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Abstract -- I have used the Kalman Filter algorithm to improve 
the link between the Internet Time Servers operated by the 
National Institute of Standards and Technology (NIST) and the 
primary atomic clock ensemble in Boulder, which realizes 
UTC(NIST) and which is used as the reference for the time 
servers. The Kalman algorithm is better able to separate the 
contributions of multiple noise sources such as the fluctuations in 
the asymmetry of the channel delay and the statistical 
fluctuations in the clock used as the internal reference for the 
time server. This improved separation has made it possible to 
compensate to some extent for the lower-quality telephone 
circuits that are often used as the links for synchronizing the time 
servers to the atomic clock ensemble. 
 

INTRODUCTION 
 

 The National Institute of Standards and Technology 
(NIST) currently operates 35 public network time servers that 
are located at 21 different sites in the United States. The 
servers provide time over the public Internet in a number of 
different formats. All of the servers are synchronized to 
UTC(NIST).  The time servers are linked to the atomic clock 
ensemble in Boulder, Colorado by the use of a hard-wired 
connection for the systems that are located at the NIST Boulder 
laboratories and by dial-up telephone lines, which implement 
the ACTS protocol [1] which will be described below, for the 
other systems that are located at remote locations.  

THE ORIGINAL ACTS SYSTEM 
 

 The ACTS system transmits time using standard dial-
up telephone lines and modems. It is a two-way protocol, in 
which the one-way transmission delay between the server and 
the user is modeled as one-half of the round-trip value. The 
message from the server to the client contains a time stamp and 
an on-time marker character, which the client echoes back to 
the server with as little delay as possible. The internal system 
latency is on the order of microseconds, whereas the channel 
delay is typically tens of milliseconds, so that the system 
latency is small enough to be ignored. (Both the server and the 
client have operating system software that has been modified 
to guarantee that the system latency will be not larger than 15 

microseconds even when the client is handling many requests 
for time from the network.) The round-trip delay is measured 
by the server as the time that has elapsed from when it 
transmitted the on-time marker to when it receives the echo 
from the remote system. The one-way delay is estimated as 
one-half of this value, and the next on-time marker is advanced 
using this one-way delay estimate so that it will arrive at the 
client on-time. The server inserts this one-way delay estimate 
into each message, so that the client can see the advance that 
was used. When the client receives the on-time marker, it uses 
the time stamp of that message to compute the difference 
between its clock and the clock on the server. This process is 
repeated every second until the telephone connection is broken. 
The client can break the connection at any time, and the server 
will automatically break the connection after 40 s if the client 
has not done so before this. 

 There are two important aspects to the design of the 
ACTS system. The first is that the advance that is applied to 
any on-time marker is derived from the previous round-trip 
measurement, so that fluctuations in the delay with a period 
close to the one-second interval between messages will not be 
handled correctly. The second aspect, which has more subtle 
consequences, is that the delay is measured by the server and 
not by the client. Neither of these was important when ACTS 
was first designed in 1988, but changes in the telephone system 
since that time have made both of them significant. 

 The advance used by the ACTS servers will be 
accurate and unbiased on the average if the asymmetry in the 
delay is close to 0 (so that the one-way delay is accurately 
estimated as one-half of the round-trip value) and if both the 
delay itself and its asymmetry are well characterized as white 
noise processes, so that the advance that is used by the server is 
an accurate estimate of the one-way delay on the average. 
When these conditions are satisfied, an average of the time 
differences between the client and the server measured using 
consecutive ACTS transmissions converges to the true time 
difference between the two systems. The standard-deviation of 
the mean is improved by the square root of the number of 
measurements that are used to compute it, and it was relatively 
easy to realize sub-millisecond timing accuracy using 
telephone calls that lasted 15 or 20 seconds.  

THE EFFECT OF NEWER TELEPHONE CIRCUITS 
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 The original ACTS servers had no way of evaluating 
the accuracy of the one-way delay estimate, since they could 
not estimate the asymmetry of the delay. If we define a 
symmetry parameter, k, where k= 0.5 indicates that the 
inbound and outbound delays are exactly equal, then the error 
in the time-difference measurement, Δt, resulting from an 
asymmetry in the measured round-trip delay, D, is given by, 

Dkt )5.0( −=Δ .     (1) 
 

The limiting values k= 0 and k= 1 indicate that the inbound 
or outbound delays (with respect to the server), respectively, 
are negligibly small compared to the delay in the opposite 
direction. That is, when k= 0 the transit time from the server to 
the client dominates the round trip value, so that the clock on 
the client appears slow.  

