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Such plots provide a quick assessment of how long, and to 
what degree, it takes an oscillator to settle down to a 
consistent stability after being turned on.   
 
We will use an example in which the emitter is  repeatedly 
turned on for τon = 3 s every τs = 60 s.  In addition to the 
frequency that is traced during start-up, discussed above, an 
important criteria is the start-up frequency reproducibility and 
its characterization, described next. 
 

III. FREQUENCY PREDICTION ERROR FOR 
MULTIPLES OF τS 

We wish to estimate an oscillator’s frequency at its next turn-
on.  While there are any number of different ways to make 
this estimate based on a history of actual measurements [4], 
we construct a two-sample frequency prediction to mimic the 
desirable properties of noise identification, convergence, 
convenience, and acceptance provided by the two-sample 
standard variance, better known as the Allan variance, and its 
square root, ADEV [5].  The two-sample, no dead-time Allan 
variance has widely accepted statistical properties, however, 
limited-live applications have substantial dead-time.   
 
Fractional-frequency error yon(t) and its prediction at yon(t+τs)  
is based on the reasonable assumption that (or one expects 
that) any given manufacturer wants yon(t+τs) to be the same 
value as measured values of yon(t).  If we write yon(t+τs) = 
(1+ε)yon(t), where ε is a random variable, we also expect 
average 
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nonstationary, without a central limit, rendering this average 
of little or no practical use in the estimate of the frequency 
error designated as ˆ ( )on sy t τ+ .  The efficient predictor in the 
presence of random walk noise is ˆ ( ) ( )on s ony t y tτ+ = , the 

last measured value of yon.  The variance of this expectation 
can be written as a first difference 
 [ ]22 ˆ( , ) ( ) ( )on s on s ony t y tτ τ τΨ = + − , (1) 

where < · > denotes an ensemble average.  Like AVAR, (1) is 
the variance of an increment that converges in the limit.   
 
DEFINITION: Samples of the fractional frequency-error 
function y(t) occur at a rate f0 having an interval 
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(setup shown in Fig. 1).  Given a sequence of fractional 
frequency errors {yn : n=1,…,M} with a sampling period 
between adjacent measurements given by τ0, we define the 
mτ0-average fractional-frequency deviate as 
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where yn=y(t) with n=t/τ0 starting from a designated origin 
t0 = 0.  We also define psi-variance from the space of all 
possible two-sample increments as: 

22 ( , ) ( ) ( )on on
y on s sy t y tτ ττ τ τ⎡ ⎤Ψ ≡ − −⎣ ⎦  (2) 

where < · > denotes an ensemble average and ( )on y tτ  is the 
mean frequency over duration τon=mτ0. Fig. 1, top, shows 
the sampling function associated with Ψ2(τon, τs) acting on 
{yn}, where τon is called the averaging or live interval and τs 
- τon is the oscillator’s dead time.  Note that Ψ2(τon, τs) 
becomes twice the two-point standard (Allan) variance σy

2(τs)  
if τon = τs. 
 

IV. RELATIONSHIP OF S y ( f ) TO Ψ−VARIANCE 
For computing the usual power spectrum, we start with 
Parceval’s theorem: 
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where H(f) is the frequency-domain response of the time-
domain sampling function of Ψ2(τon, τs) shown at the top of 
Fig. 1.  Sy(f) of the emitter is multiplied by the FT squared of 
the sampling function to obtain |H(f)|2.  We obtain: 
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where r = t/τs (starting from origin t0) is a counting index 
r=1,2,3… representing the rth data run of 3 s duration. 
 
The f-domain response function |H(f)|2 is shown in Fig. 3.  
This response is +20dB/decade like the Allan variance for 
low frequencies up to the peak at fτs=½.  There is insufficient 
roll off above this peak, so white and flicker of phase noise 
types will cause the level of 2 ( , )on sτ τΨ to depend on fh in (4).  
This kind of dependence, though, is not a concern as of yet, 
since DUT random walk FM (and drift) are likely to 
dominate limited-live applications, as discussed in Section 
III, while  white FM can occur from the measurement system 
at short- term.  
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Figure 2.  Dynamic ThêoH plot. Surface smoothness is a general 
measure that the test oscillator has attained steady-state operation after 

having been powered on. 
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Table 1 compares the transform to frequency spectrum Sy(f) 
of ½Ψ2(τon, τs)  and σy

2(τs).  We use the scaling factor “1/2” 
in ½Ψ2(τon, τs) to  normalize its result to equal σy

2(τs) if 
τon=τs, i.e., zero dead-time.  Furthermore, the zero-dead time 
Allan and ½Ψ2(τon, τs) respond identically to white FM noise 
having equal frequency-spectral coefficient ho [6].  Flicker 
noise is given in terms of σy

2(τs)  to simplify the formula.  
The Table evidences the bias on σy

2(τs)  due to limited-live 
operation of the DUT. 
 
