
Synchronizing Computer Clocks Using Kalman Filters

Judah Levine
Time and Frequency Division and JILA

National Institute of Standards and Technology and the University of Colorado
Boulder, Colorado 80305
jlevine@boulder.nist.gov

Abstract -- I have used the Kalman Filter algorithm to improve
the link between the Internet Time Servers operated by the
National Institute of Standards and Technology (NIST) and the
primary atomic clock ensemble in Boulder, which realizes
UTC(NIST) and which is used as the reference for the time
servers. The Kalman algorithm is better able to separate the
contributions of multiple noise sources such as the fluctuations in
the asymmetry of the channel delay and the statistical
fluctuations in the clock used as the internal reference for the
time server. This improved separation has made it possible to
compensate to some extent for the lower-quality telephone
circuits that are often used as the links for synchronizing the time
servers to the atomic clock ensemble.

INTRODUCTION

 The National Institute of Standards and Technology
(NIST) currently operates 35 public network time servers that
are located at 21 different sites in the United States. The
servers provide time over the public Internet in a number of
different formats. All of the servers are synchronized to
UTC(NIST). The time servers are linked to the atomic clock
ensemble in Boulder, Colorado by the use of a hard-wired
connection for the systems that are located at the NIST Boulder
laboratories and by dial-up telephone lines, which implement
the ACTS protocol [1] which will be described below, for the
other systems that are located at remote locations.

THE ORIGINAL ACTS SYSTEM

 The ACTS system transmits time using standard dial-
up telephone lines and modems. It is a two-way protocol, in
which the one-way transmission delay between the server and
the user is modeled as one-half of the round-trip value. The
message from the server to the client contains a time stamp and
an on-time marker character, which the client echoes back to
the server with as little delay as possible. The internal system
latency is on the order of microseconds, whereas the channel
delay is typically tens of milliseconds, so that the system
latency is small enough to be ignored. (Both the server and the
client have operating system software that has been modified
to guarantee that the system latency will be not larger than 15

microseconds even when the client is handling many requests
for time from the network.) The round-trip delay is measured
by the server as the time that has elapsed from when it
transmitted the on-time marker to when it receives the echo
from the remote system. The one-way delay is estimated as
one-half of this value, and the next on-time marker is advanced
using this one-way delay estimate so that it will arrive at the
client on-time. The server inserts this one-way delay estimate
into each message, so that the client can see the advance that
was used. When the client receives the on-time marker, it uses
the time stamp of that message to compute the difference
between its clock and the clock on the server. This process is
repeated every second until the telephone connection is broken.
The client can break the connection at any time, and the server
will automatically break the connection after 40 s if the client
has not done so before this.

 There are two important aspects to the design of the
ACTS system. The first is that the advance that is applied to
any on-time marker is derived from the previous round-trip
measurement, so that fluctuations in the delay with a period
close to the one-second interval between messages will not be
handled correctly. The second aspect, which has more subtle
consequences, is that the delay is measured by the server and
not by the client. Neither of these was important when ACTS
was first designed in 1988, but changes in the telephone system
since that time have made both of them significant.

 The advance used by the ACTS servers will be
accurate and unbiased on the average if the asymmetry in the
delay is close to 0 (so that the one-way delay is accurately
estimated as one-half of the round-trip value) and if both the
delay itself and its asymmetry are well characterized as white
noise processes, so that the advance that is used by the server is
an accurate estimate of the one-way delay on the average.
When these conditions are satisfied, an average of the time
differences between the client and the server measured using
consecutive ACTS transmissions converges to the true time
difference between the two systems. The standard-deviation of
the mean is improved by the square root of the number of
measurements that are used to compute it, and it was relatively
easy to realize sub-millisecond timing accuracy using
telephone calls that lasted 15 or 20 seconds.

THE EFFECT OF NEWER TELEPHONE CIRCUITS

U.S. Government work not protected by U.S. copyright 785

 The original ACTS servers had no way of evaluating
the accuracy of the one-way delay estimate, since they could
not estimate the asymmetry of the delay. If we define a
symmetry parameter, k, where k= 0.5 indicates that the
inbound and outbound delays are exactly equal, then the error
in the time-difference measurement, Δt, resulting from an
asymmetry in the measured round-trip delay, D, is given by,

Dkt)5.0(−=Δ . (1)

The limiting values k= 0 and k= 1 indicate that the inbound
or outbound delays (with respect to the server), respectively,
are negligibly small compared to the delay in the opposite
direction. That is, when k= 0 the transit time from the server to
the client dominates the round trip value, so that the clock on
the client appears slow.