The measured round-trip delay on analog voice circuits was 
typically about 0.08 s and the delay asymmetry was typically 
less than 1%, so that the timing accuracy was of order 0.001 s. 
These values were realized using the same brand of modem on 
both ends of the connection and by using a signaling speed of 
9600 baud, which has the minimum asymmetry for the 
modems that we used.[2] 

 Both the asymmetry and the delay are larger on newer 
telephone circuits, which are often implemented as a 
combination of conventional analog and digital packet-
switched technologies. This combination is increasingly 
common even on local subscriber loops – the circuit that links 
the end user to the local telephone exchange. These circuits 
often have round-trip delays as larger as 0.25 s, with a varying 
delay asymmetry that can reach 5% or even more. From eq. 1, 
the timing error in this case exceeds 0.01 s – about a factor of 
10 poorer than the original design. As a practical matter, many 
users of the Internet Time Services do not need even this level 
of accuracy and the degraded service may still be adequate for 
their needs. Nevertheless, I have designed software to try and 
ameliorate this degradation as much as possible, and I describe 
the initial tests of these improvements in this paper. 

A NEW ACTS CLIENT 
 In the original ACTS design, the client only had to 
echo the on-time marker back to the server with negligible 
delay – all the real work of the protocol was done by the 
server. However, the client can measure the apparent time 
difference between the time of the local clock and the time 
stamp in the ACTS message every second – information that is 
not available to the server. In order to make use of this 
information, we must construct a model of the clock in the 
client system. We use the typical iterative model, in which the 
time difference at the current epoch, t, is estimated based on a 
clock model computed at a previous time t-τ. The parameters 
of the model are the time difference as a function of epoch, x, 
measured in s and the dimensionless frequency offset, y. The 

parameters ξ and η are the stochastic noise contributions to 
the measurement process and the frequency of the local clock, 
respectively. We assume that the measurement noise, ξ, is 
approximately stationary white phase noise, so that it does not 
depend on t or τ. The frequency noise, η, is typically 
estimated using the Allan deviation for an averaging time of τ. 
We assume that the Allan deviation is stationary as so does 
not depend on t. 
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Although clock models often include a frequency aging 

parameter, d, whose units are s-1, this parameter is not very 
useful in this application for several reasons. The frequency 
aging parameter would add terms 0.5dτ2 to eq. 2 and dτ to eq. 
3. In both cases, the contribution of the aging parameter is 
masked by the stochastic contributions to the corresponding 
estimates, so that it is difficult to compute a robust estimate of 
the aging parameter unless relatively large values of τ are used. 
Unfortunately, the aging parameter is usually not a constant 
over these longer averaging times, since the frequency of the 
oscillator is usually affected in a quasi-random manner by 
temperature fluctuations and other local environmental 
perturbations. 

 The quartz-crystal oscillators used in computer 
systems typically have y= 2×10-5, η(1)= 10-7, and η(30)= 
1.8×10-8. (These parameters characterize the oscillator as seen 
through the operating system software, and therefore include 
system latency and jitter. It is almost always impossible to 
measure the characteristics of the actual “bare” oscillator itself, 
which is probably considerably more stable than these values 
of η for almost all averaging times.) If we take 30 s as the 
maximum duration of a typical connection between a client 
system and the ACTS server, the stochastic frequency 
variations contribute about 0.1 μs to the estimates of 
consecutive time differences spaced 1 s apart, and about 0.5 μs 
to the dispersion of the time differences over the entire 
connection. In contrast, the measurement noise, ξ, is typically 
at least 80 μs even on a very good telephone connection, so 
that the contribution of the stochastic frequency fluctuations 
plays no role over the duration of a telephone call. The 
measurement noise is larger than the system latency because of 
the quasi-synchronous operation of the message interchange 
over the telephone line between the two modems. Therefore, 
the measured time dispersion of the clock in the client system 
over the duration of the telephone connection can be modeled 
as white noise superimposed on a simple linear variation. The 
linear variation can be ignored relative to the measurement 
noise for short telephone connections lasting less than about 4 
s, but must be considered for the 30 s connections that we use 
for the synchronization of the time servers. 

DETAILS OF THE MEASUREMENT ALGORITHM 
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 The client system connects to the ACTS server and 
receives N time messages. Each message contains a time stamp 
and the advance applied to the on-time marker of that 
transmission. As described above, the advance parameter was 
actually computed by the server using the previous 
measurement that it made of the round-trip delay.  The client 
measures the time difference between its clock and the time 
stamp of each of the messages, and also records the associated 
advance parameter. These values are Ti and Ai, respectively.  

