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Abstract—Sideband pulling has long been considered a possible 
source of frequency bias in atomic frequency standards.  We 
treat a two-level system excited by coherent radiation with 
amplitude and phase modulation.  We create alternative 
variables to facilitate the second-order solution of the associated 
time-dependent Schrödinger equation.  We extend earlier work 
to include time-dependent excitation and initial phase 
dependence. 

I. INTRODUCTION 
Frequency shifts due to the presence of sidebands on the 

exciting radiation have been of concern from the earliest days 
of atomic frequency standards [1].  Results valid for sidebands 
further removed from the carrier than the Rabi width were 
given long ago [2,3].  In 1978 Audoin et al. published a 
second-order result for the shift due to a single sideband valid 
for an arbitrary sideband separation [4].  Although this theory 
predicted a first-order shift, it was assumed to average to zero 
for the continuous signals from the atomic beam frequency 
standards of the time.  Their result has been in use ever since to 
determine sideband intensity limits necessary to avoid a shift 
larger than other uncertainties. 

With the advent of cesium fountains operating in pulsed 
modes, the possibility of modulation in synchronism with the 
cycling of the fountain signals was considered [5].  A 
deliberate application of synchronized phase modulation 
produced significant shifts in the primary standard NIST-F1 
[6].  An accompanying theory agreed with the experimental 
results.   

The purpose of the present paper is to extend the second-
order results of Audoin et. al. to include contributions from 
synchronized pulsed operation and from two sidebands, 
equally spaced from the carrier, with arbitrary relative 
amplitudes and phases.  Such sidebands may be re-expressed 
as the simultaneous application of amplitude and phase 
modulation at the same modulation frequency.  We adopt this 
latter representation since amplitude and phase modulations 
interact with the dynamics of a two-level system in different 
manners.  The primary focus of our analysis will be the 
dependence of any shifts on the initial phases of the 
modulations.   

II. BACKGROUND THEORY 
We begin with a two-level system excited by an 

electromagnetic field proportional to  

 

( ) ( ) ( )cos cos / sin ,a a p pB b b t t b b t⎡ ⎤= ⎡ + Ω + ϕ ⎤ ω − Ω + ϕ⎣ ⎦ ⎣ ⎦
 

where 2b is the Rabi frequency for the excitation, and ba and bp 
are the corresponding Rabi frequencies for amplitude and 
phase modulation. These Rabi frequencies may be constant, or 
have time dependence.  For half-sine-wave excitation we have 

( ) ( ) ( )0/ 2 sin /b t b t= π π τ .  We assume ba and bp have the 
same time dependence as b. For a single sideband ba = bp and 
φa - φp = 0 or π. When the rotating wave approximation is 
made, and the probability amplitudes are redefined by 
appropriate time-dependent phases to eliminate the rapid ωt 
time dependence [3,7], the resulting time-dependent 
Schrödinger equation for the system becomes 

 rot

rot

*
.

Bdi
Bdt
−Δ⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠⎝ ⎠

α α
β β

 (1) 

Here ( )1
02 ω ωΔ = − is half the detuning  from the atomic 

resonance ω0 and * denotes the complex conjugate.  The 
coupling by the field is now represented by the complex 
quantity 

 ( ) ( )rot cos exp / sina a p pB b b i b b⎡ ⎤= + θ − θ⎣ ⎦ . 

We have introduced the abbreviations a atθ = Ω + ϕ  and 

p ptθ = Ω + ϕ .  We impose on (1) the initial conditions at the 
beginning of excitation ( 0) 1t = =α  and ( 0) 0t = =β .  Then α 
is the probability amplitude that the system remains in its 
initial state and β  is the probability amplitude that the system 
changes state.  The Rabi transition probability is then 

( ) ( ) 2
P t t= β . 

The corresponding Ramsey excitation probability is 
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( ) ( ) ( ) ( ) ( )2 2 2 22 2 1 2 1 2
Ram Ram 2Re ,i TP e Δ= β = β α + α β + γ  

 

where T is the period between the two excitations, and the 
coefficient γ is defined as 

 ( ) ( ) ( ) ( )2 2 1 1 *.γ = α β α β  (2) 

The superscripts refer to the first and second excitation regions, 
respectively.  The two excitations are assumed identical, except 
that the initial phase of both modulations has advanced by 

( )TΦ ≡ Ω + τ   for the second excitation. 

