Microsecond Accuracy at Multiple Sites: Is It Possible Without GPS?

Michael A. Lombardi

or time metrologists, a microsecond (10⁻⁶ s) is not an especially short interval. The Global Positioning System (GPS) has made it easy to synchronize a clock within nanoseconds (10⁻⁹ s) [1], and time interval counters with resolutions measured in picoseconds (10⁻¹² s) have been common for decades [2]. In more recent years, the femtosecond (10⁻¹⁵ s) frequency comb has become a fixture at the most advanced laboratories [3]. Because most research focuses on new advances, the microsecond is almost a forgotten unit in recent literature about time metrology.

In a practical sense, however, a microsecond is still an interval so short that it nearly defies comprehension. Light in a vacuum travels only about 299.8 m per microsecond, or slightly more than the length of three football fields. The "moving" images we see on television are actually static for many thousands of microseconds. Even when a sporting event appears to be "too close to call," such as Michael Phelps's dramatic victory in the 100 m butterfly at the 2008 Olympics, video recorded at 10,000 frames per second (one frame every 100 microseconds) can easily reveal the winner.

The industrial timing world lies somewhere between the state-of-the-art timing practiced in laboratories and the modest timing requirements of everyday life. The microsecond is the most discussed unit in industrial timing systems, because microsecond accuracy is required to support critical infrastructure. Most critical infrastructure timing systems depend upon GPS, simply because microsecond accuracy is easy to achieve with GPS and difficult to achieve without it.

This paper explores how GPS clocks meet the accuracy requirements of two critical-infrastructure applications: mobile telephone networks and the electric power grid. Both industries require time accurate to a microsecond [4] at thousands of geographically dispersed sites and thus, rely upon thousands of GPS clocks. The paper also discusses the vulnerabilities of GPS clocks and reviews possible backup strategies for maintaining microsecond accuracy across a large geographic region when GPS is unavailable.

How GPS Clocks Maintain Microsecond Accuracy

Several established methods for transferring time from one location to another have been described in the literature for many years [5] and are continuously being refined [6], [7]. All time transfer methods have a reference clock at their source (point A). Information from the reference clock is encoded on to a signal that is sent through a wired or wireless medium to its destination (point B), where the remote clock is located (Fig. 1). The remote clock is synchronized with the time from the reference clock, which is corrected to include the path delay through the medium, d_{ab} . Even if the reference clock is a "perfect" source of Coordinated Universal Time (UTC), the accuracy of the time transferred to the remote clock can be no better than the uncertainty of the path delay measurement [8]. This simple fact can be thought of as *the first rule of time transfer*.

It is difficult to accurately measure the path delay through some mediums. For example, shortwave radio signals were once commonly used to transfer time, but path delay measurements normally had an uncertainty of at least a few hundred microseconds due to variations in the height of the ionosphere and other factors [9]. Network time transfer systems, such as those that utilize the Network Time Protocol (NTP), do a fine job of synchronizing the clocks of computers connected to the Internet. However, the uncertainty of NTP path delay measurements is typically multiple milliseconds due to routing

Fig. 1. A one-way time transfer system.

This paper is a contribution of the United States government and is not subject to copyright.

changes and varying amounts of network traffic [10]. Because the path delay measurements of shortwave and Internet time signals have such large uncertainties, it is obvious that neither medium can support a 1-µs accuracy requirement.

In contrast, GPS clocks can easily provide sub-microsecond accuracy. A positioning, navigation, and timing (PNT) service, GPS includes as many as 32 satellites that orbit the earth at a height of 20,200 km. Each satellite carries atomic clocks that are steered from ground stations to agree with UTC as kept by the United States Naval Observatory (USNO). GPS signals are transmitted on several frequencies, but most clocks only receive the L1 carrier at 1575.42 MHz. Due to large investments in research and development, the receiver modules for GPS clocks are inexpensive and small enough to embed in almost any type of electronic device (Fig. 2).