The measured round-trip delay on analog voice circuits was
typically about 0.08 s and the delay asymmetry was typically
less than 1%, so that the timing accuracy was of order 0.001 s.
These values were realized using the same brand of modem on
both ends of the connection and by using a signaling speed of
9600 baud, which has the minimum asymmetry for the
modems that we used.[2]

 Both the asymmetry and the delay are larger on newer
telephone circuits, which are often implemented as a
combination of conventional analog and digital packet-
switched technologies. This combination is increasingly
common even on local subscriber loops – the circuit that links
the end user to the local telephone exchange. These circuits
often have round-trip delays as larger as 0.25 s, with a varying
delay asymmetry that can reach 5% or even more. From eq. 1,
the timing error in this case exceeds 0.01 s – about a factor of
10 poorer than the original design. As a practical matter, many
users of the Internet Time Services do not need even this level
of accuracy and the degraded service may still be adequate for
their needs. Nevertheless, I have designed software to try and
ameliorate this degradation as much as possible, and I describe
the initial tests of these improvements in this paper.

A NEW ACTS CLIENT
 In the original ACTS design, the client only had to
echo the on-time marker back to the server with negligible
delay – all the real work of the protocol was done by the
server. However, the client can measure the apparent time
difference between the time of the local clock and the time
stamp in the ACTS message every second – information that is
not available to the server. In order to make use of this
information, we must construct a model of the clock in the
client system. We use the typical iterative model, in which the
time difference at the current epoch, t, is estimated based on a
clock model computed at a previous time t-τ. The parameters
of the model are the time difference as a function of epoch, x,
measured in s and the dimensionless frequency offset, y. The

parameters ξ and η are the stochastic noise contributions to
the measurement process and the frequency of the local clock,
respectively. We assume that the measurement noise, ξ, is
approximately stationary white phase noise, so that it does not
depend on t or τ. The frequency noise, η, is typically
estimated using the Allan deviation for an averaging time of τ.
We assume that the Allan deviation is stationary as so does
not depend on t.

() ξτττ +−+−=)()(tytxtx (2)
)()()(τητ +−= tyty (3)

Although clock models often include a frequency aging

parameter, d, whose units are s-1, this parameter is not very
useful in this application for several reasons. The frequency
aging parameter would add terms 0.5dτ2 to eq. 2 and dτ to eq.
3. In both cases, the contribution of the aging parameter is
masked by the stochastic contributions to the corresponding
estimates, so that it is difficult to compute a robust estimate of
the aging parameter unless relatively large values of τ are used.
Unfortunately, the aging parameter is usually not a constant
over these longer averaging times, since the frequency of the
oscillator is usually affected in a quasi-random manner by
temperature fluctuations and other local environmental
perturbations.

 The quartz-crystal oscillators used in computer
systems typically have y= 2×10-5, η(1)= 10-7, and η(30)=
1.8×10-8. (These parameters characterize the oscillator as seen
through the operating system software, and therefore include
system latency and jitter. It is almost always impossible to
measure the characteristics of the actual “bare” oscillator itself,
which is probably considerably more stable than these values
of η for almost all averaging times.) If we take 30 s as the
maximum duration of a typical connection between a client
system and the ACTS server, the stochastic frequency
variations contribute about 0.1 μs to the estimates of
consecutive time differences spaced 1 s apart, and about 0.5 μs
to the dispersion of the time differences over the entire
connection. In contrast, the measurement noise, ξ, is typically
at least 80 μs even on a very good telephone connection, so
that the contribution of the stochastic frequency fluctuations
plays no role over the duration of a telephone call. The
measurement noise is larger than the system latency because of
the quasi-synchronous operation of the message interchange
over the telephone line between the two modems. Therefore,
the measured time dispersion of the clock in the client system
over the duration of the telephone connection can be modeled
as white noise superimposed on a simple linear variation. The
linear variation can be ignored relative to the measurement
noise for short telephone connections lasting less than about 4
s, but must be considered for the 30 s connections that we use
for the synchronization of the time servers.

DETAILS OF THE MEASUREMENT ALGORITHM

786

 The client system connects to the ACTS server and
receives N time messages. Each message contains a time stamp
and the advance applied to the on-time marker of that
transmission. As described above, the advance parameter was
actually computed by the server using the previous
measurement that it made of the round-trip delay. The client
measures the time difference between its clock and the time
stamp of each of the messages, and also records the associated
advance parameter. These values are Ti and Ai, respectively.