 The algorithm models each of the advance values as 
the sum of a constant value that is a characteristic of that 
telephone connection and an additional stochastic value that 
has some unknown statistical distribution. We explicitly do not 
assume that the distribution of the advance values about the 
constant value has any particular form. However, we do 
assume that the variations in the advance have a mean of 0. 
That is, the mean of the advance values over the entire 
telephone connection is an unbiased estimate of the true 
transmission delay. (This assumption is basic to all two-way 
methods. There is no way of detecting a static bias in the 
asymmetry.) Thus, the algorithm assumes that the true advance 
for this telephone connection is given by 

N

A
A

N

i
i∑

== 1     (4) 

and that the additional stochastic contribution to the advance in 
each message is given by 

AAa ii −=   .     (5) 

We model the measured time differences (by the use of eq. 
2) with a constant time offset, a linear time variation due to a 
deterministic, constant frequency offset and a measurement 
noise parameter, which we assume to be stationary. We assume 
that the measurement noise has a random distribution with a 
mean of 0 that can be characterized as white phase noise. 
Therefore, the measured time differences should be accurately 
modeled using a least-squares straight line, and the 
measurements should scatter about that line with a random 
distribution that is characterized by the measurement noise of 
the process. We ascribe statistically significant deviations from 
the straight line assumption (relative to the estimate of the 
measurement noise) as due to an error in the advance 
parameter for that measurement. The error can be due either to 
a change in the asymmetry of the telephone connection or to a 
rapid change in the actual round-trip delay between one-second 
measurements. Our experience is that rapid changes in the 
round-trip delay are much less likely after the first few seconds 
of the connection, and changes in the asymmetry are much 
more common. See fig. 2 of [2], which shows that the advance 
varies by less than 1 ms P-P after the first few seconds of the 
connection. 

I can illustrate the basis of the method with a simple 
example. The client system connects to the ACTS server and 
receives N messages, each of which has a time tag, an advance 
parameter and an on-time marker. When the on-time marker is 
received, the client measures the time difference between the 
time tag and the time of its clock. It also records the advance 
value that was used.  

The first step of the analysis is to fit the time differences to 
a least-squares line and examine the residuals. In the simplest 
case, the RMS magnitude of the residuals is of order 1 ms, and 
the maximum deviation is not greater than 3 ms. The time 
difference is taken as the intercept of the fitted line (with the 
appropriate time tag), the frequency is the slope of the line, and 
the algorithm continues with the next step as described below.  

If any residual exceeds the threshold of 3× the RMS value, 
the algorithm examines the advance values to see if the 
residual could be due to an error in the advance calculation. 
The algorithm calculates the mean advance and the deviation 
of each individual advance from that mean as in eq. 4 and 5. 
The time difference associated with each message is corrected 
by the difference between the advance used for that message 
and the average of all of the advances. This operation models 
statistically large time differences as due to errors in the 
advance calculation by the server – most often a result of a 
change in the asymmetry of the connection, which the server 
cannot detect. The sign of the correction depends on the 
direction of the asymmetry – whether the inbound or outbound 
paths were affected, as shown in eq. 1. Therefore, the 
algorithm must investigate both possibilities and choose the 
one that reduces the magnitude of the residuals. In most cases, 
this calculation reduces the scatter in the time differences, 
confirming the assumption that fluctuations in the advance are 
really the cause of the apparent fluctuations in the time 
differences. Any time difference that still exceeds 3× the 
standard deviation of the residuals of a least squares straight-
line fit to the modified time differences is taken to be an error 
due to some other unknown reason. It is dropped from the 
estimate and the least-squares line is re-calculated. When no 
further outliers are detected, the time difference and frequency 
offset are estimated as the intercept and slope, respectively, of 
the fitted line, and the algorithm continues with the next step. 
If more than 5 points are discarded in this process, the estimate 
does not proceed. Either the RMS deviation of the model is too 
optimistic for the real data or the system has failed. The 
algorithm waits a short time and tries again; the time server is 
declared unhealthy as a precaution, since the time difference 
calculation did not complete successfully. The time server will 
continue to be set to an unhealthy state as long as the problem 
continues. This condition will trigger an operator alarm.   

