f rom a stationary ensemble, but only that the observables derived f rom 

the device a r e  consistent with, say, elements of a hypothetically stationary 

ensemble. 

clever the experimenter -theorist is in generating models, 

Notice also that the actual model used may depend upon how 

It i s  worth noting, however, that while some texts on statistics give 

"tests for stationarity, If these 'Itestst1 a r e  almost always inadequate. 

Typically, these "tests" determine only if there is a substantial fraction 

of the noise power in Fourier  frequencies whose periods a r e  of the same 

order  a s  the data length or  longer. While this m a y  be very important, it 



model actually becomes common, i t  will almost surely be because i t  is 

useful or  convenient and not because the process i s  "actually non-stationary. .' 

Indeed, the phrase "actually non-stationary'' appears to have no meaning 

in an  operational sense. In short, stationarity (or non-stationarity) is a 

property of models not - a property of data [I]. 

- 

Fortunately, many statistical models exist which adequately describe 

most present-day signal generators;  many of these models a r e  considered 

below. 

a r e  adequately described by these models, but the authors do feel they 

a r e  adequate for  the description of most signal generators presently 

encounter e d. 

It is obvious that one cannot guarantee that a l l  signal generators - 

11. Statement of the Problem 

Yo be useful, a measure of frequency stability must allow one to 

predict performance of signal generators used in a wide variety of situations 

as well a s  allow one to make meaningful relative comparisons among signal 

generators. 

may most easily be described either in the time domain, or  in the frequency 

domain, or in a combination of the two. 

may involve actual distribution functions, and thus second moment measures  

(such a s  power spectra and variances) a r e  not totally adequate. 

One must be able to predict  performance in devices which 

This prediction of performance 

Two common types of equipment used to evaluate the performance 

of a frequency source a r e  (analog) spectrum analyzers (frequency domain) 

and digital, electronic counters (time domain), On occasion the digital 

counter data a r e  converted to power spectra by computers. One must 

realize that any piece of equipment simultaneously has certain aspects 

most easily described in the time domain and other aspects most easily 

described in  the frequency domain. Fo r  example, an  electronic counter 

has a high frequency limitation, and experimental spectra a r e  determined 

with finite time averages. 
1 

4 



Research has established that ordinary oscillators demonstrate 

noise which appears to be a superposition of causally generated signals 

and random, non-deterministic noises. The random noises include 

thermal noise, shot noise, noises of undetermined origin (such a s  flicker 

noise), and integrals of these noises. 

One might well expect that for  the more general cases  one would 

need to use a non-stationary model (not stationary even in the wide sense, 

i. e. ,  the covariance sense). Non-stationarity would, however, introduce 

significant difficulties in the passage between the frequency and time 

domains. It is interesting to note that, so  far, experimenters have seldom 

found a non (covariancx) stationary model useful in describing actual 

oscillators . 
In what follows, an  attempt has  been made to separate general 

statements which hold for  any noise or perturbation f rom the statements 

which apply only to specific models. It is important that these distinctions 

be kept in  mind. 

III. Background and Definitions 

that is, 

2 n v  (t)  dQ,o E iqt) , d t  

be kept in  mind. 

III. Background and Definitions 

To discuss the concept of frequency stability immediately implies 

that frequency can change with time and thus one i s  not considering 

Fourier frequencies (at least  a t  this point). 

instantaneous (angular) frequency is the time rate  of change of phase; 

that is, 

The conventional definition of 

2 n v  (t)  dQ,o E iqt) , d t  

where @ (t)  is the instantaneous phase of the oscillator. This paper uses 

the convention that time dependent frequencies of oscillators are denoted 

by V(t) (cycle frequency, hertz), and Fourier frequencies a r e  denoted by 

w (angular frequency) o r  f (cycle frequency, her tz)  where 

W = 2 n f .  

, 

5 



In order for (1) to have meaning, the phaee @(t) murt be a well- 

defined function. 

sinusoidal" signals such a s  a pure, random, uncorrelated (llwhite") noise. 

Fo r  most real signal generators, the concept of phase is reasonably 

amenable to an  operational definition and this restriction is not serious. 

This restriction immediately eliminate8 80me %on- 

Of great importance to this paper is the concept of spectral  density, 

Sg(f). The notation S (f)  is to represent the one-sided spectral  density 

of the (pure real)  function g(t) on a pe r  hertz basis; that is, the total 

''power" or mean square value of g(t) is given by 

g 

Since the spectral density is  such an  important concept to what 

follows, it i s  worthwhile to present some important references on spectrum 

estimation. 'There a r e  many references on the estimation of spectra 

from data records, but worthy of special note a r e  [2  - 51. 

IV. The Definition of Measures of Frequency Stability (Second Moment Type) 

A. General. Consider a signal generator whose instantaneous 

output voltage, V(t), may be written a s  

V(t) = [v0 t ~ ( t ) ]  sin [2nvot t tp(t)], . (2) 

where V and V a r e  the nominal amplitude and frequency respectively 

of the output and i t  i s  assumed that 
0 0 

and 

p&I<< 1 

for substantially a l l  time t. Making use of (1) and (2) one sees  that 

@(t) = 2Wot t q(t)  , ( 5 )  

6 
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I 

and 
1 U ( t )  = v + - $(t) . 

0 2n 

Equations (3) and (4) a r e  essential  in order that @ ( t )  m a y  be defined 

conveniently and unambiguously (see measurement section). 

Since (4) must be valid even to speak of a n  instantaneous frequency, 

there is no real need to distinguish stability measures  f rom instability 

measures.  That is, any fractional frequency stability measure wil l  be 
- 

far f rom unity, and the chance of confusion is slight. It is true that in 

a very s t r ic t  sense people usually measure instability and speak of stability. 

Because the chances of confusion a r e  so slight, the authors have chosen 
- 

to continue in the custom of measuring "instability" and speaking of stability 

(a number always much l e s s  than unity). 

Of significant interest  to many people is the r f  (radio frequency) 

spectral  density, S (f). This is of direct concern in spectroscopy and V 
radar.  

for  two reasons: Firs t ,  fluctuations in the amplitude, c(t), contribute 

However, this i s  not - a good primary measure  of frequency stability 

directly to Sv(f); and second, fo r  many cases when <(e )  is insignificant, 

the rf spectrum, SV(f), is not uniquely related to the frequency fluctuations 

B. General: F i r s t  definition of the measure of frequency stability-- 
f r e  auencv domain. 

. 