 The algorithm models each of the advance values as
the sum of a constant value that is a characteristic of that
telephone connection and an additional stochastic value that
has some unknown statistical distribution. We explicitly do not
assume that the distribution of the advance values about the
constant value has any particular form. However, we do
assume that the variations in the advance have a mean of 0.
That is, the mean of the advance values over the entire
telephone connection is an unbiased estimate of the true
transmission delay. (This assumption is basic to all two-way
methods. There is no way of detecting a static bias in the
asymmetry.) Thus, the algorithm assumes that the true advance
for this telephone connection is given by

N

A
A

N

i
i∑

== 1 (4)

and that the additional stochastic contribution to the advance in
each message is given by

AAa ii −= . (5)

We model the measured time differences (by the use of eq.
2) with a constant time offset, a linear time variation due to a
deterministic, constant frequency offset and a measurement
noise parameter, which we assume to be stationary. We assume
that the measurement noise has a random distribution with a
mean of 0 that can be characterized as white phase noise.
Therefore, the measured time differences should be accurately
modeled using a least-squares straight line, and the
measurements should scatter about that line with a random
distribution that is characterized by the measurement noise of
the process. We ascribe statistically significant deviations from
the straight line assumption (relative to the estimate of the
measurement noise) as due to an error in the advance
parameter for that measurement. The error can be due either to
a change in the asymmetry of the telephone connection or to a
rapid change in the actual round-trip delay between one-second
measurements. Our experience is that rapid changes in the
round-trip delay are much less likely after the first few seconds
of the connection, and changes in the asymmetry are much
more common. See fig. 2 of [2], which shows that the advance
varies by less than 1 ms P-P after the first few seconds of the
connection.

I can illustrate the basis of the method with a simple
example. The client system connects to the ACTS server and
receives N messages, each of which has a time tag, an advance
parameter and an on-time marker. When the on-time marker is
received, the client measures the time difference between the
time tag and the time of its clock. It also records the advance
value that was used.

The first step of the analysis is to fit the time differences to
a least-squares line and examine the residuals. In the simplest
case, the RMS magnitude of the residuals is of order 1 ms, and
the maximum deviation is not greater than 3 ms. The time
difference is taken as the intercept of the fitted line (with the
appropriate time tag), the frequency is the slope of the line, and
the algorithm continues with the next step as described below.

If any residual exceeds the threshold of 3× the RMS value,
the algorithm examines the advance values to see if the
residual could be due to an error in the advance calculation.
The algorithm calculates the mean advance and the deviation
of each individual advance from that mean as in eq. 4 and 5.
The time difference associated with each message is corrected
by the difference between the advance used for that message
and the average of all of the advances. This operation models
statistically large time differences as due to errors in the
advance calculation by the server – most often a result of a
change in the asymmetry of the connection, which the server
cannot detect. The sign of the correction depends on the
direction of the asymmetry – whether the inbound or outbound
paths were affected, as shown in eq. 1. Therefore, the
algorithm must investigate both possibilities and choose the
one that reduces the magnitude of the residuals. In most cases,
this calculation reduces the scatter in the time differences,
confirming the assumption that fluctuations in the advance are
really the cause of the apparent fluctuations in the time
differences. Any time difference that still exceeds 3× the
standard deviation of the residuals of a least squares straight-
line fit to the modified time differences is taken to be an error
due to some other unknown reason. It is dropped from the
estimate and the least-squares line is re-calculated. When no
further outliers are detected, the time difference and frequency
offset are estimated as the intercept and slope, respectively, of
the fitted line, and the algorithm continues with the next step.
If more than 5 points are discarded in this process, the estimate
does not proceed. Either the RMS deviation of the model is too
optimistic for the real data or the system has failed. The
algorithm waits a short time and tries again; the time server is
declared unhealthy as a precaution, since the time difference
calculation did not complete successfully. The time server will
continue to be set to an unhealthy state as long as the problem
continues. This condition will trigger an operator alarm.