Fig. 2. A GPS receiver module (courtesy of Micro Modular Technologies).

GPS is a trusted time reference because its signals originate from atomic clocks controlled by the USNO and because time accuracy is required for GPS to function as a positioning and navigation system. To illustrate this, consider that the maximum acceptable contribution from the satellite clocks to the positioning uncertainty is about 1 m, and that the satellite clocks can receive corrections from ground stations only once or twice per day. Because light travels at a speed of about 3×10^8 m/s, the 1 m requirement means the satellite clocks need to stay accurate to within about 3.3 ns for periods of up to one day.

GPS has several advantages that allow the path delay between the reference and remote clocks (Fig. 1) to be measured very accurately. Because the time signals originate from the sky, there is an unobstructed path between the reference and remote clocks, which is not the case for clocks that broadcast time signals from terrestrial radio stations or through networks. This eliminates most significant variations in path delay. In addition, because GPS is a navigation system, the position of both the transmitter and receiver is known. The satellites transmit their position data, and the receivers determine their position by making a series of range measurements with multiple satellites. A free space calculation of the distance between the receiver and transmitter (using the speed of light as a constant), along with other corrections for relativistic effects and propagation delays, reduces the uncertainty of the path delay measurement to nanoseconds [11]–[13].

Table 1 summarizes the factors that limit the accuracy of a GPS clock. The two largest sources of uncertainty are often uncompensated hardware delays (mainly caused by the delay through the antenna cable) and antenna coordinate errors. The antenna cable delay is often not calibrated, but the delay through a RG-58 coaxial cable is about $0.005 \,\mu\text{s/m}$. Even if an uncalibrated 50 m antenna cable is used, which is unlikely, only 0.25 µs of uncertainty would be introduced. GPS clocks generally survey their own position, and antenna coordinate errors add uncertainty. The latitude and longitude estimates are usually accurate to within 1 m, but the altitude estimate of an L1 band receiver can be in error by more than 10 m. Even in the worst case, however, the uncertainty due to an altitude error should not exceed 0.05 µs, which again is insignificant for industrial timing. Other uncertainties, such as the additional delays incurred as the signals pass through the ionosphere and troposphere, are reduced by corrections that the receiver applies based on propagation models and are usually even less significant.

If we consider the uncertainties listed in Table 1 to be "worst case" and assume that they are uncorrelated and should be added together (a conservative assumption), even an uncalibrated GPS clock should be accurate to within 0.4 µs with respect to UTC. Because of their inherent accuracy without calibration, GPS clocks are often exclusively relied upon to support critical infrastructure systems. The following sections describe two of those systems: mobile phone networks and the electric power grid.

Source of Uncertainty	Uncertainty in microseconds (µs)			
	Best Case	Worst Case		
Uncompensated hardware delays (receiver, antenna, and antenna cable)	0.005	0.250		
Antenna coordinate errors (primarily altitude)	0.001	0.050		
Multipath reflections (depends upon antenna type and antenna placement)	0.002	0.010		
Signal delays through ionosphere (corrections applied by receiver)	0.002	0.020		
Signal delays through troposphere (corrections applied by receiver)	0.002	0.020		
Receiver delay changes due to temperature and environment	0.001	0.005		

Table 1 – Time uncertainties of an uncalibrated GPS clock with respect to UTC

Why Mobile Phones Need Microsecond Accuracy

Code division multiple access (CDMA) mobile phone networks, such as those operated by Verizon, Sprint Nextel, U.S. Cellular, and others, rely heavily on GPS clocks. Base station clocks require 3-µs accuracy, and base stations that support multiple simultaneous CDMA channels require 1-µs accuracy [14]. To meet these requirements, CDMA system time is nearly always obtained from GPS clocks, and it is important to realize that CDMA mobile phone networks were designed based on GPS capability. The telecommunications industry maintains a very large number of GPS clocks. The exact number is unknown, but the CTIA (formerly an acronym for the Cellular Telephone Industries Association) estimates that over 283,000 mobile phone base stations were located in the United States at the end of 2011 [15], and if you look closely at a mobile phone base station, a GPS antenna can nearly always be found. Fig. 3 shows a GPS antenna mounted above mobile phone antennas on a traffic light pole.