The presence of the perturbing modulations causes a 
frequency shift given by  

 
res

Im2 ,
ReT

γΔ =
γ   

If we expand γ, defined by (2), in powers of the perturbation 
(subscripts) to second order,  we find  

( )
1 2 1 1

res 2
0 0 0

Im Im Im Re2 .
Re Re ReT T T

γ γ γ γΔ = + −
γ γ γ

 (3) 

The imaginary part of γ0 was omitted because it is an odd 
function of Δ and merely makes a small change in the value of 
T in the denominator (cf. Sec. 3.2 in [7]).  Note that the first-
order correction to the denominator makes a contribution in the 
last term.  To find the perturbation expansion of γ we need the 
perturbation expansions of α and β.  These are difficult to 
derive from (1). 

III. ALTERNATIVE VARIABLES 
To simplify the derivation of the perturbation expansion we 

define alternative variables as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

Re Im

 and Re Im ,

ia t

ia t

W t e t i t

Z t e t i t−

= ⎡ α + β ⎤⎣ ⎦

= ⎡ β − α ⎤⎣ ⎦
 

where a(t) is defined as the integral of b(t).  The variables 
paired in the definitions are those coupled by the excitation.  
The exponentials in the definitions incorporate the 
unperturbed, on-tune evolution of the two level system. These 
new variables obey the same normalization criterion as α and 
β: 

( ) ( )2 2
1.W t Z t+ =

 
In terms of these variables the Rabi transition probability 
becomes 

( ) ( )2 2 2 21 1
2 2 Re Re .ia iaP e W e Z−⎡ ⎤= − −⎣ ⎦  

These alternative variables obey the following two differential 
equations: 

( ) ( ) ( ) ( )2 2/ cos sinia t ia t
a a p pdW dt i e Z ib t W b t e Z= − Δ + θ − θ

and 

( ) ( ) ( ) ( )2 2/ cos sinia t ia t
a a p pdZ dt i e W ib t Z b t e W− −= − Δ − θ + θ

 

where a(t) may be defined by a third simultaneous differential 
equation, 

( )/da dt b t= . 
If these differential equations are multiplied by i, they form a 
Schrödinger-like pair with a two-by-two hermitian 
Hamiltonian.   In the absence of detuning and the perturbation, 
the right-hand side vanishes.  The variables W and Z then 
remain constant, equal to their initial conditions 

( ) ( )0 1 , 0 0.W Z= =   Solutions in powers of the perturbation 
reduce to straightforward integrals.  

IV.  FIRST-ORDER SHIFTS 
For small shifts of the Ramsey resonance we may ignore 

the detuning in the excitation regions.   The first-order solution 
for W is then due only to amplitude modulation,  

( ) ( ) ( )1 0
cos ,a aW i b t t dt

τ
τ = − θ∫  

and for Z is due only to phase modulation: 

( ) ( ) ( ) ( )2
1 0

sin .ia t
p pZ b t t e dt

τ −τ = θ∫  

Although the expressions for the real and imaginary parts of γ 
in terms of the alternative variables are complex, their 
perturbation expansion is simpler, because the zero-order 
values of W and Z are their initial conditions.  Thus we find 

( )( ) ( )( )1 221
1 1 12Im sin 2 Re Re ,iaa Z e Z⎡ ⎤γ = − −⎣ ⎦  

where the argument of a is understood to be the excitation 
period τ.  The real part of γ0 is sin2acos2a.  When we insert the 
integrals, apply a trigonometric identity, and substitute into (3), 
we obtain the first-order shift  

[ ] ( )1 1 1
1 2 2 2

4 cos sin sin cos cos .
sin 2 CC SS pI a I a

T a
−δω = Φ + Φ Φ + ϕ

 (4) 

The integral ICC is given by 
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( ) ( ) ( ) ( )
0

cos / 2 cos 2 .CC pI b t t a t a dt
τ

= Ω − τ ⎡ − τ ⎤⎣ ⎦∫  
The integral ISS is the same except that both cosines are 
replaced with sines.  This result is valid for excitations 
symmetric about their half-way point.   For asymmetric 
excitation additional integrals are required.  The integrals can 
be done analytically for constant excitation to yield the 
previously published result [6].  They can be easily done 
numerically for half-sine-wave excitation. 