In the more general case, we use the standard Kalman
formalism to estimate average values of each of the parameters
over the duration of the telephone connection. In other words,
the Kalman algorithm partitions the variance of the time
differences measured during a single telephone connection as

787

due to fluctuations in the advance parameter, which have some
unknown statistical distribution with a mean of 0 and a linear
time variation with a slope and intercept that are constant
during the connection. This calculation is considerably more
complicated than the simpler algorithm described above, but it
is more general and able to handle more complex noise types.
For example, we have experimented with adding a diurnal term
to the Kalman model, which could be helpful in estimating the
effect of the nearly-diurnal fluctuations in ambient temperature
on the frequency of the oscillator in the client. This term must
be incorporated into the covariance matrix, since we do not
know the amplitude or phase of the admittance to the
temperature. This process is often described as “state vector
augmentation.” [3]

When the computation is completed, we have an estimate
of the time offset of the system clock, the average frequency
over the time of the connection, and the measurement noise
parameter, ξ, which is essentially the RMS value of the
residuals of the computation.

We cannot determine the stochastic frequency variation, η,
in this way, since its contribution to the time differences is too
small over the duration of the telephone call. For averaging
times less than a few hours, the frequency fluctuations are well
modeled as white frequency modulation. Therefore, we
estimate the frequency of the oscillator by

y

y

T

txtxTty
ty

+

−−+−
=

1

)()()(
)(τ

ττ
 . (6)

The first term in the numerator on the right side is the
estimate of the frequency on the previous measurement cycle,
and the second term is the current average frequency estimated
as the evolution of the time difference over the interval since
the last measurement cycle. When the time server is operating
in steady state, the control software drives the time difference
to zero on every measurement cycle, so that x(t-τ)= 0 in this
mode. The estimate of the current frequency is then simply the
time difference that has accumulated divided by the interval
between measurments. The weighting factor Ty implements an
exponential filter with a time constant derived from the
assumption that the frequency variations can be characterized
as white frequency modulation. For most of the computers that
we have tested, this assumption is valid for averaging times up
to about 12 000 s, so that

12000
τ=yT . (7)

For averaging times shorter than τ, the value of η, the

stochastic variation in the frequency of the local clock
oscillator is measured using special-purpose hardware that
connects directly to the computer bus.

The value of τ, the time interval between measurement
cycles is determined as a compromise among several
competing considerations. If the interval between
measurements is too short, it is difficult to estimate the
deterministic frequency, y, in the presence of the measurement
noise, ξ and the stochastic fluctuations in the estimate of the
delay. Using a conservative value of 1 ms for the noise term,
the interval between measurements should be at least

s50
102
001.0

5 =
×

≥ −τ . (7)

In the limit of a very short measurement interval, the
measurement noise dominates the calculation, and the
performance is dominated by the characteristics of the noisy
channel. The local clock is more stable than the remote clock
seen through the noisy channel, and the inherent frequency
stability of the local clock oscillator is not being exploited in an
optimum way. On the other hand, the interval cannot be made
too long without violating the assumption that the evolution of
the time difference over the measurement interval satisfies the
model equations. The algorithm must also consider the
possibility of non-statistical glitches in the clock oscillator, and
decreasing the interval between measurements would decrease
the impact of these glitches because they would be detected
(and removed) more rapidly. Finally, the cost of the telephone
connections varies as 1/τ. Using the interval between
calibrations based on the minimum value in eq. 7 would be too
expensive and therefore impractical for this reason.

 The value of τ was initially about 3 000 s – 4 000 s,
but this value is generally too large for some of the poorer
telephone connections, and a value of 2 000 s is often needed
to realize an acceptable level of timing accuracy at the server
of no worse than 5 ms P-P.

DISCUSSION AND CONCLUSIONS

 The algorithm I have developed has made it possible
to continue to operate the NIST Internet time servers with the
telephone circuits that are becoming increasingly common both
for the local connection to the telephone central office and for
long-distance links. Maintaining a network of time servers
synchronized in this way is important for two reasons. In the
first place, the time service provided by these systems is
independent of satellite signals in general and the global
positioning satellites in particular, so that the systems are not
compromised by a denial of service attack on satellite signals.
In addition, the servers do not need external antennas and can
be installed at any location that has telephone connections.
This is a significant advantage, since many of our systems are
installed in underground or windowless, secure locations with
no access to the outside. On the hand, the servers depend on
periodic long-distance connections to the ACTS serves in the
NIST Boulder laboratories, and this is an expense that would

788

not be needed for a system that was synchronized using a
satellite timing receiver.

 As with all two-way methods, the algorithm cannot
detect a static asymmetry in the measurement of the round-trip
delay of the telephone circuit. We can estimate the magnitude
of this effect by comparing the times of different servers to
each other, but these comparisons introduce possible
asymmetries in the delay of the Internet path between them. As
a practical matter, the asymmetries of the Internet paths are
typically at least as large or even larger than the values for the
telephone system, so that the results of these comparisons are
not definitive.