In the more general case, we use the standard Kalman 
formalism to estimate average values of each of the parameters 
over the duration of the telephone connection. In other words, 
the Kalman algorithm partitions the variance of the time 
differences measured during a single telephone connection as 
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due to fluctuations in the advance parameter, which have some 
unknown statistical distribution with a mean of 0 and a linear 
time variation with a slope and intercept that are constant 
during the connection. This calculation is considerably more 
complicated than the simpler algorithm described above, but it 
is more general and able to handle more complex noise types. 
For example, we have experimented with adding a diurnal term 
to the Kalman model, which could be helpful in estimating the 
effect of the nearly-diurnal fluctuations in ambient temperature 
on the frequency of the oscillator in the client. This term must 
be incorporated into the covariance matrix, since we do not 
know the amplitude or phase of the admittance to the 
temperature. This process is often described as “state vector 
augmentation.” [3]  

When the computation is completed, we have an estimate 
of the time offset of the system clock, the average frequency 
over the time of the connection, and the measurement noise 
parameter, ξ, which is essentially the RMS value of the 
residuals of the computation.  

We cannot determine the stochastic frequency variation, η, 
in this way, since its contribution to the time differences is too 
small over the duration of the telephone call. For averaging 
times less than a few hours, the frequency fluctuations are well 
modeled as white frequency modulation. Therefore, we 
estimate the frequency of the oscillator by  

y

y
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The first term in the numerator on the right side is the 
estimate of the frequency on the previous measurement cycle, 
and the second term is the current average frequency estimated 
as the evolution of the time difference over the interval since 
the last measurement cycle. When the time server is operating 
in steady state, the control software drives the time difference 
to zero on every measurement cycle, so that x(t-τ)= 0 in this 
mode. The estimate of the current frequency is then simply the 
time difference that has accumulated divided by the interval 
between measurments. The weighting factor Ty implements an 
exponential filter with a time constant derived from the 
assumption that the frequency variations can be characterized 
as white frequency modulation. For most of the computers that 
we have tested, this assumption is valid for averaging times up 
to about 12 000 s, so that  

12000
τ=yT  .     (7) 

 
For averaging times shorter than τ, the value of η, the 

stochastic variation in the frequency of the local clock 
oscillator  is measured using special-purpose hardware that 
connects directly to the computer bus. 

The value of τ, the time interval between measurement 
cycles is determined as a compromise among several 
competing considerations. If the interval between 
measurements is too short, it is difficult to estimate the 
deterministic frequency, y, in the presence of the measurement 
noise, ξ and the stochastic fluctuations in the estimate of the 
delay. Using a conservative value of 1 ms for the noise term, 
the interval between measurements should be at least 

s50
102
001.0

5 =
×

≥ −τ .    (7) 

In the limit of a very short measurement interval, the 
measurement noise dominates the calculation, and the 
performance is dominated by the characteristics of the noisy 
channel. The local clock is more stable than the remote clock 
seen through the noisy channel, and the inherent frequency 
stability of the local clock oscillator is not being exploited in an 
optimum way. On the other hand, the interval cannot be made 
too long without violating the assumption that the evolution of 
the time difference over the measurement interval satisfies the 
model equations. The algorithm must also consider the 
possibility of non-statistical glitches in the clock oscillator, and 
decreasing the interval between measurements would decrease 
the impact of these glitches because they would be detected 
(and removed) more rapidly.  Finally, the cost of the telephone 
connections varies as 1/τ. Using the interval between 
calibrations based on the minimum value in eq. 7 would be too 
expensive and therefore impractical for this reason. 

 The value of τ was initially about 3 000 s – 4 000 s, 
but this value is generally too large for some of the poorer 
telephone connections, and a value of 2 000 s is often needed 
to realize an acceptable level of timing accuracy at the server 
of no worse than 5 ms P-P. 

DISCUSSION AND CONCLUSIONS 
 

 The algorithm I have developed has made it possible 
to continue to operate the NIST Internet time servers with the 
telephone circuits that are becoming increasingly common both 
for the local connection to the telephone central office and for 
long-distance links. Maintaining a network of time servers 
synchronized in this way is important for two reasons. In the 
first place, the time service provided by these systems is 
independent of satellite signals in general and the global 
positioning satellites in particular, so that the systems are not 
compromised by a denial of service attack on satellite signals. 
In addition, the servers do not need external antennas and can 
be installed at any location that has telephone connections. 
This is a significant advantage, since many of our systems are 
installed in underground or windowless, secure locations with 
no access to the outside. On the hand, the servers depend on 
periodic long-distance connections to the ACTS serves in the 
NIST Boulder laboratories, and this is an expense that would 
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not be needed for a system that was synchronized using a 
satellite timing receiver. 

