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Abstract—We measure and analyze effects of nonlinear mixing 
of phase-noise modulation (PM) and amplitude-noise 
modulation (AM) in an oscillating signal by real-time 
correlations measured in the cross power spectral density 
(CPSD).  We outline sensitive measurements of PM-AM 
correlation coefficients by means of a time-averaged CPSD 
measurement technique. Separate but simultaneous PM and AM 
measurements using a two-channel cross-correlation spectrum 
analyzer, quantifies the relevant effects of intermodulation 
mixing with excellent sensitivity compared to traditional 3IM 
measurements and the scatter-plot correlation technique.  Time-
averaged cross-spectrum measurements provide good estimates 
of correlation coefficients as a function of Fourier frequency (f).  
We use normalized PM-AM CPSD measurements of a 645 MHz 
quartz-MEMs oscillator as an example and find that 1/f  PM-
AM CPSD is exactly correlated, even for very widely differing 
levels of PM and AM noise, in which individual PSDs of PM and 
AM differ by >40 dB (or, greater than a factor of 10,000).  We 
also verify that white-PM noise has uncorrelated PM-AM 
CPSD. 

I. INTRODUCTION 
Energy at two frequencies propagating in an elastic 

medium creates intermodulation (IM) sideband frequencies.  
Displacements in media such as through an optical fiber, 
bipolar or unipolar junction, transmission line, or mechanical 
transducer cause distortion particularly when the medium 
saturates or self-levels in some way.  Such distortions can 
generate energetic artifacts, such as phonons, that induce 
harmonics that alias spectral noise, introduce energy 
transduction at baseband, and result in a multiplicity of IM 
sidebands [1].  Fundamentally, two independent oscillating 
(sinewave) signals at frequencies ν1 and ν2 into a circuit 
element create harmonic signals at Nν1,2, N = 2,3,4,…, as well 
as products at Nν1,2 – (N-1)ν2,1.   

The following discussion is largely limited to the positive-
feedback simple loop oscillator (SLO) having a narrow 
bandwidth frequency-determining element (resonator) 
compared to its on-resonance or operating frequency. The 
resonator of a SLO is often the largest nonlinearity affecting 
the PM noise, sometimes dramatically increasing it.  Total 
harmonic distortion (THD) at Nν1,2 is principally filterable 
after an oscillator, whereas in-loop 3IM (3rd-order 
intermodulation) signal products, which occur for low-order 
N, such as N = 2, are predominantly filterable by the 
resonator.  

3IM universally creates undesirable PM-AM and AM-PM 

conversion, but this is particularly true in quartz oscillators [2-
16].  To obtain high signal-to-noise ratio (SNR) above shot or 
thermal noise, most oscillators operate best just below some 
arbitrarily-determined onset of nonlinearity.  Distortion levels 
of -50 dBc to -70 dBc are deemed linear enough in many 
cases, before the “Duffing effect”, in which AM-FM 
conversion in the resonator rises above other 3IM effects in 
the feedback loop.   

 The principle reason to eliminate 3IM around an 
oscillating loop is to maintain the independence (or 
orthogonality) of PM and AM noises.  “Orthogonality” is a 
critical property for reducing PM noise in the presence of AM 
noise, and the normalized cross power spectral density 
(CPSD) to be discussed is a suitable measure of orthogonality.  

PM-AM correlation measurements are described in 
Section II.  Section III contains definitions of terms.  Section 
IV reviews three of the most common sources of signal 
nonlinearities that cause mixing effects between PM and AM 
in a SLO that cause correlation.  Section V presents and 
interprets measurement results of a 645 MHz miniature, low-
power quartz-MEMS oscillator. 