CDMA base stations identify themselves via a time offset, and GPS clocks provide a common time reference that allows a nearly seamless handover of a mobile phone from one base station to another. The base stations operate in the same RF channel and are identified by a spread spectrum code. Each base station offsets the start of the code by a different time interval with respect to their common time reference. As the time difference between base stations approaches 10 μ s, the ability to support handovers begins to fail and the carrier-to-noise ratio of the connections will degrade. If the time difference exceeds 10 μ s, base stations will eventually "collide," and mobile phone coverage is lost in the surrounding area.

Fig. 3. GPS antenna (top of pole) deployed for mobile phone network.

Why the Power Grid Needs Microsecond Accuracy

The electric power grid is constantly expanding to meet the demands of consumers, and many transmission lines have been pushed to near their operating limits. It is now necessary to control the power grid in real-time, so that wide-scale cascading outages can be prevented. Today's "Smart Grid" (Fig. 4) requires the synchronization of phasor measurements made at power substations so that the state of the power system can be monitored in real time. Synchronized phasors, or synchrophasors, are referenced to an absolute point in time by using UTC as a common time reference. The devices that perform the synchrophasor measurements are known as phasor measurement units (PMUs). A PMU measures positive sequence voltages and currents at power system substations and stamps each measurement with time obtained from a GPS clock. The measurements are then sent through a network to a central site, where the time stamps are aligned, the measurements are processed, and real time decisions are made about power allocations within the grid.

As was the case with CDMA, GPS clocks were an enabling technology for synchrophasor measurements. The first prototype PMU was assembled in 1988 with a GPS clock [16], and today, commercial units are available from a number of vendors. The minimum PMU requirement for time synchronization is 26 μ s, which corresponds to a phase error of 0.57° at the 60 Hz ac line frequency [17]. The desired accuracy is 1 μ s, which corresponds to a phase error of only 0.022°.

Why GPS Is Vulnerable

GPS clocks are normally reliable, often providing uninterrupted service for many years without any attention. However, they can and do fail [18], [19]. The most likely cause of failure is probably RF interference known as jamming, which can disable all GPS reception in a local area. GPS is susceptible to both intentional and accidental jamming due to the low power of the received signal. The GPS signal strength can be as low as -160 dBW when received on Earth, equivalent to 10⁻¹⁶ W, and the loss of all PNT services in a given area can be caused by interfering signals that are only a few orders of magnitude more powerful. GPS jamming devices, although illegal, are relatively easy to build or buy. The handheld jamming device (sometimes referred to as a Personal Privacy Device, or PPD) shown in Fig. 5 is advertised as being able to block all GPS and mobile phone signals within a twenty meter radius. Higher power units are available that can block PNT services over a much larger area, and all types of jammers can be difficult to locate and shut down.

When GPS signals are unavailable, GPS clocks must rely on their holdover capability to maintain synchronization. The holdover capability is provided by the clock's oscillator, which, in most cases, free runs in the absence of GPS (although some clocks store the oscillator's past performance data and continue to adjust the oscillator during signal outages). A variety of oscillators are found inside of GPS clocks,

Fig. 4. The "Smart Grid" and its reliance on GPS time synchronization (courtesy of Fluke).

ranging from tiny quartz crystal oscillators that cost just pennies when purchased in large quantities, to rubidium atomic oscillators that can cost several thousand dollars or more. Due to the differences in oscillator quality and other design factors, the length of time a clock can continue to maintain critical infrastructure requirements without GPS is almost entirely device dependent. Some industrial grade GPS clocks will be out of tolerance in less than five seconds, and most will be out of tolerance in less than one hour. More expensive GPS clocks work much better, especially in temperature controlled environments, but even the best available clocks are unlikely to maintain microsecond accuracy for more than a few days without GPS reception.