7 

By definition, let 

where q( t )  and 1/ are  a s  in (2). Thus y(t)  i s  the instantaneous fractional 

frequency deviation from the nominal frequency V . A proposed definition 

of frequency stability is the spectral  density S (f)  of the instantaneous 

fractional frequency fluctuations y(t). The function S ( f )  has  the 
-1 dimensions of Hz . 

0 

0 

Y 

Y 



One can show [7] that if S (f) is the spectral  density of the phase 
cp 

fluctuations, then 

= (t) a faS (f). 

cp 

Thus a knowledge of the spectral  density of the phase fluctuations, Scp(f), 

allows a knowledge of the spectral  density of the frequency fluctuations, 

Sy(f), --the f i r s t  definition of frequency stability. Of course,  S (f)  cannot 

be perfectly measured--this is the case for  any physical quantity; useful 

estimates of S ( f )  a r e ,  however, easily obtainable. 

Y 

Y 
C. General: Second definition of the measure of frequency stability-- 

time domain. 

The second definition is based on the sample variance of the fractional 

frequency fluctuations. In order  to ,present this measure of frequency 

stability, define 7 by the relation k 

where t 

measurements of duration 7 ,  and t is arbi t rary.  Conventional frequency 

counters measure the number of cycles in a period ; that is, they measure 

U ~ T  (1 t yk). 
The second measure  of frequency stability, then, i s  defined in analogy to 

the sample variance by the relation 

= tk t T , k = 0, 1,  2 , .  . ., T is the repetition interval for k t l  

0 

When 7 is one second they count the number V o ( l  t yk). 

where 

frequency stability is dimensionless. 

(g )  denotes the infinite time average of g. This measure of 

8 



In many situations it would be wrong to assume that (10) converges 

to a meaningful l imit  a s  N a. Firs t ,  of course, one cannot practically 

let  N approach infinity and, second, i t  is known that some actual noise 

processes  contain substantial fractions of the total noise power in the 

Fourier  frequency range below one cycle per  year.  

comparability of data, it  is important to specify particular N and To 

For the prefer red  definition we recommend choosing N = 2 and T = 7 

(i .e. ,  no dead time between measurements).  

as u (T),  the Allan variance [8], the proposed measure of frequency 

stability in the time domain may be written a s  

In order  to improve 

Writing (U2(N = 2, T = 7, 7)) 
Y 

2 

Y 

for T = 7 .  

Of course,  the experimental estimate of a 2 ( T )  must  be obtained 
Y 

f r o m  finite samples of data, and one can never obtain perfect  confidence 

in the estimate--the true time average is not realizable in a rea l  

situation. 

of u 2  (2, 7, 7) and averages to obtain a n  estimate of ua (7). 
Y Y 

shows that the ensemble average of ~ ~ ( 2 ,  7, 7 ) is convergent (i. e . ,  a s  
Y 

m a) even for noise processes  that do not have convergent (ua(N, 7, 7 ) )  

as N Q). Therefore,  u2 (7)  has  greater  utility a s  a n  idealization than 

does 

In effect, increasing N causes a2(N, T, 7 )  to be more  sensitive to the low 

frequency components of S (f). In practice,  one must  distinguish between 

a n  experimental estimate of a quantity (say, of ~ ~ ( 7 ) )  and i t s  idealized 

value. 

(''quality") control [ 9 ]  may prove useful here. 

specify the actual number m of independent samples used for a n  estimate 

One est imates  U 2  (7)  f r o m  a finite number (say, m) of values 
Y 

Appendix A 

Y 

Y 
(u2(a, 7, 7)) even though both involve assumptions of infinite averages.  

Y 

Y 
Y 

Y 
It is reasonable to believe that extensions to the concept of statistical 

One should, of course,  

of ua ( 7 ) .  
Y 



In summary, therefore, S ( f )  is the proposed measure  of (instan- 

taneous) frequency stability in the (Fourier)  frequency domain and ua ( 7 )  

i s  the proposed measure  of frequency stability in the time domain. 

Y 

Y 

D. Distributions. It is natural that people f i r s t  become involved 

with second moment measures of statistical quantities and only later with 

actual distributions. 

While one can specify the argument  of a distribution function to be, say, 

- f ), it makes sense to postpone such a specification until a rea l  

This paper 

This is certainly true with frequency stability. 

(%+I k 
use has materialized for  a particular distribution function. 

does not attempt to specify a preferred distribution function for frequency 

fluctuations. 

E. Treatment of Systematic Variations. 

1. General. The definition of frequency stability ~ ~ ( 7 )  in the 
Y 

time domain is useful for many situations. However, some oscillators, 

for example, exhibit a n  aging or  a lmost  linear drift of frequency with 

time. For some applications, this trend may be calculated and should be 

removed [8] before estimating oa (7). 
Y 

In general, a systematic trend i s  perfectly deterministic (i. e .  , 
predictable) while the noise is non-determinis tic. 

g(t), which may be written in the fo rm 

Consider a function, 

where c(t) i s  some deterministic function of time and n(t) ,  the noise, is  

a non-deterministic function of time. We will define c ( t )  to be the 

systematic trend to the function g(t) .  

to determine when and in what sense c( t )  is measurable.  

A problem of significance here  is 

2. Specific Case--Linear  Drift. As a n  example, if we consider 

a typical quartz crystal  oscil lator whose fractional frequency deviation i s  

y(t), we may let  

10 



With these conditions, c(t) is the drift rate of the oscillator (e, g., 10-l' 

p e r  day) and n( t )  is related to the frequency %oise" of the oecillator by 

a time derivative. One sees  that the time average of g ( t )  becomes 

t t T  
1 0 T li:" g( t )d t  = c1 t $L n(t)d t 

where c ( t )  = c 

In order  for  c 

of the noise t e r m  to vanish, that is ,  converge to zero. 

is assumed to be the constant drift rate of the oscillator. 

to be an  observable, it  is natural to expect the average 
1 

1 

It is instructive to assume [8, 101 that in addition to a l inear 

drift, the oscillator is .perturbed by a flicker noise, i. e.,  

where h is a constant (see Sec. V . A . 2 )  and thus, 
-1 f 

n fh  
0 5 f 

0, f '  fh Y 

for the oscillator we are considering. 