II. PM-AM CORRELATION MEASUREMENT TECHNIQUES  
The noise-modulation on the phase and amplitude of an 

oscillating signal (carrier) are the subject here.  They each 
create sideband power relative to the carrier power.  In best-in-

  
Figure 1.  Two-dimensional scatter plots of analog AM and PM noise 
measurements (CH1 and CH2 respectively shown at top).  White noise is 
added at the DUT-oscillator output. No PM-AM noise correlation is found, 
nor expected as shown by the cloudy pattern.  Measuring time-averaged cross 
power spectral density (CPSD) is by a 2-channel FFT cross-correlation 
spectrum analyzer.  CPSD is the grassy bottom-most trace and PM and AM 
are the smooth traces. The CPSD is entirely average-limited. 
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class low-noise oscillators, the noise-modulation sideband 
power relative to carrier offset frequency f > 1 Hz can be -100 
dB or lower for carrier frequencies of around 10 MHz.  PM 
and AM noises are often assumed to be independent because 
deviations are (1) modeled as linear time-variant, or LTV, and 
(2) extremely small [17].   

For assessing correlations of PM and AM noise on the 
carrier, that is, only noise modulations with the carrier 
subtracted (removed), we can measure and display the AM 
noise on the Y-axis and the PM noise on the X-axis of a 2-axis 
plot as shown at the top of Fig. 1.  This so-called ‘scatter plot’ 
displays correlation in real time by lines and lack of 
correlation by the random circular cloud pattern that is shown.  
The scatter plot does not conveniently provide a time average, 
so each signal is fed to a 2-channel digital cross-correlation 
spectrum analyzer that computes FFTs.  Implementing a 
cross-correlation FFT analyzer permits one to average 
multiple blocks of FFT spectra.  Time averages can continue 
indefinitely until a smooth, steady-state noise level is 
produced.   

An RF noise source (NS) with equal uncorrelated AM and 
PM noise is added to the oscillator, the device under test, or 
DUT.  The signal’s PM and AM noise passes through a 
bandpass filter (BPF) from 100 Hz < f < 1 kHz to assure 
uncorrelated noise of the DUT used here for example. Fig. 1 

shows the uncorrelated PM and AM power spectral density 
(PSDs are the two clean traces) and cross-correlation PSD (the 
grassy trace).  Fig. 2 shows a digital implementation [18,19].  
The degree of PM-AM correlation is characterized by the ratio 
of the cross-PSD (CPSD (f)) to the geometric mean of each 
individual PSD (√     ). Phase and amplitude noise are 
exactly correlated if CPSD (f) =√     , thus log(       

√    

 ) 

vs. log-f is a convenient characterization representing the 
range 0 – 1 of the normalized scalar correlation ratio       

√    

 

that is consistent with log-log plots of PSDs. 

III. DEFINITIONS  
Henceforth, we will restrict the discussion to PM and AM 
noise and measurement methods that characterize PM-AM 
correlations by means of the CPSD. The following terms and 
definitions apply in this paper: 
(t):  Instantaneous phase fluctuations; PM-noise function 
(t): Instantaneous fractional amplitude fluctuations; 

AM-noise function 
S(f):  One-sided double-sideband power spectral density 

of random phase fluctuations 
S(f):  One-sided double-sideband power spectral density 

of fractional amplitude fluctuations 
CPSD(f): One-sided double-sideband cross power spectral 

density of S(f) and S(f), computed as          
  

or      
       

      

√    
    : Normalized cross power spectral density; log plots 

as 10log       - 10log√     
√        : Geometric mean of S(f) and S(f); Average of 

10logS(f) and 10logS(f) 
 