Possible Backup Strategies for GPS Clocks

No currently available timing system has demonstrated the ability to meet the 1-µs accuracy requirement at thousands of geographically dispersed sites without relying on GPS. This has caused great concern about the need for a backup timing system [20], [21], and a number of backup strategies have been explored as described in the following sections.

Other Global Navigation Satellite Systems (GNSS)

GPS was the original global navigation satellite system (GNSS), but several other systems now exist or are in the process of being built by entities outside of the United States. These include GLONASS (Russia), Galileo (Europe), and COMPASS (China) [22]. As of May 2012, GLONASS is fully operational, and the satellite constellations of Galileo and COMPASS have been partially launched. Receivers capable of simultaneously tracking all of these GNSS signals are already commercially available.

There are political and technical arguments against relying on another GNSS system as a backup timing source for GPS in the United States. The political argument is simply that it is not a good idea, from the viewpoint of national security, to allow critical infrastructure systems to obtain their reference time from systems controlled from outside of the United States. The technical argument is simply that the GNSSs operate on similar frequencies (Table 2), and that intentional jamming could simultaneously disable all of them [23]. However, a clock that receives multiple GNSS signals, or signals on more than one GPS frequency, will be less susceptible to accidental jamming than the single frequency GPS clocks that are typically used by industry.

Fig. 5. Handheld GPS jamming device.

Low Frequency Navigation Systems

In 2010, the U.S. government elected to shut down the LORAN-C radio navigation system which had operated in various forms since World War II, transmitting signals at 100 kHz [24]. Prior to the shutdown, many of the LORAN stations had been modernized to support a new form of phase modulation that improved their navigation and timing accuracy. This enhanced system, called eLoran, easily provided sub-microsecond accuracy, and its high power, low frequency signals were extremely difficult to jam. Ironically, it had been recommended by an independent assessment team as the primary backup timing system to GPS just one year prior to its shutdown [25].

Due to a lack of alternatives, eLoran may still be revived as the backup timing source to GPS [26]. The U.S. Coast Guard, which formerly operated LORAN-C, has recently entered into a cooperative research and development agreement with

Table 2 – GNSS carrier frequencies (MHz)				
GPS	GLONASS	Galileo	COMPASS	
L1 1575.42 L2 1227.60 L5 1176.45	L1 1602.00 L2 1246.00	E1 1575.42 E5 1191.795 E5A 1176.45 E5B 1207.14 E6 1278.75	B1 1575.42 B2 1191.795 B3 1268.52	

UrsaNav, Inc., to examine developing a backup system for GPS based on eLoran technology. Since early 2012, experimental signals are being broadcast from the former LORAN support unit site in Wildwood, New Jersey, and UrsaNav has acquired the intellectual property rights from several companies that formerly manufactured LORAN receivers.

Precision Time Protocol (IEEE-1588) and eSync

Network timing signals are often mentioned as an alternative to GPS time, and sub-nanosecond accuracy has been demonstrated over fiber optic networks [27]. Commercially-available timing systems based on the Precision Time Protocol (PTP) [28] and Synchronous Ethernet (SyncE) [29] have demonstrated the ability to provide sub-microsecond accuracy in a local area network (LAN). However, when implemented on wide area network (WAN) such as the Internet where the path delays are highly variable and uncontrolled, their accuracy becomes similar to NTP [10] and is often reduced to milliseconds.

Network timing systems vary in complexity, but all are based on some variation of two-way time transfer (Fig. 6). The round trip delay between the clock is measured, and the path delay *d* from the reference to the remote clock is assumed to be half of the round trip delay between the clocks; thus, $d = (d_{ab} + d_{ba})/2$.