that 

With these assumptions, i t  is seen 

n(t) d t = x (0) = 0 T - =  Lim T ItotT 
and that 

Lim 
T d m  = 0, (1 8) 

where X ( f )  is  the Fourier  t ransform of n(t). Since S (0) = 0, X ( 0 )  must 

also vanish both in ,probability and in  mean square. 

n( t )  average to zero, but one may obtain arbi t rar i ly  good confidence on 

the result  by longer averages. 

n 
Thus, not only does 

11 



Having shown that one can reliably estimate the drift rate, 
cl, 

of this (common) oscil lator,  i t  is instructive to attempt to fi t  a straight 

line to the frequency aging.. That is, le t  

g ( t )  = Y ( t )  (1 9 )  

and, thus, 

g(t)  = co  t c 1 (t - to) t n'(t) 

where c is the frequency intercept a t  t = t and c is the drift ra te  

previously determined. 
0 0 1 

A problem a r i s e s  here  because 

s I ( f )  = s (f) 
n Y 

and 

Lim 
T-" 

for  the noise model we have assumed.  

(infinite N) variance of a f l icker  noise 'process is infinite [7, 8, lo]. 

c cannot be measured with any realist ic precision--at  least, in a n  absolute 

sense. 

This follows f r o m  the fact that the 

Thus, 

0 

We may interpret  these resu l t s  as follows: After experimenting 

with the oscillator for a period of time one can fit an empirical  equation 

to y(t)  of the fo rm 

y( t )  = c 0 t tc 1 t n'(t), 

I where n ( t )  is non-deterministic. At some later time i t  is possible to 

reevaluate the coefficients c and c According to what has been said, 

the drift rate c should be reproducible to within the confidence est imates  

of the experiment regard less  of when i t  i s  reevaluated. For  c however, 

this is not true. In fact, the more  one attempts to evaluate c the la rger  

the fluctuations a r e  in the result .  

0 1' 

1 

0' 

0, 

12 



Depending on the spectral  density of the noise term,  i t  may be 

possible to predict future measurements of c 

confidence limits on the prediction [ l l ] .  

however, these confidence l imits tend to infinity when the prediction 

interval is increased. Thus, in a certain sense, c is "measurablell 

but i t  is not in statistical control (to use the language of the quality 

control engineer [ 91). 

and to place real is t ic  
0 

For the case considered here,  

0 

V. Translations Among Frequency Stability Measures 

A. Frequency Domain to Time Domain. 

1. General. It is of value to define r = T/T; that is, r is the 

ratio of the time interval between successive measurements to the duration 

of the averaging period. Cutler has shown (see Appendix A) that 

Equation (23) in :principle allows one to calculate the time domain stability 

(Ua  (N, T, 7)) f rom the frequency domain stability S (f). 
Y Y 

2. Specific model. A model which has been found useful [7, 9, 

10, 11, 121 consists of a set  of five independent noise processes ,  z (t),  n = 

-2, -1, 0, 1, 2, 
n 

such that 

and the spectral  density of z is given by 
n 

S z  ( f )  = p f n ,  n O s f s f h  

where the h a r e  constants. Thus, S (f) becomes 
n Y 

S (f) = h - 2 f - a  t h f-' + h t h l f  t hZf2, Y -1 0 



for  0 5 f 

In effect, each z 

of the other z The contributions of the z to (0  (N, T, 7 ) )  a r e  tabulated 

in Appendix B. 

fh  and S (f) is assumed to be negligible beyond this range. 
Y 

contributes to both S ( f )  and (ua(N, T, 7 ) )  independently 
2 

n' n Y 

n Y 

Any electronic device has  a finite bandwidth and this certainly 

applies to frequency measuring equipment also. 

fluctuations, y(t), whose spectral  density var ies  as 

For  fractional frequency 

(27 1 

for the higher Fourier components, one sees  (from Appendix A) that 

(oa(N, T, 7 ) )  may depend on the exact shape of the frequency cutoff. 

is true because a substantial fraction of the noise llpower't may be in 

these higher Fourier components. As a simplifying assumption, this 

paper assumes a sharp cutoff in noise "powerl' a t  the frequency f 

the noise models. 

time domain measure of frequency stability may depend on f 

important way, and, in some practical cases, the actual shape of the 

frequency cutoff may be very important [7]. 

many practical measurements where the value of f 

Good practice, however, dictates that the sys tem noise bandwidth, f 

should be specified with any results.  

This 
Y 

for 

It is apparent f rom the tables of Appendix B that the 
h 

in a very h 

On the other hand, there a r e  

has little o r  no effect. h 

h' 

In actual practice, the model of (24), (25), and (26) seems to fit 

almost all  real  frequency sources. 

h-coefficients a r e  actually significant for a real  device and the others can 

be neglected. 

what follows. Since the z a r e  assumed to be independent noises, it i s  

normally sufficient to compute the effects for a general z 

that the superposition can be accomplished by simple additions for- their 

contributions to S (f) o r  (aa (N, T, 7)). 

Typically, only two o r  three of the 

Because of i ts  applicability, this model i s  used in much of 

n 
and recognize n 

Y Y 
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is available for translation into the frequency domain. 

one might ,prefer S (f) a s  a general measure of frequency stability. This 
Y 

i s  especially true for theoretical work. 

For  this reason, 

realist ic model which f i t s  the random, non-deterministic noises found on 

most signal generators. Obviously, if this is a good model, then the 

tables in Appendix B may be used (in reverse)  to translate into the f r e -  

quency domain. 

Allan [ 81 and Vessot [ 121 showed that if 

y" I 0, f > f h ,  

where 01 is a constant, then 

T 
for N and r = 7; held constant. 

the mapping shown*in Fig. 1 .  If (28) and (29) hold over a reasonable range 

for  a signal generator, then (28) can be substituted into (23) and evaluated 

to determine the constant h f rom measurements of (oa (N, T, 7 ) ) .  It 

The constant p is  related to CY by 

CY Y 
should be noted that the model of (28) and (29) may be easily extended to a 

superposition of similar noises a s  in  (26). 
! 