 The method I have described here cannot cope with
every type of asymmetry. At one of our sites, the asymmetry
had a bimodal character. That is, the asymmetry was constant
for some period and then abruptly changed to a different value.
The change in the asymmetry resulted in time steps of order 20
ms with an irregular period of a few hours. I had no basis for
eliminating these steps, since I didn’t know the actual time
offset of the client system. Both of the time offsets satisfied the
usual statistical tests within a single telephone connection, and
the asymmetry was constant over several telephone
connections, suggesting that the routing of the telephone calls
changed periodically in an unpredictable manner.

The problem of a bi-model asymmetry is not very common
on telephone connections – we have only one example on 35
connections. However, a slowly varying asymmetry is
common, and it also arises quite often in time synchronization
applications that use the Internet as the communications
medium. A nearly bimodal asymmetry on the Internet can arise
for a system, such as a web server, that often has very different
inbound and outbound network activity. The “Huff-‘n-Puff”
[4] filter is an attempt to deal with both of these cases. The
procedure assumes that the minimum delay will also have the
minimum asymmetry, which is often true for web servers and
similar systems because the asymmetry is a strong function of
the load on the client or on the server and not a fundamental
characteristic of the intervening path itself, which is assumed
to have better symmetry. We do not have a good idea of the
source of the varying asymmetry in our configuration, and it is
less clear that assuming that the minimum delay also has the
minimum asymmetry is appropriate. Nevertheless, there could
be an advantage to using only the time differences with the
minimum delay in the computation of the estimate of the time
of the client. From eq. 1, the time error due to any asymmetry
is bounded by one-half of the round-trip delay, so that a
smaller delay will have a smaller time error, even if the
asymmetry fraction is the same. However, even the shortest
delay is many tens of milliseconds, so that this limit is not very
useful, since the goal of the time service is to synchronize the
servers with an uncertainty of 1 ms RMS. Unfortunately, we
also do not have an independent estimate of the true time
difference between the two systems, so that we have no basis
for choosing one time difference over the other one.

 One way to address this asymmetry problem would be
to improve the frequency stability of the oscillator in the time
server so that much longer averaging times could be supported.
The easiest way to do this would be to add an external atomic
frequency standard or even a high-quality quartz oscillator and
then lock the computer oscillator to the external device. Some
of our time servers have external rubidium oscillators
interfaced to the system through an interrupt line on the serial
port for this purpose. Both the frequency offset and the
frequency stability of the clock oscillator are improved by
several orders of magnitude using this technique.

When an external oscillator is present, the time-varying
asymmetry (and similar slowly-varying perturbations) can be
averaged for much longer periods – at least 1 day and probably
longer than this, since the frequency stability of the enhanced
local oscillator will now support these longer intervals between
measurements. Since the variations in the asymmetry are
bounded, it can always be divided into two components: a
static value and a bounded variation about that value that has a
mean of 0 for sufficiently long averaging times. A long
averaging time would attenuate the time variations in the
asymmetry and convert a static asymmetry into a time offset.
This time offset would have a slow variation in time if the
static value of the asymmetry was not stationary. (This would
be true if the asymmetry had a random-walk spectrum, for
example, since such a spectrum has no robust mean value.)
The time offset could be estimated through comparisons with
the NIST time servers that are located at NIST facilities and
are synchronized by direct connection to the NIST clock
ensemble. These directly-connected time servers would serve
as the constraints on the ensemble of network servers, so that
the ensemble would provide a stable source of time messages
that would be less affected by the asymmetry of any single
network path. To the extent that the network paths are disjoint,
an ensemble of network paths might also have an overall
asymmetry smaller than the asymmetry of any one of them.

REFERENCES

[1] J. Levine, M. Weiss, D. D. Davis, D. W. Allan and D. B.
Sullivan, “The NIST Automated Computer Time Service,” J.
Res. NIST, vol. 94, pages 311-321, 1989.

[2] Judah Levine, “Improvements to the NIST network time
servers,” Metrologia, vol. 45, pages S12-S22, 2008.

[3] Arthur Gelb, Editor, “Applied Optimal Estimation,” 1974,
Cambridge, Massachusetts, The M.I.T. Press. See pages 78-
82.

789

 [4] David L. Mills, “Computer Network Time
Synchronization,” Boca Raton, Florida, CRC Press, 2006. See
pages 54-55 and 103-104.

790