IV. ORIGINS OF NONLINEAR MIXING OF PM AND AM IN AN 
OSCILLATING SIGNAL  

Common-mode noise sources [20,21] and spectral 
upconversion [22-24] will have correlated PM and AM noise 
caused by 3IM transduction.  This section explains how 3IM 
causes PM and AM noises to become correlated.  SLO 
components create two basic kinds of 3IM: (1) wideband, in 
which low-order harmonics (N = 2,3,4) are not attenuated, and 
(2) narrowband, in which essentially all harmonics are 
attenuated.  Wideband 3IM is caused by amplifier crossover 
distortion, large-signal compression or clipping, frequency 
comb generation through a nonlinear step-recovery diode and 
capacitor varactor effect, to name common causes.  
Narrowband 3IM self-filters its own harmonics usually by 
means of the high-Q, narrowband frequency determining 
element, i.e., the resonator.  While fabrications focus on yet 
smaller SWaP (size,weight and power), low-power-handling, 
and low-phase 
noise, 3IM is 
observed inside 
the resonator BW 
of a simple loop 
oscillator, 
whereas outside 
the resonator BW, 
3IM terms 
attenuate by the 
high-frequency 
rolloff of other 
circuit elements. 

A. 3IM IN RESONATORS 
The connection between 3IM and PM-AM and AM-PM 

conversion in quartz resonators has been widely studied.  
Resonator 3IM has been measured to evaluate effects on 
various unwanted and higher-order-overtone modes to realize 
highest Q and lowest tempco in quartz resonators [2,11,25].  
‘3IM,’ ‘IM3,’ and ‘IIP’ measurements are nomenclatures for 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Digital PM and AM noise measurement systems can be 
constructed to simultaneously compute S(f), S(f), and CPSD (f) [18].  A 
key difference between this technique and analog (Fig. 1) is that oscillator 
signals are digitized by a set of high-speed ADCs. PM and AM (I and Q 
channels) are each cross-correlated to reduce measurement-system noise 
before computing PM-AM CPSD, hence four separate channels are used.  

 
Figure 3.    3IM for 125 MHz AT- and SC-cut, 
fifth overtone quartz resonators [2].  

    AT-cut 
   SC-cut 
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measurements of intermodulation distortion of circuit 
elements [26].  It is either (1) the ratio of power in 
intermodulation sidebands to signal power for a particular 
input power level, or (2) power at which the 3IM distortion 
level equals the signal power, also called the 3rd-order 
intercept.  Measurement (2), and the 3rd-order intercept, is a 
well-suited characterization for amplifiers and passive 
components, but not for the frequency-determining element 
(resonator), due to its unique Duffing effect described next.  
Referring to Fig. 3, we drive a resonator with two symmetric 
frequencies with equal powers within the resonator BW.  
Intermodulation level is defined by the ratio PTT/PIM, the test 
tone power PTT (at ν1 or ν2) to the third order intermodulation 
power PIM (at 2ν1-ν2  or 2ν2-ν1). It is often modeled as PTT/PIM 
=A2/(δe

2 PTT
2) , where A is a factor depending on the 

resonator geometry and on the electrical circuit parameters 
[5].  δe is an effective nonlinear constant that is calculated 
based on a variety of resonator parameters, and in quartz is 
primarily a fourth-order effect [11,27]. 
B. Duffing Effect 

The relationship between the amplitude of a resonance and 
the applied force is the Duffing equation. In oscillator jargon, 
“Duffing” refers to the state in which a pronounced AM-to-
FM conversion occurs near resonator saturation (soft 
clipping), particularly in small resonators such as MEMs 
[28,29].   MEMs and other micro-size resonators, while very 
desirable for SWaP, are unfortunately prone to high nonlinear 
mixing due to their low saturation, or Duffing, threshold.  The 
relationship between force and media displacement is 
nonlinear. The nonlinear mass-spring system can be described 
by F = -kx(l + ax2) = -k'x, where k' is the "effective spring 
constant."  Since the stiffness of the nonlinear system is 
amplitude-dependent, it follows that the natural frequency is 

dependent on the 
amplitude of the 
vibration, i.e., the 
drive level. We 
can write the 
motion equation 
for the nonlinear 
system, resulting 
from a sinusoidal 
driving force, as 
mx" + kx + kax3 = 
Fdcos(ωt+ϕ). To 
get the electrical 
analog of this 
equation, replace 
the mass with an 
inductance, the 
reciprocal of the 
spring constant 
with capacitance, 
the displacement 
with the charge, 
and the driving 

force with a voltage or current. Fig. 4 shows amplitude 
response vs. drive current of the lumped-constant equivalent 
of a 10 MHz quartz resonator. The capacitance, which is 
analogous to the effective spring constant, is then given by 