* It should be noted that in Allan [ 81, the exponent, a, corres:ponds to the 
spectrum of phase fluctuations while variances a r e  taken over average 
frequency fluctuations. In the present paper, a is identical to the exponent 
Q t 2 in [8]. 
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C. Translations Among the Time Domain Measures 

1. General. Since (0” (N, T, 7)) is a function of N, T, and 7 

is a l so  important), i t  is very desirable to be 
Y 

(for some types of noise f h 
able to translate among different 

this is, however, not possible in 

2. Specific model. It 

case described by (28) and (29). 

sets  of N, T, and T (fh held constant); 

general, 

is useful to res t r ic t  consideration to a 

Superpositions of independent noises 

with different power-law types of spectral  densities (i. e. ,  different 0’s) 

can also be treated by this technique, e. g., (26). One may define two 

“bias functions, l 1  B and B by the relations [13]: 1 2 

and 

where r T/T and p is related to 0 by the mapping of Fig. 1. In words, 

B1 is the rat io  of the average variance for N samples to the average 

variance for 2 samples (everything else  held constant); while B is the 

ratio of the average variance with dead time between measurements 

(r # 1) to that of no dead time (r = 1 and with N = 2 and 7 held constant). 

These functions a r e  tabulated in [ 131. 

of B (N, r=1, p )  and BZ(r ,  p) .  

2 

Figs. 2 and 3 show a computer plot 

1 
Suppose one has an experimental estimate of (u’ (N  T 7 ) )  and 

y 1’ 1’ 1 
i ts  spectral  type is known--that is ,  (28) and (29)  fo rm a good model and p 

i s  known. Suppose a l so  that one wishes to know the variance a t  some other 

set  of measurement parameters ,  N T 7 An unbiased est imate  of 2’ 2’ 2’ 
a 

Y 
(a (N2, T2, ‘r2)) m a y  be calculated by the equation: 

17 
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where r = l l / T  and r = l 2 / ~ ~ .  1 1 2 

3. General. While i t  is  true that the concept of the bias 

functions, B and B could be extended to other processes  besides those 

with the power -law types of spectral  densities, this generalization has  not 

been done. 

of such spectra a s  in (26) )  seem to be the most common types of non- 

deterministic noises encountered in signal generators and associated 

equipment. F o r  other types of fluctuations (such a s  causally generated 

perturbations), translations must be handled on an  individual basis. 

1 2' 

Indeed, spectra of the fo rm given in (28)  (or superpositions 

VI. Applications of Stability Measures 

Obviously, if one of the stability measures  i s  exactly the important 

parameter in the use of a signal generator, the stability measure ' s  

application is trivial. 

interested in a different parameter ,  such a s  in the use of a n  oscillator in 

Doppler radar  measurements or  in clocks. 

Some non-trivial applications a r i s e  when one is 

A. Doppler Radar. 

1. General. F rom its transmitted signal, a Doppler radar  

receives f r o m  a moving target a frequency-shifted re turn  signal in the 

presence of other large signals. 

(ground re turn)  and transmitter leakage into the receiver (spillover). 

Instabilities of radar  signals result  in noise energy on the clutter return,  

on spillover, and on local oscil lators in the equipment. 

These large signals can include clutter 

The limitations of sub-clutter visibility (SCV) rejections due to 

the radar  signals themselves a r e  related to the rf power spectral  density, 

SV(f). The quantity typically re fer red  to i s  the carr ier- to-noise  ra t io  and 

can be mathematically approximated by the quantity 

20 



lo Sdf')df' 

6. 
I 

The effects of coherence of target return and 

amply considered in the literature [ 14-17]. 

other radar .parameters a r e  

2.  Special Case. Because F M  effects generally predominate 

over AM effects, this carr ier  -to-noise ratio is  approximately given by [6] 

1 
2 ( D  

SV(f) 
- s ( I f  -vel) 2 (33)  

for many signal sources provided If - v 1 is sufficiently greater than zero. 

(The factor of - a r i se s  from the fact that S ( f )  i s  a one-sided spectrum.) 

Thus, if f - u i s  a frequency separation from the carr ier ,  the c a r r i e r -  

to-noise ratio a t  that point i s  approximately 

0 
1 
2 cp 

0 

I s  2 c p  ( I f  - v 0 I) =; (+-- SY(lf - . (34) 

B. Clock Errors .  

1 .  General. A clock is a device which counts the cycles of a 

periodic .phenomenon. Thus, the reading e r r o r  x(t)  of a clock run from 

the signal given by (2)  i s  
cP(t) 
2nv ' x(t)  = 

0 
(35) 

and the dimensions of x(t) a r e  seconds. 

If this clock is  a secondary standard, then one could have 

available some past history of x(t), the time e r r o r  relative to the standard 

clock. 

x(t)  for some future date, say tot 7, where to i s  the present date. Obviously, 

this is  a problem in pure prediction and can be handled by conventional 

methods [3] .  

It often occurs that one is interested in ,predicting the clock e r r o r  

21 



2. Special Case, Although one could handle the prediction of 

clock e r r o r s  by the rigorous methods of prediction theory, it i s  more 

common to use simpler prediction methods[lO, 1 1 3 .  In particular, one 

often predicts a clock e r ro r  for the future by adding to the present e r ro r  

a correction which is derived from the current rate of gain (or loss! of 

time. That is, the predicted e r ro r  k(6-t 7 )  is  related to the past history 

of x(t) by the equation 

It is typical to let T = 7. 

Thus, the mean square e r ro r  of prediction for T = 7 becomes 

( 3 7 )  
A ([X(to+ 7 )  - ,(to+ 7)l2> = ([x(to+ 7) - Zx(td+ x(L-  T)]" >, 

which, with the aid of ( l l ) ,  can be written in the f o r m  

One can define a time stability measure, 02(?), by the equation 
X 

( 3 9 )  
a 
X Y 

O ( 7 )  T2 U"(7) . 
Clearly, however, the actual e r ro r s  of prediction of clock readings a r e  

dependent on the prediction algorithm used and the utility of such a definition 

as CT ( 7 )  is not great. Caution should be used in employing this definition. 

VII. 

a 
X 

Measurement Techniques for Frequency Stability 

A .  Heterodyne Techniques (general) It i s  possible for oscillators 

to be very stable and values of o (7 )  can be a s  small a s  in some 
Y 

state of the a r t  equipment. 

capable of resolving very small fluctuations in y(t). 

common techniques is a heterodyne or  beat frequency technique. 

method, the signal f rom the oscillator to be tested is  mixed with a reference 

signal of almost the same frequency a s  the test oscillator in order  that one 

is left with a lower average frequency for analysis without reducing the 

Thus, one often needs measuring techniques 

One of the most 

In this 
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I 

frequency (or .phase) flucutations themselves. Following Vessot, et. al .  