 As with all two-way methods, the algorithm cannot 
detect a static asymmetry in the measurement of the round-trip 
delay of the telephone circuit. We can estimate the magnitude 
of this effect by comparing the times of different servers to 
each other, but these comparisons introduce possible 
asymmetries in the delay of the Internet path between them. As 
a practical matter, the asymmetries of the Internet paths are 
typically at least as large or even larger than the values for the 
telephone system, so that the results of these comparisons are 
not definitive. 

    The method I have described here cannot cope with 
every type of asymmetry. At one of our sites, the asymmetry 
had a bimodal character. That is, the asymmetry was constant 
for some period and then abruptly changed to a different value. 
The change in the asymmetry resulted in time steps of order 20 
ms with an irregular period of a few hours. I had no basis for 
eliminating these steps, since I didn’t know the actual time 
offset of the client system. Both of the time offsets satisfied the 
usual statistical tests within a single telephone connection, and 
the asymmetry was constant over several telephone 
connections, suggesting that the routing of the telephone calls 
changed periodically in an unpredictable manner.  

The problem of a bi-model asymmetry is not very common 
on telephone connections – we have only one example on 35 
connections. However, a slowly varying asymmetry is 
common, and it also arises quite often in time synchronization 
applications that use the Internet as the communications 
medium. A nearly bimodal asymmetry on the Internet can arise 
for a system, such as a web server, that often has very different 
inbound and outbound network activity. The “Huff-‘n-Puff” 
[4] filter is an attempt to deal with both of these cases. The 
procedure assumes that the minimum delay will also have the 
minimum asymmetry, which is often true for web servers and 
similar systems because the asymmetry is a strong function of 
the load on the client or on the server and not a fundamental 
characteristic of the intervening path itself, which is assumed 
to have better symmetry. We do not have a good idea of the 
source of the varying asymmetry in our configuration, and it is 
less clear that assuming that the minimum delay also has the 
minimum asymmetry is appropriate.  Nevertheless, there could 
be an advantage to using only the time differences with the 
minimum delay in the computation of the estimate of the time 
of the client. From eq. 1, the time error due to any asymmetry 
is bounded by one-half of the round-trip delay, so that a 
smaller delay will have a smaller time error, even if the 
asymmetry fraction is the same. However, even the shortest 
delay is many tens of milliseconds, so that this limit is not very 
useful, since the goal of the time service is to synchronize the 
servers with an uncertainty of 1 ms RMS. Unfortunately, we 
also do not have an independent estimate of the true time 
difference between the two systems, so that we have no basis 
for choosing one time difference over the other one.  

 One way to address this asymmetry problem would be 
to improve the frequency stability of the oscillator in the time 
server so that much longer averaging times could be supported. 
The easiest way to do this would be to add an external atomic 
frequency standard or even a high-quality quartz oscillator and 
then lock the computer oscillator to the external device. Some 
of our time servers have external rubidium oscillators 
interfaced to the system through an interrupt line on the serial 
port for this purpose. Both the frequency offset and the 
frequency stability of the clock oscillator are improved by 
several orders of magnitude using this technique.  

When an external oscillator is present, the time-varying 
asymmetry (and similar slowly-varying perturbations) can be 
averaged for much longer periods – at least 1 day and probably 
longer than this, since the frequency stability of the enhanced 
local oscillator will now support these longer intervals between 
measurements. Since the variations in the asymmetry are 
bounded, it can always be divided into two components: a 
static value and a bounded variation about that value that has a 
mean of 0 for sufficiently long averaging times. A long 
averaging time would attenuate the time variations in the 
asymmetry and convert a static asymmetry into a time offset. 
This time offset would have a slow variation in time if the 
static value of the asymmetry was not stationary. (This would 
be true if the asymmetry had a random-walk spectrum, for 
example, since such a spectrum has no robust mean value.) 
The time offset could be estimated through comparisons with 
the NIST time servers that are located at NIST facilities and 
are synchronized by direct connection to the NIST clock 
ensemble. These directly-connected time servers would serve 
as the constraints on the ensemble of network servers, so that 
the ensemble would provide a stable source of time messages 
that would be less affected by the asymmetry of any single 
network path. To the extent that the network paths are disjoint, 
an ensemble of network paths might also have an overall 
asymmetry smaller than the asymmetry of any one of them.    
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