1/C’ = (1/C)(1 + aq2).  The resulting equation for the 
sinusoidally driven LC network is q" + ωo

2q + ωo
2aq3 = 

Vcos(ωt+ϕ), where ωo=(LC)-1/2 is the natural frequency 
without the nonlinear term of form q = Q cos(ωt). We arrive at 
an algebraic equation with cos3(ωt) that involves terms in 
cos(3ωt), indicating that harmonics, hence intermodulation 
terms, are generated by the nonlinearity.  

C. 3IM in Loop-oscillator Circuit Elements 
The simple loop oscillator requires signal amplification in 

the loop to overcome losses in the resonator and other circuit 
elements.  All amplifiers tend to distort the input signal at 
power levels that 
optimize S/N 
ratio, that is, 1-2 
dB compression.  
Crossover 
distortion and 
clipping of the 
oscillator’s loop 
amplifier are 
shown in Fig. 5.  
An amplifier’s 
output thus 
contains 
undesirable distortion products, spurious products, and noise 
conversions that collectively are regarded as 3IM byproducts, 
which contribute to PM-AM mixing (correlation). 

V. CPSD MEASUREMENT 
A CPSD measurement of a 645 MHz quartz-MEMs 

oscillator1 is shown in Fig. 6. It is interesting to see that close-
to-carrier PM-AM CPSD is exact, even for very widely 
differing levels of PM and AM noise.  Individual PSDs of PM 
and AM differ by >40 dB, or greater than a factor of 10,000. 
The resonator full BW is about 4 kHz and the CPSD (shown 
in red) in the flicker region f < 2 kHz means that substantially 
complete correlation exists inside the quartz-MEMs resonator.  
Correlation falls to negligible level in the white region, f > 
10kHz.    This result suggests that very little PM-AM mixing 
occurs in the loop circuit elements, with the exception of 
dominant mixing in the resonator.  Independent admittance 
measurements verify that the resonator is operating in the 
Duffing regime [30].  

VI. CONCLUSION 
We find that remedies for 3IM distortion defy simplicity in 

the large list of papers on quartz resonators spanning more 
than sixty years.  Now, causes and cures of oscillating-signal 
PM and AM noises and strategies for reducing them become 
as important as strategies that are focused only on reducing 
PM noise.  This is the first paper to quantify real-time PM-
AM correlations by using the CPSD.  Linearity of resonators 
is rarely possible as elastic-resonator sizes reduce to 
microscopic scales.  This writing supports previous assertions 
that, for the lowest PM noise designs, linear resonators couple 
with oscillating-loop elements that circumvent 3IM and its 
PM-AM noise correlation, which has led to significant 

                                                           
1 Test oscillator is provided by Hughes Research Lab.   
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.    Normalized amplitude vs. drive 
current of the lumped-constant analog circuit of a 
10 MHz quartz resonator is shown at top.  
Sensitivity is 50ppb/ma2.  The phase response is 
shown at bottom.    

 
 
 
 

Harmonic distortion causes 3IM in 
circuit elements 

Figure 5.    3IM from amplifier crossover 
distortion (top) and signal compression / clipping 
(bottom). For best S/N ratio, amplifiers are often 
operated in compression by 1 – 2 dB. 
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advances in ultra-low noise microwave oscillators [31-35].  
Presuming that one may want to operate an oscillator at some 
degree of nonlinearity, knowledge of PM-AM CPSD 
provides a new means to quantify, isolate, and perhaps reduce 
or cancel noise modulation in an oscillating signal.   
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