[ 181, consider a n  ideal reference oscillator whose output signal is 

f 
v v  

o r  o (1 t - ) cos cp(t). 
0 

2 V v'(t) = y 

This separation of t e rms  by the f i l ter  is  correct  only if 

for all t (see (4)). 

V ( t )  = Vor sin 2 n V  t, (40) r 0 

and a second oscillator whose output voltage V(t)  is given by (2 ) :  

V(t) = [Vo t C ( t ) ]  sin [ 2 n U  t t cp(t)]. 

product detector; that is ,  the output of the product detector v(t)  is equal 

to the product yV(t) X V ( t ) ,  where y i s  a constant (see Fig. 4).  
r 

Let these two signals be mixed in a 
0 

Let v(t), in turn, be processed by a sharp,  low-pass f i l ter  with 

cutoff frequency f '  such that h 

One may write 

(1 t +) [cos cp -cos(4nu 0 t t c p ) ]  . 
0 

2 = v(t)  = y 

Assume that c o s [ q ( t ) ]  has essentially no 'power in Fourier  frequencies f 

in the region f 2 f' 

the second t e rm on the extreme right of (42); that i s ,  

The effect of the low-pass filter then is to remove 
h' 

(43) 

The following two cases  a r e  of interest: 

Case I 

The relative phase of the oscillators i s  adjusted so that (cp(t) I < < 1 

(in-phase condition) during the period of measurement. Under these conditions 

2 3  



I 
I 
I 

I 
v 
L-,  
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Y Y 
2 or o or  

vl(t)  R! - v v t v €(t) ,  (44 1 

since cos q ( t )  1. That is to say one detects the amplitude noise C(t) 

of the signal. 

Case I1 

The relative phase of the oscillators i s  adjusted to be in 

approximate quadrature; that is 

where I(d(t) I << 1. Under these conditions, 

v I ( t )  = -  Y v v q'(t) t ; v cp'(t)€(t) . 2 or  o o r  

If i t  is true that << 1 for a l l  t (see ( 3 ) ) ,  then (47) becomes 

v'( t)  2 v v cp'(t) ; (48) 2 or  o 

25 

that is, 

observe cp'(t) by this method, (3)  and (4) must be valid. 

average phase values, mixtures of amplitude and phase noise a r e  observed. 

v'(t) is proportional to the phase fluctuations. Thus, in order to 

For  different 

In order  to maintain the two signals in quadrature for  long 

observational periods, the reference oscillator can be a voltage -controlled 

oscillator (VCO) and one may feed back the phase e r r o r  voltage (as defined 

in (48)) to control the frequency of the VCO [19]. 

phase-locked oscillator, the voltage v'(t) is the analog of the phase 

fluctuations for Fourier  frequencies above the loop cutoff frequency of the 

locked loop. 

the loop, 

should measure the complete servo loop response. 

In this condition of the 

For  Fourier  frequencies below the loop cutoff frequency of 

v'(t) is the analog of frequency fluctuations. In practice,  one 



B. Period Measurement. Assume one has  a n  oscillator whose 

voltage output may be represented by ( 2 ) .  < < 1 for  all t and 

the total phase 

4(t) = 2 n v  t t a(t) (5) 
0 

i s  a monotonic function of time (that is, S l ) ,  then the time t 

between successive positive going zero of V(t) is related to the 

average frequency during the interval 7 ; specifically, 

1 - 7 = V0(1 -I y,) . (49) 

If one le ts  

and the M-th successive positive going zero crossing, then 

T be the time between a positive going z e r o  crossing of V(t) 

If the variations A 7 of the period a r e  small compared to the average 

period 7 , Cutler and Searle [i’] have shown that one may make a reasonable 

approximation to 
0 

( a 2 ( N ,  T, T ) )  using period measurements.  
Y 0 

C. Per iod  Measurement with Heterodyning. Suppose that cp(t) is 

a monotonic function of time. The output of the filter of Sec. VII, A, (43) 

becomes v v  

<< 1. Then one m a y  measure the period 7 of two successive 
I 

zero crossings of v ( t ) .  Thus 

and for  the M-th positive crossover 

M - -  
7 

26 
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The magnitude ba r s  appear because cos q( t )  is a n  even function 

of cp(t). 

increasing with time o r  decreasing with time. Since 7 may be very 

small (- 10-l’ or  

and thus measurable with a good relative precision. 

It i s  impossible to determine by this method alone whether cp i s  

n 
for very good oscillators), T may be quite long 

If the phase, cp(t), is not monotonic, the true 7 may be near n 
zero but one could still have many zeros of cos cp(t) and thus (52) and (53) 

would not be valid. 

D. Frequency Counters. Assume the phase (either @ or cp) is  a 

monotonic function of time. If one counts the number M of positive 

going zero crossings in a period of time 

of the signal is 7 .  
T , then the average frequency 

If we assume that the signal is V( t )  (as defined in 
M 

( 2 ) ) s  then 

If we assume that the signal i s  v’(t) (as defined in (48)), then 

M - - -  
7 - V0lYnI 

Again, one measures only .positive frequencies. 

(54) 

( 5 5 )  

E. Frequency Discriminators. A frequency discriminator is a 

device which converts frequency fluctuations into an analog voltage by 

means of a dispersive element. 

circuit f rom the s igna l  V(t) the frequency fluctuations - cp (t) a r e  con- 

verted to amplitude fluctuations of the output signal. 

V amplitude fluctuations 

fluctuations can be a good measure of the frequency fluctuations. Obviously, 

more sophisticated frequency discriminators exist (e. g., the cesium beam). 

Fo r  example, by slightly detuning a resonant 
1 .  

2n 
Provided the input 

a r e  insignificant, the output amplitude 
0 

F r o m  the analog voltage one may use analog spectrum analyzers 

to determine S ( f ) ,  the frequency stability. By converting to digital data, 

other analyses a r e  possible on a computer. 
Y 
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F. Common Hazards. 

1. E r r o r s  caused by signal processing equipment, The intent 

of most frequency stability measurements is to evaluate the source and not 

the measuring equipment. 

measuring system. 

equipment as noise level, dynamic range, resolution (dead time), and f r e -  

quency range. 