The reference clock either advances the time to compensate for path delay, or the path delay is added as a correction when synchronizing the remote clock. The path delay assumption is true if the path is symmetric and $d_{ab} = d_{ba}$. However, the path is usually asymmetric ($d_{ab} \neq d_{ba}$), and a synchronization error is introduced [30]. The synchronization error is generally far too large to support 1-µs accuracy across a WAN.

A network solution that meets critical infrastructure timing requirements would require either a WAN based on fiber optics that is dedicated to timing (or at least tightly controlled) or deploying large numbers of reference clocks to supply time over short distances to LANs. The first solution is cost prohibitive. The second solution brings us back to square one – where would the reference clocks come from if GPS clocks could not be used? Unlike GNSS and low frequency navigation systems, which provide the reference clocks and the time transfer system, systems such as PTP and SyncE provide only the time transfer system and must be referenced to external clocks.

Fig. 6. A two-way time transfer system.

Fig. 7. A chip scale atomic clock. (Courtesy of Symmetricom.)

Chip Scale Atomic Clocks

Another backup strategy that is sometimes suggested is simply to deploy many thousands of atomic clocks. Of course, the architects of industrial timing systems lack the budget to do so, which explains why costly cesium clocks (~\$70,000 USD) are rarely found within telecommunication networks and power grids, and why most GPS clocks contain quartz rather than rubidium oscillators. However, the recent availability of the chip scale atomic clock (CSAC) makes the widespread deployment of atomic clocks more feasible [31]. The CSAC (Fig. 7) is a fraction of the size of other atomic clocks, with dimensions of approximately $40 \times 35 \times 11$ mm and a weight of less than 35 g. It is also more stable than a quartz oscillator, maintaining frequency stability of a few parts in 10^{12} for several hours. CSACs are a new product, having first appeared commercially in 2011. As the technology matures, their price could drop to about \$100 per unit.

It is important to remember, however, that like all atomic clocks, the CSAC is simply a frequency standard. Unlike a GPS clock, it cannot recover time by itself and can serve as a reference clock only after being synchronized to a UTC source. It can, however, lead to the development of low cost GPS clocks with improved holdover capability.

Common-View Disciplined Clocks

A possible solution to the microsecond accuracy problem involves synchronizing multiple clocks to a reference clock through the use of the common-view measurement technique, an established way to compare clocks located at different sites (Fig. 8). The technique compares two clocks located at different sites to a common-view signal (*CVS*) broadcast from an independent transmitter. The measurement at site *A* produces the time difference *Clock* A–*CVS*, and the measurement at site *B* produces *Clock* B–*CVS*. When the two measurements are subtracted from each other, the result is the time difference between the two clocks, or *Clock* A–*Clock* B.

The common-view technique was practiced long before GPS was available [32], but during the past few decades GPS has typically been the *CVS* source [33]. Common-view GPS clock comparisons produce very good results with a typical measurement uncertainty of about 0.01 μ s. Note, however, that the *CVS* does not have to be accurate because it does not supply the reference time. It is simply a vehicle used to transfer time from the reference to the remote clock. It is, of course, necessary for the measurement systems at both sites to be calibrated so that their path delays are equivalent. This allows the *CVS* errors to "cancel" and for the measurement result to show only the difference between the reference and remote clock.

Common-view measurements can be used to control clocks if the measurements are rapidly processed, so that the time difference between the reference and remote clock is continuously known [34]. This time difference is used to correct the remote clock so that it agrees with the reference clock. The "measure and correct" process is continuously repeated to keep a common-view disciplined clock (CVDC) locked to its reference clock. The data server in Fig. 8 can potentially support a large number of CVDCs, because only a small amount of data need to be processed during each transaction.