The first-order shift given by (4) has a sinusoidal 
dependence on the initial phase and a rapid oscillation with the 
sideband offset due to the phase advance Ф between excitation 
regions.  Figure 1 shows the envelope of this rapid oscillation 
for both constant and half-sine-wave excitation when the final 
cosine is replaced by unity. 

 
Figure 1.   First-order sideband pulling.  The light blue curve is for 

rectangular excitation. The dark blue curve is its upper envelope.  The red 
curve is the envelope for half-sine-wave excitation.  

 
V. SECOND-ORDER SHIFTS 

The second-order shift can be found in a similar, if more 
laborious, fashion.  The imaginary part of γ2 has contributions 
from the second-order solution for Z and the product of first-
order contributions from Z and W.   These contributions 
involve the product of cosθa and sinθp at different times.  A 
trigonometric identity allows this product to be written 

 
( ) ( ) ( )

( )
2cos sin sin

sin

a p a p

a p

t t t t

t t

′ ′θ θ = Ω + Ω + ϕ + ϕ

′− Ω − Ω + ϕ − ϕ
. 

 Therefore the second-order shift will depend only on the sum 
and difference of the initial phases and not on their individual 
values.  When the computations are carried out, the shift from 
the second term in (3) has the form  

 

( ) ( )
( ) ( )
0

2 2
0

cos cos sin cos
,

cos sin cos cos

a p C Sa p

C S a p

Q Q Qb b
Tb R R R

⎡ ⎤φ − φ + Φ + Φ Θ
⎢ ⎥δω =
⎢ ⎥+ Φ + Φ φ − φ + Θ⎣ ⎦

 

where a pΘ = Φ + Ωτ + ϕ + ϕ . This shift is due to the combined 
action of phase and amplitude modulation.  The coefficients 
are sums of integrals depending on a(τ) and Ωτ, but of order 
unity.  The Q coefficients arise from the interactions within 
each individual excitation region.  The R coefficients arise 
from the interference between the first-order interactions in the 
two excitation regions.  The terms with coefficients QC, QS, 
and R0 do not contribute to the shift when the initial phases are 
averaged.  But the remaining terms survive when φa - φp is 
constant.  The Q0, RC, and RS coefficients are the ones 
computed for constant excitation by Audoin et. al. [4].  We 
have verified their results except that they did not include τ in 
Φ. The power dependence of their results was discussed in [5].  
We note that these terms vanish if φa -φp = ±π/2, the same 
condition that makes the two sidebands have equal intensity. 

 
For atomic beam standards the last term in (3) vanishes, 

since the initial phase dependence in Reγ1 averages to zero.  
However, if this term is added in, as may be needed for pulsed 
standards, the Q coefficients are modified, but the R 
coefficients cancel out.   Thus if the shift is then averaged over 
initial phases, only the Q0 term survives and there is no 
Ramsey-like oscillation in the shift.  The modified Q0 term is 
plotted in figure 2 for both constant and half-sine-wave 
excitation. 

 
Figure 2.  Second-order sideband pulling—initial phase-independent part.  

The blue curve is for  constant excitation.  The red curve is for half-sine-wave 
excitation.  
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SUMMARY 
We have theoretically studied sideband pulling in atomic 

frequency standards in terms of amplitude and phase 
modulation.  We have introduced alternative variables to 
simplify a perturbation treatment of the modulation.  We find 
the first-order pulling, generated by phase modulation, for both 
constant and half-sine-wave excitation.  We find the second-
order pulling is generated by the combined action of phase and 
amplitude modulation.  We report the initial-phase and 
Ramsey-time dependence of the second-order shift. 

Contribution of the U. S. government.  Not subject to 
copyright. 
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