Thus, one must know the performance of the 

Of obvious importance a r e  such aspects of the measuring 

It has been pointed out that the noise bandwidth fh  i s  very 

essential for the mathematical convergence of certain expressions. 

a s  one wants to measure the signal source, one must know that the measuring 

system is not limiting the frequency response. 

recognize that the frequency limit of the measuring system may be a very 

important, implicit parameter  for either oa(t) o r  S (f). Indeed, one 

must account for any deviations of the measuring system f rom ideality 

such a s  a %on-flat" frequency response of the spectrum analyzer itself. 

Insofar 

At the very least ,  one must 

Y Y 

Almost any electronic circuit which processes a signal will, 

to some extent, convert amplitude fluctuations a t  the input terminals into 

phase fluctuations at  the output. 

a time-varying phase (or F M  noise) a t  the output. This can impose important 

constraints on l imiters  and automatic gain control (AGC) circuits when good 

frequency stability is needed. Similarly, this imposes constraints on equip- 

ment used for frequency stability measurements. 

Thus, AM noise a t  the input will cause 

2. Analog spectrum analyzers (Frequency Domain). Typical 

analog spectrum analyzers a r e  very similar in design to radio receivers  

of the superheterodyne type, and thus certain design features a r e  quite 

similar. For  example, image rejection (related to predetection bandwidth) 

is very important. Similarly, the actual shape of the analyzer 's  frequency 

window is important since this affects spectral resolution. 

dynamic range can be cr i t ical  for the analysis of weak signals in the presence 

of substantial power in relatively narrow bandwidths (e. g. , 60 Hz). 

As with receivers ,  
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The slewing rate of the analyzer must  be consistent with the 

analyzer 's  frequency window and the post-detection bandwidth. 

a frequency window of 1 hertz,  one cannot reliably estimate the intensity 

of a bright line unless the slewing rate  is much slower than 1 hertz/second. 

Additional post-detection filtering wil l  further reduce the maximum usable 

slewing ra Le. 

If one has  

3. Spectral density estimation f rom time domain data. It is 

beyond the scope of this paper to present  a comprehensive l i s t  of hazards 

for spectral  density estimation; one should consult the l i terature  [ 2  - 51. 

There a r e  a few points, however, which a r e  worthy of special notice: 

a. Data aliasing (similar to predetection bandwidth 

problems ). 

b. Spectral resolution. 

c. Confidence of the estimate. 

4. Variances of frequency fluctuations, ~ ~ ( 7 ) .  It is not un- 

common to have discrete frequency modulation of a source such a s  that 

associated with the power supply frequencies. 

frequencies in S ( f )  can cause oa(7) to be a very rapidly changing function 

of T. An interesting situation resul ts  when 7 is an exact multiple of the 

period of the modulation frequency (e. g., one makes 7 = 1 second and 

there exists 60 Hz frequency modulation on the signal). 

aa(, = 1 second) can be very optimistic relative to values with slightly 

different =lues of 7. 

Y 

The existence of discrete 

Y Y 

In this situation, 

Y 

One also must be concerned with the convergence properties of 

aa(7) since not a l l  noise processes  will  have finite l imits to the estimates 

of oa(T) (see Appendix A). 

time" in the measurement process  as of the system bandwidth. 

Y 
One must  be as critically aware of any "dead 

Y 

5 .  Signal source and loading. In measuring frequency stability 

one should specify the exact location in the circuit  f rom which the s ignal  

is obtained and the nature of the load used. It is obvious that the t ransfer  

2 9  



characteristics of the device being specified will depend on the load and 

that the measured frequency stability might be affected. 

i s  not constant during the measurements, one expects large effects on 

frequency stability . 

If the load itself 

6. Confidence of the estimate. A s  with any measurement in 

science, one wants to know the confidence to assign to numerical results.  

Thus, when one measures  S ( f )  or  o a ( T ) ,  i t  i s  important to know the 

accuracies of these estimates.  

a .  

Y Y 

The Allan Variance. It is apparent that a single sample 
2 variance, (2, 7, T), does not have good confidence, but, by averaging 

many independent samples, one can improve the accuracy of the estimate 

greatly. 

For  this argument to be true, i t  is important that one sample variance be 

independent of the next. Since ~ ~ ( 2 ,  T, 7) is related to the f i r s t  difference 

of the frequency (see ( 1 1 ) ) ,  it is  sufficient that the noise perturbing y( t )  

have "independent increments, i. e . ,  that y ( t )  be a random walk. In 

other words, i t  is  sufficient that S ( f )  - f - 2  for low frequencies. One 
Y 

can show that for noise processes which a r e  more divergent a t  low f r e -  

quencies than f-2,  i t  is difficult (or impossible) to gain good confidence 

on estimates of ~ ~ ( 7 ) .  

than f m 2 ,  no problem exists. 

Y 

There is a key point in this statement--"independent samples. 

Y 

Fo r  noise processes  which a r e  less  divergent 
Y 

2 It is worth noting that if we were interested in CY ( N  = m, 7, T ) ,  
Y 

then the limit noise would become 

~ ' ( 2 ,  T, TI. 

divergent noises, ( a 2  (2, 7, 7)) is  more  useful than 0 2 ( N  = =, 7, 7). 

S (f )  - f o  instead of f - 2  a s  it i s  for 
Y 

Since most rea l  signal generators possess low frequency 
Y 

Y Y 
Although the sample variances, o2 (2 ,  T, T), will not be normally 

Y 
distributed, the variance of the average of m independent (non-overlapping) 

samples of u (2, 7, 7) (i.e., the variance of the Allan Variance) will decrease 

a s  l / m  provided the conditions on low frequency divergence a r e  met. 

sufficiently large my the distribution of the m-sample -averages of 

a 
Y 

For  
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oa(2, T, 7 )  will tend toward normal (central limit theorem). 

possible to estimate confidence intervals based on the normal distribution. 

It is, thus, 
Y 

As always, one may be interested in  7-values approaching the 

limits of available data. 

the order of a year,  one is severely l imited in the size of m, the number 

of samples of ~ ~ ( 2 ,  7, 7 ) .  
Y 

for many samples and one extends 

results.  "Truth in packaging" dictates that the sample size m be stated 

with the results. 