CVDC systems similar to Fig. 8 exist in the United States [35] and Japan [36]. They are effective at distributing time from a

Fig. 8. A common-view disciplined clock (CVDC) system.

reference clock located at a national timing laboratory to other laboratories and easily achieve sub-microsecond accuracy. However, because GPS is the *CVS* source, they still depend on GPS availability. With additional research and development, the CVDC concept could be extended to develop a "fail-safe" clock that could work with or without GPS.

To illustrate how a "fail-safe" clock could work, consider that a CVDC relies on three main components: a reference clock, a common-view signal, and a data network. Each component could have one or more backups, and the system

could be designed to automatically switch to a backup component whenever necessary. For example, if a reference clock at the National Institute of Standards and Technology (NIST) becomes unavailable, a CVDC could automatically switch to a reference located at USNO. In theory, any clock that makes common-view measurements available through the data network could be chosen as the reference.

Other GNSS satellites could be used as backup *CVS* sources. We described earlier how systems such as GLONASS and Galileo are not always accepted as the time reference for critical infrastructure systems within the United States due to national security concerns. However, they might be acceptable as a backup *CVS* source, because they would not be supplying the reference time and instead be used only to "relay" the reference time to another location. Many GPS receivers and antennas are now compatible with other GNSS systems, so the additional hardware cost required for a backup *CVS* source might be small, although the concerns expressed earlier about all GNSS signals being simultaneously jammed would still apply.

Signals from geostationary communication satellites could also serve as the *CVS* source. The use of communication satellites would require more effort, because the position of the satellite, the reference clock, and the remote clock would need to be known to accurately measure path delay and to obtain sub-microsecond accuracy. However, these problems are not insurmountable. The satellite position could be obtained either from its broadcast or through calculations involving orbital elements. The position of each remote clock would need to be determined only once and would already be known if GPS were the primary *CVS* source.

Providing multiple data networks to remote clocks should be possible. The public Internet can be utilized, along with wired and wireless telecommunication networks. The path delay through the data network is not important, because timing signals would not be sent through the network, only clock corrections. Multiple servers would, of course, be needed for redundancy.

By automatically switching to a backup component whenever a primary component fails, a CVDC could potentially meet critical infrastructure timing requirements even in extreme scenarios where the reference clock, GPS, and the data network are all unavailable. Table 3 lists some possible primary and backup components for a "fail-safe" CVDC.

Table 3 – Primary and backup components for "fail-safe" CVDC					
Components	Reference Clock	Common-view signal	Data Network		
Primary Components	UTC(NIST) or UTC(USNO)	GPS	Public Internet		
Backup Components	Other national or private time scales that are synchronized to UTC	Other GNSS systems (GLONASS, Galileo, COMPASS) Geostationary communications satellite	Private telecommunications network (wired or wireless)		

Summary and Conclusion

Critical infrastructure timing systems rely upon GPS clocks simply because microsecond accuracy is easy to achieve with GPS and difficult to achieve without it. This paper has discussed how GPS clocks meet critical infrastructure timing requirements, why they are vulnerable, and some potential backup strategies. It seems clear that achieving microsecond accuracy at thousands of geographically dispersed sites without relying on GPS clocks is a very challenging problem. It seems equally clear that solving this problem is in the best interest of the United States.

Acknowledgments

The author thanks Mitch Narins of the Federal Aviation Administration, Ed Powers of the United States Naval Observatory, and Kirk Montgomery of Symmetricom for their useful comments and suggestions.