We now observe the intrinsic level of random walk or drift 
that properly characterizes the DUT as τ approaches its 
maximum around 2 s, using ThêoH.  Since fast-frequency 
measurements mask or are not sensitive to DUT-based PM-
noise types that would appear as “super white” FM-noise in 
y(t) raw data, ½Ψ2(τon, τs)  is never biased by this noise when 
compared to AVAR.  Since the bias never occurs, the 
unbiased white-FM-transform coefficient h0 used for Sy(f) 
does not depend on a high-cutoff, fc=1/(2τon), as indicated in 
Table 1.  Random walk (and drift) are slightly biased (depends 
on r = τs/τon [7]) and the positive τ-slope is the same for 
Ψ2(τon, τs) and σy

2(τ).  It is important to note that flicker-FM 
noise using dead-time AVAR (here Ψ2(τon=const., τs=τ)) will 
appear as white-FM noise [8]. 
 

TABLE I.  TABLE OF TRANSFORMS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It remains to be seen if flicker-FM can be reliably detected by  
unraveling Ψ-variance to obtain AVAR.  However, this 
distinction is usually unimportant to Doppler-relevant 
applications.   
 

V. TIME DOMAIN MEASUREMENTS OF 
OSCILLATORS 

We use a commercial miniature OCXO and TCXO at 16.384 
and 26 MHz, respectively, as DUTs for an example.  Fig. 4 
shows 128 raw y(τon) data runs of 2 ms sampled 
measurements on top of each other.  At the very bottom, data 
set #1 starts the test oscillator.  One can see that the first four 
sets capture a larger set-to-set overall variation than the 
remaining 124.  In real applications, the oscillators are not 
cold-started but are in process, so the initialization sets such 
as 1 to 4 can generally be ignored.  We process individual 
runs of Fig. 4 with dynamic ThêoH as described in Section II.  
This is shown in Fig. 5 along with averages of ThêoH.  One 
can see that a consistent level of stability (drift+white FM) is 
reached after about 60 ms.  Measurements are an equispaced 
sequence of fast-frequency errors, y(t), and are not time-
errors, x(t).  Thus, measurement noise is white FM and not 
typified by PM noise during runs of τon.  Fig. 5 shows 
measurement white FM in short-term, i.e., σy(τ0)∝τ-1/2. 
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Figure 4.  128 sets of raw fractional frequency measurements.  Set 1 is the 
first series of y(t), and the oscillator is first turned on from a “cold” start.  

Each trace is 3 s worth of data repeating every 60 s during which the 
oscillator is turned off. νo = 16.384MHz. 
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Figure 3.   Frequency response |H(f)|2 of 2 ( , )on sτ τΨ  in (3), τon  =   (τs)/20, 

r=1. 
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Figure 5.  ThêoH deviation (top) and dynamic ThêoH (DThêoH ) deviation 
(bottom) for the OCXO and TCXO.  Note that the longest τ for DThêoH 

corresponds to 1/10 of the longest τ for ThêoH. 
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With the average of each data run, 3 ( )on s y tτ = , we compute 
Ψ2(τon, τs) using all runs.  Results are shown in Fig. 6, where 
we observe the level and rate of frequency reproducibility as 
a function of nτs for each time that the DUT is powered on.  
This level and rate may or may not limit other application-
specific goals.  Likewise, with a given level and rate, one 
may be forced to use application strategies or improve emitter 
reproducibility to achieve goals.  Our finding is that there is 
no reliable method for estimating Ψ(τon, τs)  from σy(τ). 
 

VI. FREQUENCY DOMAIN MEASUREMENTS OF 
OSCILLATORS 

Phase noise L(f) is important during limited-live Doppler 
tracking.  L(f) is a convenient standard used to determine the 
error vs. range in offset-f, proportional to emitter velocity, as 
set by the emitter.  L(f) is computed from the fast-frequency 
measurements obtained using Fig. 1.  For a given τon data run 
sampled at t0, the fractional-frequency spectrum Sy(f) is 
obtained from the discrete FT of the series [6]: 
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where Δf = 1/(Nτ0).  The one-sided spectral density of y(t) is 
computed by adding the squares of the real and imaginary 
components of  Y and dividing by the RBW of the data run: 

 
[ ]{ } [ ]{ }2 2

Re ( ) Im ( )
( ) 2y

Y m f Y m f
S m f

f
Δ + Δ

Δ =
Δ

 (6) 

with BW = 1 Hz and RBW = Δf.  Converting to L(f), we use    
[6]:   
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and obtain L(f) plotted on log-log scales in Fig 7.   
 
In practice, the noise of each limited-live spectrum affects 
Doppler-track error.  Averages of limited-live estimates of 
L(mΔf) are shown in Fig. 7 for TCXOs #1 and #2.  A word of 
caution — L(f) derived from fast-frequency measurements in 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 will not be sensitive to white and flicker PM noise, as 
mentioned earlier.  This is not problematic to most limited-
live characterizations, since the measurement high frequency 
cutoff (BW) is fc = 1/(2τ0) and τ0 is of the order  10-3 in this 
case.  Thus, L(f) is not computed beyond  f of several 
hundred hertz, even in the best case. 
 
For future studies, characterization of limited-live oscillators 
in this paper will be used while such oscillators are subject to 
temperature and vibration stresses.  
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Figure 6.  Ψ-deviation for the OCXO and TCXO.  The minimum 

averaging time is τs = 60 s.  τon = 3 s. 
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Figure 7. L(f) for the OCXO and TCXO  from dead-time measurements. 
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