Clearly, when one is interested in 7-=lues of 

Unfortunately, there seems to be no substitute 

7 a t  the expense of confidence in the 

b. Spectral Density. As before,  one i s  referred to the 

l i terature for discussions of spectrum estimation [Z -51 .  

out, however, that for S ( f )  there a r e  basically two different types of 

averaging which can be employed: Sample averaging of independent estimates 

of S (f) ,  and frequency averaging where the resolution bandwidth is made 

much greater than the reciprocal data length. 

It is worth pointing 

Y 

Y 

VIII. Conclusions 

A good measure of frequency stability is the spectral density, S ( f ) ,  

of fractional frequency fluctuations, y(t) .  An alternative is  the expected 

variance of N sample averages of y( t )  taken over a duration 7 . With 

the beginning of successive sample per iods spaced every T units of time, 

the variance is denoted by ua(N, T, 7 ) .  The stability measure,  then, is the 
Y 

expected value of many measurements of a2(N,  T, 7) with N = 2 and T = 7 ;  

that is ,  u2(7). F o r  all real  experiments one has  a finite bandwidth. In 
Y 

general, the time domain measure of frequency stability, 

Y 

Y 

U;(T), is  

dependent on the noise bandwidth of the system. Thus, there a r e  four 

important parameters  to the time domain measure  of frequency stability: 
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N, 

T, 

the number of sample averages ( N  = 2 for preferred measure); 

the repetition time for successive sample averages ( T  = 7 for 

prefer red  mea sur e ); 

7 ,  

fhJ 

the duration of each sample average; and 

the system noise bandwidth. 

Translations among the various stability measures for common 

noise types a r e  possible, but there a r e  significant reasons for choosing 

N = 2 and T = T for the preferred measure of frequency stability in the 

time domain. This measure,  the Allan Variance, ( N  = 2 )  has been 

referenced by [12, 20-221, and more. 

Although S (f)  appears to be a function of the single variable f ,  
Y 

actual experimental estimation procedures for  the spectral density involve 

a great many parameters .  

least  a s  involved a s  the estimation of ~ ' ( 7 ) .  

Indeed, i t s  experimental estimation can be a t  

Y 
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APPENDIX A 

We want to derive (23) in the text. Starting from (10) in the text, 

we have 

N N  

1-1 j=1 

dt" jntT dt' (y 

n 

where (9) has been used. Now 

(y(t')y(t''$ = Ry(t' - t") (A2) 

where R (7)  is the autocorrelation function of y(t)  and is the Fourier 

t ransform of S (f) ,  the power spectral density of y(t). Equation (A2) is 

true provided that y( t )  is stationary (at least  in  the wide or covariance 

sense),  and that the average exists. 

density of y(t), 

necessary) so that 

Y 

Y 

If we assume the power spectral 

S (f) ,  has low and high frequency cutoffs f l  and f h (if 
Y 

,QD / Sy(f)df exists 

then if y is a random variable, the average does exist and we may safely 

a s sume s ta t iona r i ty . 

I 
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In practice, the high frequency cutoff, f , is always present either h 
When in the device being measured or in the measuring equipment itself. 

the high frequency cutoff i s  necessary for convergence of integrals of 

S ( f )  (or is too low infrequency) ,  the stability measure will depend on f 

The latter case can occur when the measuring equipment is too narrow- 

band. In fact, a useful type of spectral  analysis may be done by varying 

f purposefully [ 181. 

h' Y 

h 
The low frequency cutoff f m a y  be taken to be much smaller than a 

the reciprocal of the longest time of interest. 

a s  well a s  measurements will be meaningful if they a r e  independnt of f 

a s  f L  approaches zero. The range of exponents in power law spectral 

densities for which this is true will be discussed and a r e  given in Fig. 1. 

The results of calculations 

a 

To continue, the derivation requires the Fourier transform relation- 

ships between the autocorrelation function and the power spectral density: 

,- 

R ( 7 )  =J- S (f) cos 2 n f T d f .  
Y Y 
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Using (A3) and (A2) in ( A l )  gives 

( a a  (N, T, 7)) = 
Y 

N N  t . t T  

- 2 ladfSy(fft i t ; tf  ' dt' cos 2nf(t'-t'') 

t 
j 

N .  
1= J=1 i 

. N Nr P s (f )  
df (2 cos 2nfTCj-i) - cos 2nf[  T(j-i) t T] 

- N . L  .G LJo (2n fY 
1=1 J=1 

- cos 2nf[T(i  (A4 1 

(The interchanges in order of integration a r e  permissible here  since the 

integrals a r e  uniformly convergent with the given restrictions on S Y (f). ) 

The f i r s t  summation in the curly brackets is independent of the summation 

index n and thus gives just 

The kernel in the second te rm in the curly brackets may be further 

s irnpl if i e d: 

2 cos 2nfT(j-i)  - cos 2nf  (T(j-i) t T )  - cos 2nf  (TO-i) - T) 

(A6 
a = 4 sin nf 7 cos 2nfTG-i)., 
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The second term is then 

N 

(The interchange of summation and integration is justified. ) We must 

now do the double sum. Let 

j - i = k ,  

2 n f T =  x.  (A 8) 
Changing summation indices f rom i and j to i and k gives for the 

sum 
N N  

cos x (j-i) = 2 f i  c o s k x .  (A 9 )  
I= 1 k= 1 -i 

N N  

cos x (j-i) = 2 f i  c o s k x .  (A 9 )  
I= 1 k= 1 -i 

The region of summation over the discrete variables i and k is 

shown in Fig. 5 for N = 4. 

The summand is independent of i so one may interchange the 

order  of summation and s u m  over i f i rs t .  The summand is even in 

k and the contributions for k < 0 a r e  equal to those for  k > 0, and so 

we m a y  pull out the term for k = 0 separately and write: 

N-1 N -k 

i= 1 i= 1 

= 2 ( [:(N-k) cos kx t N .  I 
This m a y  be written as  

N-1 
S = N t 2 R e  [ N - f $]g;ik 

where Re[U] means the real par t  of U and d/dx is the differential 

operator. 

ea sily, giving 

The ser ies  is a simple geometric series and may be summed 
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ix iNx S = N t Z R e {  I . - 7  1 d  z] e l  ::ix \ 

- sina Nx/2 

sin x /2  
- 

a 

Combining everything we get, af ter  some rearrangement,  

where r = T / 7 .  This is the resul t  given in (23). 