References

- T. E. Parker and D. Matsakis, "Time and frequency dissemination: advances in GPS transfer techniques," *GPS World*, vol. 15, no. 11, pp. 32-38, Nov. 2004.
- [2] D. C. Chu, M. S. Allen, and A. S. Foster, "Universal counter resolves picoseconds in time interval measurements," *Hewlett-Packard Journal*, vol. 29, no. 12, pp. 2-11, Aug. 1978.
- [3] S. A. Diddams, "The evolving optical frequency comb," J. Opt. Soc. Am. B, vol. 27, no. 11, pp. B51-B62, Nov. 2010.
- [4] M. A. Lombardi, "Legal and technical measurement requirements for time and frequency," NCSLI Measure J. Meas. Sci., vol. 1, no. 3, pp. 60-69, Sept. 2006.
- [5] J. L. Jespersen and L. Fey, "'Time-telling' techniques," IEEE Spectrum, vol. 9, no. 5, pp. 51-58, May 1972.
- [6] D. Piester, A. Bauch, L. Breakiron, D. Matsakis, B. Blanzano, and O. Koudelka, "Time transfer with nanosecond accuracy for the realization of International Atomic Time," *Metrologia*, vol. 45, no. 2, pp. 185-198, 2008.
- [7] D. Piester, M. Rost, M. Fujieda, T. Feldmann, and A. Bauch, "Remote atomic clock synchronization via satellites and optical fibers," *Adv. Radio Sci.*, vol. 9, pp. 1-7, 2011.
- [8] J. L. Jespersen, "A survey of time and frequency dissemination techniques," 24th Annual Symposium on Frequency Control, pp. 322-324, Apr. 1970.

- [9] A. H. Morgan, "Precise time synchronization of widely separated clocks," *National Bureau of Standards Technical Note* 22, July 1959.
- [10] D. L. Mills, "Precise synchronization of computer network clocks," ACM SIGCOMM Computer Communication Review, vol. 24, no. 2, pp. 28-43, Apr. 1994.
- [11] E. D. Kaplan and C. Hegerty, Understanding GPS: Principles and Applications, 2nd edition, Norwood, MA: Artech House Publishers, 2005.
- [12] J. Levine, "Time and frequency distribution using satellites," *Rep. Prog. Phys.*, vol. 65, pp. 1119–1164, July 2002.
- [13] P. Misra and P. Enge, Global Positioning System: Signals, Measurement, and Performance, 2nd edition, Lincoln, MA: Ganga-Jamuna Press, 2011.
- [14] 3rd Generation Partnership Project 2 (3GPP2), "Recommended Minimum Performance Standards for cdma2000 Spread Spectrum Base Stations," C.S0010-E, Version 1.0, Dec. 2011.
- [15] "Wireless Quick Facts," CTIA the Wireless Association, Advocacy. [Online] Available: http://www.ctia.org/advocacy/ research/index.cfm/aid/10323 (accessed May 2012).
- [16] A. G. Phadke, "Synchronized phasor measurements ~ an historical overview," in Proc. 2002 IEEE/PES Transmission and Distribution Conference and Exhibition, pp. 476-479, Oct. 2002.
- [17] IEEE, "Standard for Synchrophasor Data Transfer for Power Systems", IEEE C37.118.2-2011, 2011.
- [18] U.S. Department of Transportation, Volpe Center, "Vulnerability Assessment of the Transportation Infrastructure Relying on the Global Positioning System," *Volpe National Transportation Systems Center Report*, Aug. 2001.
- [19] D. Last, "GNSS: The Present Imperfect," InsideGNSS, vol. 5, no. 3, pp. 60-64, May 2010.
- [20] The Royal Academy of Engineering, "Global Navigation Space Systems: reliance and vulnerabilities," *Royal Academy of Engineering Report* (London, United Kingdom), ISBN 1-903496-62-4, May 2011.
- [21] J. Carroll and K. Montgomery, "Global positioning system timing criticality assessment - preliminary performance results," *Proc. 40th Annual Precise Time and Time Interval (PTTI) Meeting*, pp. 485-505, Dec. 2008.
- [22] C. Fernandez-Prades, L. Lo Presti, and E. Falletti, "Satellite radiolocalization from GPS to GNSS and beyond: novel technologies and applications for civil mass market," *Proc. IEEE*, vol. 99, no. 11, pp. 1882-1904, Nov. 2011.
- [23] R. Katulski, J. Magiera, J. Stefanski and A. Studanska, "Research study on reception of GNSS signals in ppresence of intentional interference," 34th International Conference on Telecommunications and Signal Processing, pp. 452-456, Aug. 2011.
- [24] M. A. Lombardi, "The end of an era: LORAN-C is shut down," NCSLI Measure J. Meas. Sci., vol. 5, no. 2, pp. 12-15, June 2010.
- [25] Institute for Defense Analyses (IDA), Independent Assessment Team (IAT) Summary of Initial Findings on eLoran, IDA, Alexandria, Virginia, Jan. 2009.