We can determine a number of things very easi ly  f rom this 

eqa t ion .  F i r s t  let us  change variables. Let n f T  = u, then 

- 2  
The kernel behaves like u p  as u 4 0 and like u as  u Q). 
Therefore 

S (f) = h f @ ,  without any low or high frequency cutoffs for Y o! # 

Using (A14) for  power law spectral  densities we find 

a 
Y 

( 0  (N, T, 7 ) )  is convergent fo r  power law spectral  densities, 

- 3 < a <  1. 

-a -1 
($(N, T, 7)) = 7 h,C, for - 3 < Q < l  

= 7% c where p -01 -1  
@ a  

and 
a } . (A151 

sin Nru a 

at1 a Nasina r u  

dI sin u - - 
ccu - 

This is the basis for the plot in Fig.  1 in the text of p vs. 61. For 

2 1 we must  include the high frequency cutoff fh. 
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For N = 2 and r = 1 the results a r e  particularly simple. We 

fo r  power law spectral densities. For N = 2 and general r we get 

cos2u( r t l )  cos2u(r -1) 
1 -cosZu-cosZrut t Q) 

(8 (2, T, T ) ) =  d d u  S (-1 U ' 2 2 
m 

U Y 2 n 7  Y n T  

a 
a a u sin u sin ru  - - L J d u S  lTT Y (-) n T  U 8 

0 

The f i rs t  form in (A17) is particularly simple and is also useful for r = 1 

in place of (A16). 

Let us discuss the case for  d 2 1 in a little more  detail. As 

mentioned above we must include the high frequency cutoff, f h ,  for 

convergence. 

After placing the factor 7 

f-' with S ( f )  we find that the remaining par t  

some constants and some oscillatory terms. 

that the rapidly oscillating terms contribute very little to the integral. 

Most of the contribution comes f rom the integral over the constant te rm 

causing the major portion of the 7 dependence to be the T -a factor 

outside the integral. 

in the 1 vs. Q plot in Fig. 1 in the text. 

The general behavior can be seen most  easily f rom (A13). 
% 

outside the integral and combining the factor 

of the kernel consists of 
Y 

If 2 V f h  T > > 1 it i s  apparent 

This is  the reason for the vertical  slope a t  p = -2 

One other point deserves some mention. The constant te rm of 

the kernel discussed in the preceding paragraph i s  different for r = 1 

f rom the value for r # 1. This is readily seen from (A17) for N = 2; 

for  r = 1 the constant t e rm is 3/2 while for  r # 1 i t  i s  1. This is 

the reason that 6 (r-1) which appears in  some of the results of 

Appendix B. In practice, 
k 

! 
s(r-1) does not have zero  width but i s  
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smeared out over a width of approximately ( 2 ~ f  h T)-’. If there must be 

dead time, r # 1 ,  it is wise to choose (r-1)  >> 2nf h T ) - ~  

(r -1)  < < ( 2 ~ f ~ 7 ) - ~  but with 2nf h 7 >> 1 .  In the latter case, one may 

assume r SY 1 .  

or 



APPENDIX B 

Let y(t)  be a sample function of a random noise process  with a 

spectral  density S (f) .  The function y(t)  is assumed to be pure real  

and S ( f )  is a one-sided spectral  density relative to a cycle frequency 

(i .e. ,  the dimensions of S ( f )  a r e  that of y per her tz ) .  (For additional 

information see Appendix A, [7, 8,181. ) 

Y 

a Y 
Y 

Let x ( t )  be defined by the equation 

Define: t i s  a rb i t ra ry  instant of time and 
0 

= t  t T ,  n = 0 , 1 , 2  ,..., 
'n+l n 

and l e t  f 

2nf 7 > >  1, h 

be a high (angular) frequency cutoff (infinitely sharp) with 
h 

(Yn - W,)a 
Definition: N 

n= 1 
(a2  (NJ T, 7)) f 

Y 

Special Case: 
(n2 (2, TI 7)) = 
Y 

t 27) - 2x(tot 7) t x(to)la 

2 T2 

Special Case: 

o;(') (0;(2J ' 1  ')) = 
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Definition: * 

X 0 0 

Consequency of Definitions : 

Definition : \ 

X 
t T t 7 )  - x(t 0 t T )  - x(t 0 t 7 )  t x(t 0 )I” 

Consequency of Definitions: 

$:(T, 7) = 2~~ (U”(2, T, 7)) . 
Y 

Special Case: 
+: ( 7 ,  7)  = D a  (7). 

X 
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RANDOM WALK y 

-2 
h 

s (f) = - 
Y 9 

h 

= (2 Tr)l -2 r ) 

Quantity R e  la t ion 

I 

I 
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FLICKER y 

(SX(f) = (2 h - l  f 3  ) 

Re la t ion 

N r 

h .  -1 N(N-1) (N-n) 1-2(nr)2 In(nr) 
n= 1 

N In N h - -  (r = 1) -1 N- 1 

h 2 l n 2 ,  ( N = 2 ,  r =  1 )  
-1 

h * 4 T 2  In 2 
-1 

h T2 -2r"ln r t ( r t l )a  ln ( r t1 )  

I -1 [ 
t (r  -1 l a  In Ir -1 1 

- h  2 T 2  (2 t In r ) ,  fo r  r > > 1 
-1 
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WHITE y (Random Walk x) 

0 
h 

S (f)  = ho 
Y x (2Trla fa s (f) = 

r = T/?, 0 S f  s f h  

Rela tion 

h 

h 0 171 

h 171 , for r 2 1 

h T, for  r 5 1 

0 

0 

45 

B2 5) 

(B2 8) 



FLICKER x 

s (f Y 
= hl If 

N=2, r = l ( B 3 1 )  
1 

h1 Ta(271)’ 

L- 

I 3[& ln(27rfhT)] - In 2 

R 
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WHITE x 

S ( f )  = h,? 
Y 

r = T/T; 1 i f r = 1  
'k" -' ) = 10 otherwise 

Quantity I Rela tion 

; N = 2 ,  r = l  fh  
Y h2 ' (2n)2 

h2 ( 2 d  
fh . -  D a  (7) = 20: (7)  

X 
D a  (7) = 20: (7)  . -  
X 

; N = 2 ,  r = l  fh  
h2 ' (2n)2 
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