- [26] A. Helwig, G. Offermans, C. Schue, B. Walker, T. Hardy, and K. Zwicker, "Low frequency (LF) solutions for alternative positioning, navigation, timing, and data (APNT&D) and associated receiver technology," in *Proc.2011 International Technical Meeting of The Institute of Navigation*, San Diego, California, pp. 206-222, Jan. 2011.
- [27] M. Calhoun, S. Huang, and R. L. Tjoelker, "Stable photonic links for frequency and time transfer in the deep-space network and antenna arrays," *Proc. IEEE*, vol. 95, no. 10, pp. 1931-1946, Oct. 2007.
- [28] J. Han and D.K. Jeong, "A practical implementation of IEEE 1588-2008 transparent clock for distributed measurement and control systems," *IEEE. T. Instrum. Meas.*, vol. 59, no. 2, pp. 433-439, Feb. 2010.
- [29] J.-L. Ferrant, M. Gilson, S. Jobert, M. Mayer, M. Ouellette, L. Montini, S. Rodrigues, and S. Ruffini, "Synchronous ethernet: a method to transport synchronization," *IEEE Communications Magazine*, vol. 46, no. 9, pp. 126-134, Sept. 2008.
- [30] J. Levine, "Timing in telecommunication networks," Metrologia, vol. 48, no. 4, pp. S203-S212, Aug. 2011.
- [31] R. Lutwak, "The chip-scale atomic clock recent developments," Proc. Joint Meeting of 2009 IEEE Intl. Frequency Control Symposium and European Frequency and Time Forum, pp. 573-577, Apr. 2009.
- [32] A. M. J. Mitchell, "Frequency comparison of atomic standards by radio links," *Nature*, vol. 198, pp. 1155-1158, June 22, 1963.
- [33] D. W. Allan and M. A. Weiss, "Accurate time and frequency transfer during common-view of a GPS satellite," *Proceedings of the 1980 Frequency Control Symposium*, pp. 334-346, May 1980.
- [34] M. A. Lombardi and A. P. Dahlen, "A common-view disciplined oscillator," *Rev. Sci. Instrum.*, vol. 81, no. 5, May 2010.
- [35] M. A. Lombardi, "A NIST disciplined oscillator: delivering UTC(NIST) to the calibration laboratory," NCSLI Measure J. Meas. Sci., vol. 5, no. 4, pp. 56-64, December 2010.
- [36] M. Imae, Y. Fujii, Y. Mitamoto, T. Suzuyama, T. Kawakami, H. Yoshida, H. Hurukawa, and M. Susumu, "Development of a GPS common-view terminal for time and frequency remote calibration service," 2010 International Symposium on GPS/GNSS (Taipei, Taiwan), pp. 1-5, October 2010.

Michael A. Lombardi (lombardi@nist.gov) (Member, IEEE) has worked in the Time and Frequency Division of the National Institute of Standards and Technology (NIST) since 1981. His research interests include remote calibrations, international clock comparisons, disciplined oscillators, and radio and network time signals. He has published more than 90 papers related to time and frequency metrology. Mr. Lombardi is the chairman of the Inter-American Metrology System (SIM) time and frequency working group and the managing editor of *NCSLI Measure: The Journal of Measurement Science.*